1. (6 points) Evaluate the following expressions.
(a) $(6-7)^{9}-5\left(10-4^{2}\right)+21^{0}+12^{1}$
(b) $\frac{2}{3}-(6-8)^{3} \div \frac{1-(-3)}{1+3\left(1^{2}-2\right)}$
(c) $\frac{1-2^{2}}{2^{3}-3^{2}} \div\left|\frac{5-(-2)^{2}}{1-9}\right|+4$
2. (4 points) Expand and simplify the following expressions.
(a) $(3 x+2)\left(4-6 x+9 x^{2}\right)-8$
(b) $4(t-s)^{2}-(2 t-3 s)(2 t+3 s)$
3. (2 points) A bicycle is sold at a 20% discount for $\$ 320$. What was the original price of the bicyle? [Recall: Selling Price=Original Price - Original Price • Discount Rate]
4. (2 points) What was the initial sum deposited to my 1.2% chequing account if I gained $\$ 3000$ in simple interest over the last two years? [Recall: $I=P \cdot r \cdot t$]
5. (2 points) A waffle machine is sold for $\$ 26$ in a store that marks up small kitchen appliances by 30%. What was the original price of the waffle machine? [Recall: Selling Price=Cost + Cost • Markup Rate]
6. (6 points) Solve the following equations.
(a) $\frac{2 x+3}{6}=\frac{x}{3}-4$
(b) $5(a+1)-3(2-a)=3+2(a+4)+3(2 a-3)$
(c) $(t+8)(t+1)=(4+t)(3+t)$
7. (3 points) Consider the line that passes through the points $(1,3)$ and $(5,1)$.
(a) Find the slope of the line.
(b) Find the equation of the line.
(c) Find the x-intercept of the line.
8. (5 points) Consider the line passing through the point $(2,1)$ and perpendicular to $2 x+y=7$.
(a) Find the equation of the line.
(b) Sketch both lines in the same coordinate system.
9. (3 points) Solve the following linear system by the method of substitution.
$\left\{\begin{array}{l}3 x+2 y=4 \\ 2 x+5 y=10\end{array}\right.$
10. (3 points) Solve the following linear system by the method of elimination.
$\left\{\begin{array}{l}4 x+3 y=4 \\ 2 x-6 y=-3\end{array}\right.$
11. (4 points) Simplify each of the following expressions. You may assume that all variables are positive. Present the result without negative exponents.
(a) $\left(3 a b^{-1} c^{2}\right)^{3}\left(9 a^{0} b^{1} c^{-1}\right)^{-1}=$
(b) $\left(\frac{42 x^{2} y^{-4} z^{1}}{21 z^{3} x^{-2} y^{0}}\right)^{-2}=$
12. (4 points) Factor each polynomial completely.
(a) $4 x^{2}+14 x+6$
(b) $50 x^{4}-72 y^{2}$
13. (3 points) Solve the equation $x-\sqrt{2 x^{2}-7}=1$ or show that it has no solutions.
14. (6 points) Solve the following equations for x by factoring.
(a) $x^{5}-1=2 x-x^{3}-1$
(b) $(3 x+2)(x+1)=4$
(c) $2 x^{3}+20=5 x^{2}+8 x$
15. (3 points) By taking square roots, find all solutions to $2(2 x+1)^{2}-18=0$.
16. (3 points) By completing the square, find all solutions to $x^{2}-8 x+14=0$.
17. (3 points) By using the Quadratic Formula, find all solutions to $2 x^{2}+5=3 x$.
18. (8 points) Simplify each of the following expressions. You may assume that all variables are positive. Present the result without negative exponents.
(a) $\sqrt{75}-4 \sqrt{12}+3 \sqrt{3}+\sqrt{27}$
(b) $(\sqrt{20}-2 \sqrt{3})(2 \sqrt{5}+\sqrt{12})$
(c) $\sqrt{18 x^{7} y^{6} z^{1}}$
(d) $\sqrt{\frac{12 a^{-4} b^{2}}{27 a^{4} b^{-1}}}$
19. (4 points) Rationalize the denominator of each expression and simplify.
(a) $\frac{6}{2 \sqrt{3}-3}$
(b) $\frac{3-x}{2+\sqrt{x-1}}$
20. (3 points) Evaluate the following logarithms.
(a) $\log _{3}(81)$
(b) $\ln \left(e^{-4}\right)$
(c) $\log _{2}\left(\frac{1}{16}\right)$
21. (4 points) Solve each equation for x.
(a) $2^{2 x-5}=\frac{1}{8}$
(b) $\frac{1}{4^{x-5}}=64$
22. (2 points) Find the exact value of x and y in the right triangle below.

23. (3 points) If $\sec \theta=\frac{3}{\sqrt{5}}$ for the acute angle θ in a right triangle, find the exact values of the other five trigonometric functions.
24. (2 points) Find the midpoint of the line segment joining the points $(5,-2)$ and $(9,6)$.
25. (2 points) Find the distance between the points $(3,-2)$ and $(2,2)$.
26. (2 points) Which of the following are graphs of relations for which y is function of x ?

27. (4 points) Given $f(z)=z^{3}-2 z+3$, evaluate and simplify the following expressions.
(a) $f(-1)$
(b) $f\left(\frac{3}{2}\right)$
(c) $f(\sqrt{3})$
(d) $f(z+h)$
28. (4 points) Given the graph $y=f(x)$ of a function $f(x)$, find

(a) the domain of $f(x)$:
(b) the range of $f(x)$:
(c) the x-intercepts:
(d) the y-intercept:
(e) the intervals where $f(x)$ is positive:
(f) the intervals where $f(x)$ is negative:
(g) the local minima of $f(x)$:
(h) the local maxima of $f(x)$:

Solutions

1.

(b) $y=-\frac{1}{2} x+\frac{7}{2}$
(a) 42
(b) $-\frac{10}{3}$
(c) 28
(c) $(7,0)$
8.
(a) $y=\frac{1}{2} x$
2.
(a) $27 x^{3}$
(b) $-8 t s+13 s^{2}$
3. $400 \$$
4. $125000 \$$
5. $20 \$$
6.
(a) no solution
(b) no solution
(b)

(c) $t=2$
7.
(a) $-\frac{1}{2}$
9.
$x=0, y=2$
10.
$x=\frac{1}{2}, y=\frac{2}{3}$
11.
(a) $\frac{3 a^{3} c^{7}}{b^{4}}$
(b) $\frac{y^{8} z^{4}}{4 x^{8}}$
12.
(a) $2(2 x+1)(x+3)$
(b) $2\left(5 x^{2}-6 y\right)\left(5 x^{2}+6 y\right)$
13. $x=2$
14.
(a) $x=-1, x=0, x=1$
(b) $x=\frac{1}{3}, x=-2$
(c) $x=-2, x=2, x=\frac{5}{2}$
15. $x=1, x=-2$
16. $x=4+\sqrt{2}, x=4-\sqrt{2}$
17. no solution (negative discriminant)
18.
(a) $3 \sqrt{3}$
(b) 8
(c) $3 x^{3} y^{3} \sqrt{2 x z}$
(d) $\frac{2 b \sqrt{b}}{3 a^{4}}$
19.
(a) $4 \sqrt{3}+6$
(b) $\frac{(3-x)(2-\sqrt{x-1})}{5-x}$
20.
(a) 4
(b) -4
(c) -4
21.
(a) $x=1$
(b) $x=2$
22. $x=\frac{5 \sqrt{3}}{3}, y=\frac{10 \sqrt{3}}{3}$
23.
$\sin \theta=\frac{2}{3}, \cos \theta=\frac{\sqrt{5}}{3}, \tan \theta=\frac{2}{\sqrt{5}}$ $\csc \theta=\frac{3}{2}, \sec \theta=\frac{3}{\sqrt{5}}, \cot \theta=\frac{\sqrt{5}}{2}$
24. (7,2)
25. $\sqrt{17}$
26. (a), (d)
27.
(a) 4
(b) $\frac{27}{8}$
(c) $3+\sqrt{3}$
(d) $z^{3}+3 z^{2} h+3 z h^{2}+h^{3}-2 z-2 h+3$
28.
(a) $[-4,4]$
(b) $[-3,2]$
(c) $(-2,0),\left(\frac{3}{5}, 0\right)$
(d) $\left(0, \frac{4}{5}\right)$
(e) $\left(-2, \frac{3}{5}\right)$
(f) $[-4,-2) \cup\left(\frac{3}{5}, 4\right)$
(g) $(-3,-2),(3,-3)$
(h) $(-1,2)$

