1. (6 points) Evaluate the following expressions.

(a)
$$(6-7)^9 - 5(10-4^2) + 21^0 + 12^1$$

(b) $\frac{2}{3} - (6-8)^3 \div \frac{1-(-3)}{1+3(1^2-2)}$
(c) $\frac{1-2^2}{2^3-3^2} \div \left|\frac{5-(-2)^2}{1-9}\right| + 4$

2. (4 points) Expand and simplify the following expressions.

(a)
$$(3x+2)(4-6x+9x^2)-8$$

(b)
$$4(t-s)^2 - (2t-3s)(2t+3s)$$

- **3.** (2 points) A bicycle is sold at a 20% discount for \$320. What was the original price of the bicyle? [Recall: Selling Price=Original Price Original Price · Discount Rate]
- 4. (2 points) What was the initial sum deposited to my 1.2% chequing account if I gained \$3000 in simple interest over the last two years? [Recall: $I = P \cdot r \cdot t$]
- 5. (2 points) A waffle machine is sold for \$26 in a store that marks up small kitchen appliances by 30%. What was the original price of the waffle machine? [Recall: Selling Price=Cost + Cost · Markup Rate]
- 6. (6 points) Solve the following equations.

(a)
$$\frac{2x+3}{6} = \frac{x}{3} - 4$$

(b) $5(a+1) - 3(2-a) = 3 + 2(a+4) + 3(2a-3)$
(c) $(t+8)(t+1) = (4+t)(3+t)$

- 7. (3 points) Consider the line that passes through the points (1,3) and (5,1).
 - (a) Find the slope of the line.
 - (b) Find the equation of the line.
 - (c) Find the *x*-intercept of the line.
- 8. (5 points) Consider the line passing through the point (2,1) and perpendicular to 2x + y = 7.
 - (a) Find the equation of the line.
 - (b) Sketch both lines in the same coordinate system.
- 9. (3 points) Solve the following linear system by the method of substitution.
 - $\begin{cases} 3x + 2y = 4\\ 2x + 5y = 10 \end{cases}$
- 10. (3 points) Solve the following linear system by the method of elimination.
 - $\begin{cases} 4x + 3y = 4\\ 2x 6y = -3 \end{cases}$

- 11. (4 points) Simplify each of the following expressions. You may assume that all variables are positive. Present the result without negative exponents.
 - (a) $(3ab^{-1}c^2)^3 (9a^0b^1c^{-1})^{-1} =$ (b) $\left(\frac{42x^2y^{-4}z^1}{21z^3x^{-2}y^0}\right)^{-2} =$
- **12.** (4 points) Factor each polynomial completely.

(a)
$$4x^2 + 14x + 6$$

(b)
$$50x^4 - 72y^2$$

- 13. (3 points) Solve the equation $x \sqrt{2x^2 7} = 1$ or show that it has no solutions.
- 14. (6 points) Solve the following equations for x by factoring.

a)
$$x^5 - 1 = 2x - x^3 - 1$$

b)
$$(3x+2)(x+1) = 4$$

- (c) $2x^3 + 20 = 5x^2 + 8x$
- 15. (3 points) By taking square roots, find all solutions to $2(2x+1)^2 18 = 0$.
- 16. (3 points) By completing the square, find all solutions to $x^2 8x + 14 = 0$.
- 17. (3 points) By using the Quadratic Formula, find all solutions to $2x^2 + 5 = 3x$.
- 18. (8 points) Simplify each of the following expressions. You may assume that all variables are positive. Present the result without negative exponents.

(a)
$$\sqrt{75} - 4\sqrt{12} + 3\sqrt{3} + \sqrt{27}$$

(b) $(\sqrt{20} - 2\sqrt{3})(2\sqrt{5} + \sqrt{12})$
(c) $\sqrt{18x^7y^6z^1}$
(d) $\sqrt{\frac{12a^{-4}b^2}{27a^4b^{-1}}}$

19. (4 points) Rationalize the denominator of each expression and simplify.

(a)
$$\frac{6}{2\sqrt{3}-3}$$

(b) $\frac{3-x}{2+\sqrt{x-1}}$

20. (3 points) Evaluate the following logarithms.

(a) $\log_3(81)$ (b) $\ln(e^{-4})$ (c) $\log_2\left(\frac{1}{16}\right)$ **21.** (4 points) Solve each equation for x.

(a)
$$2^{2x-5} = \frac{1}{8}$$

(b) $\frac{1}{4^{x-5}} = 64$

22. (2 points) Find the exact value of x and y in the right triangle below.

- 23. (3 points) If $\sec \theta = \frac{3}{\sqrt{5}}$ for the acute angle θ in a right triangle, find the exact values of the other five trigonometric functions.
- **24.** (2 points) Find the midpoint of the line segment joining the points (5, -2) and (9, 6).
- **25.** (2 points) Find the distance between the points (3, -2) and (2, 2).
- **26.** (2 points) Which of the following are graphs of relations for which y is function of x?

- **27.** (4 points) Given $f(z) = z^3 2z + 3$, evaluate and simplify the following expressions.
 - (a) f(-1)(b) $f\left(\frac{3}{2}\right)$ (c) $f\left(\sqrt{3}\right)$ (d) f(z+h)

28. (4 points) Given the graph y = f(x) of a function f(x), find

(a) the domain of f(x):
(b) the range of f(x):
(c) the x-intercepts:
(d) the y-intercept:
(e) the intervals where f(x) is positive:
(f) the intervals where f(x) is negative:
(g) the local minima of f(x):
(h) the local maxima of f(x):

(b) $y = -\frac{1}{2}x + \frac{7}{2}$

Solutions

1.

- (a) 42
- (b) $-\frac{10}{3}$
- (c) 28

2.

(a) $27x^3$

(b) $-8ts + 13s^2$

3. 400\$

- **4.** 125000\$
- **5.** 20\$

6.

(a) no solution

(b) no solution

(c)
$$t = 2$$

7.

(a) $-\frac{1}{2}$

x

2x + y = 7

11.

(a)
$$\frac{3a^3c^7}{b^4}$$

(b) $\frac{y^8z^4}{4x^8}$

12.

(a)
$$2(2x+1)(x+3)$$

(b) $2(5x^2-6y)(5x^2+6y)$
13. $x = 2$
14.
(a) $x = -1, x = 0, x = 1$
(b) $x = \frac{1}{3}, x = -2$
(c) $x = -2, x = 2, x = \frac{5}{2}$
15. $x = 1, x = -2$
16. $x = 4 + \sqrt{2}, x = 4 - \sqrt{2}$

10. $x = 4 + \sqrt{2}$, $x = 4 - \sqrt{2}$ **17.** no solution (negative discriminant) **18.**

(a) $3\sqrt{3}$

(b) 8

(c) $3x^3y^3\sqrt{2xz}$

(d)
$$\frac{2b\sqrt{b}}{3a^4}$$

19.

(a)
$$4\sqrt{3} + 6$$

(b) $\frac{(3-x)(2-\sqrt{x-1})}{5-x}$

20.

(a) 4

(b) -4

(c) -4

21.
(a)
$$x = 1$$

(b) $x = 2$
22. $x = \frac{5\sqrt{3}}{3}, y = \frac{10\sqrt{3}}{3}$
23.
 $\sin \theta = \frac{2}{3}, \cos \theta = \frac{\sqrt{5}}{3}, \tan \theta = \frac{2}{\sqrt{5}}$
 $\csc \theta = \frac{3}{2}, \sec \theta = \frac{3}{\sqrt{5}}, \cot \theta = \frac{\sqrt{5}}{2}$
24. (7,2)
25. $\sqrt{17}$
26. (a), (d)
27.
(a) 4
(b) $\frac{27}{8}$
(c) $3 + \sqrt{3}$
(d) $z^3 + 3z^2h + 3zh^2 + h^3 - 2z - 2h + 3$
28.

(a)
$$[-4, 4]$$

(b) $[-3, 2]$
(c) $(-2, 0), \left(\frac{3}{5}, 0\right)$
(d) $\left(0, \frac{4}{5}\right)$
(e) $\left(-2, \frac{3}{5}\right)$
(f) $[-4, -2) \cup \left(\frac{3}{5}, 4\right)$
(g) $(-3, -2), (3, -3)$
(h) $(-1, 2)$