- (1) 1. Simplify $(x^2 + 4x + 2) (x^2 x + 9)$.
 - 2. Simplify each expression, giving answers having positive exponents only.

(2) (a)
$$\frac{6(x^2y^{-4})^{-3}}{2^3x^{-5}y^4}$$

- (1) (b) $(27x^{-6})^{1/3}$
 - 3. Simplify without using a calculator (give exact values).
- (1) (a) $(1-\sqrt{6})^2$
- (1) (b) $16^{5/4} + \sqrt[5]{-32}$
- (2) 4. Rationalize the denominator of $\frac{12}{\sqrt{5}+1}$ and simplify.
 - 5. Factor completely.
- (2) (a) $2x^3 16$
- (2) (b) $3x^2 + 7x 6$
 - 6. Perform the following operations and simplify your answers.

(2) (a)
$$\frac{x^2 + x - 6}{x^3 + x^2} \div \frac{x^2 - 4}{x^3 + 3x^2 + 2x}$$

- (3) (b) $\frac{3}{x^3} \frac{1}{x} + \frac{1}{x-2}$
- (3) 7. Use long division to find the quotient and remainder: $\frac{4x^3 6x^2 + 5}{2x + 1}$
 - 8. Given the two points A(2,7) and B(5,1), find:
- (1) (a) the distance between A and B
- (1) (b) the midpoint of the line segment AB
- (2) (c) an equation of the line through A and B
- (1) (d) an equation of the line perpendicular to AB and having y-intercept 4
- (1) 9. Find an equation of the line parallel to the y-axis and passing through the point (5, -7).
 - 10. Solve each of the following for x.
- (2) (a) $x(x+1) = x^2 2(x+3)$
- (2) (b) $x^3 x = 0$
- (2) (c) $x^2 + 2x 6 = 0$
- (3) $(d) \frac{1}{x-5} + \frac{2}{(x+3)(x-5)} = \frac{1}{(x-1)(x+3)}$
- (2) (e) $\sqrt{3x^2 26} = x + 2$
- (2) $(f) 5 3x \le 4x 5$
- (2) $(g) \log(5x + 20) \log(x 2) = 1$

- (2) (h) $3e^{2x} 1 = 23$ (Round your answer to two decimal places.)
- (2) 11. Find the domain of the function $y = \frac{\sqrt{4-x}}{x}$.
- (3) 12. Given $f(x) = 3x x^2$, find and simplify $\frac{f(x+h) f(x)}{h}$.
- (3) 13. Sketch the graph of $f(x) = -x^2 + 4x 4$ and state each of the following:

Vertex:

x-intercept(s):

y-intercept:

Range:

(3) 14. Sketch the graph of $y = \frac{2x+3}{x+1}$ and state each of the following:

x-intercept(s):

y-intercept:

Vertical asymptote:

Horizontal asymptote:

- (2) 15. Sketch the graph of $f(x) = \begin{cases} x+3, & \text{if } x < 1 \\ 3-x, & \text{if } x \ge 1 \end{cases}$
 - 16. Find the inverse of each of the following functions.
- (2) (a) $f(x) = \frac{2-x}{3x}$
- (1) $(b) g(x) = e^x$
- (3) 17. Sketch the graph of $y = 2^x 4$ and state each of the following: y-intercept:

Horizontal asymptote:

(3) 18. Sketch the graph of $f(x) = -\ln x$ and state each of the following: x-intercept(s):

Vertical asymptote:

- 19. Simplify each of the following expressions.
- (1) $(a) \log_3 243$
- (1) (b) $e^{\ln x}$
- (1) 20. Approximate $\log_5 100$ to four decimal place accuracy.
- (2) 21. Expand $\log \frac{\sqrt{x+1}}{yz^3}$ in terms of the simplest possible logarithms.

- 22. Convert:
- (1) (a) 12° to radians (give the exact answer)
- (1) (b) $\frac{7\pi}{4}$ radians to degrees
- (1) (c) 0.6 radians to degrees (two decimal places)
- (1) 23. What is the complement of 53° ?
 - 24. Evaluate (if possible) to four decimal place accuracy:
- (1) (a) $\sin(6 \text{ radians})$
- (1) (b) $\tan^{-1}(2)$ (answer in degrees)
- (1) $(c) \sec 131^{\circ}$
- (1) (d) the acute angle θ with $\csc \theta = 0.7071$ (answer in degrees)
- (2) 25. Stephanie ties a 25-metre string to the classroom window. Shannon is outside and grabs the end of the string. She pulls the string tight so it is straight, and ties it to a rock she found on the grass. The string makes an angle of 22° with the ground. How high (to two decimal places) is the other end of the string?
- (1) 26. Find angle A (accurate to two decimal places) in the right triangle

- (1) 27. (a) What is the reference angle of -150° ?
- (1) (b) Find the exact value of $\cos(-150^{\circ})$.
- (2) 28. $\tan A = -1$. Find two possible values for A between 0° and 360° .
- (1) 29. B is an angle in Quadrant II with $\sin B = \frac{\sqrt{3}}{2}$. Find B (between 0° and 360°).
- (1) 30. C is an angle in Quadrant IV with $\cos C = \frac{2}{3}$. Find the exact value of $\tan C$.
 - 31. Prove each of the following identities.
- (2) $(a) \sec A \cot A = \csc A$
- (2) (b) $(1 \cos B)(1 + \cos B) = \frac{\sin B}{\csc B}$
- (3) 32. Sketch two cycles of the graph of $y = 5\cos\left(\frac{\pi}{2}x\right)$ and state each of the following:

Amplitude:

Period:

33. Find side x (accurate to two decimal places) in each of the following triangles.

(2)

(2)

(2) 34. Find angle θ (accurate to two decimal places) in the triangle

ANSWERS

1.
$$5x-7$$
 2. (a) $\frac{3y^8}{4x}$ (b) $\frac{3}{x^2}$

3. (a)
$$7 - 2\sqrt{6}$$
 (b) 30 **4.** $3(\sqrt{5} - 1)$

1.
$$5x - 7$$
 2. (a) $\frac{3y^8}{4x}$ (b) $\frac{3}{x^2}$ **3.** (a) $7 - 2\sqrt{6}$ (b) 30 **4.** $3(\sqrt{5} - 1)$ **5.** (a) $2(x - 2)(x^2 + 2x + 4)$ (b) $(3x - 2)(x + 3)$ **6.** (a) $\frac{x + 3}{x}$ (b) $\frac{2x^2 + 3x - 6}{x^3(x - 2)}$

6. (a)
$$\frac{x+3}{x}$$
 (b) $\frac{2x^2+3x-6}{x^3(x-2)}$

7.
$$2x^2 - 4x + 2 + \frac{3}{2x+1}$$

7.
$$2x^2 - 4x + 2 + \frac{3}{2x+1}$$
 8. (a) $\sqrt{45} = 3\sqrt{5}$ (b) $(\frac{7}{2}, 4)$ (c) $y = -2x + 11$ (d) $y = \frac{1}{2}x + 4$ 9. $x = 5$

10. (a)
$$x = -2$$
 (b) $x = 0, 1, -1$ (c) $x = \frac{-2 \pm \sqrt{28}}{2} = -1 \pm \sqrt{7}$ (d) $x = 0$ (e) $x = 5$ (f) $x \ge \frac{10}{7}$ (g) $x = 8$ (h) $x = \frac{1}{2} \ln 8 \approx 1.04$

11. all
$$x \le 4$$
 except 0 **12.** $3 - 2x - h$

13. vertex:
$$(2,0)$$

$$x$$
-int.: $(2,0)$

14. x-int.: $\left(-\frac{3}{2}, 0\right)$ y-int.: (0,3)

VA: x = -1HA: y = 2

15.

- **16.** (a) $f^{-1}(x) = \frac{2}{3x+1}$ (b) $g^{-1}(x) = \ln x$

17. *y*-int.: (0, -3)

HA: y = -4

18. x-int.: (1,0)

- **19.** (a) 5 (b) x **20.** 2.8614 **21.** $\frac{1}{2} \log(x+1) \log y 3 \log z$ **22.** (a) $\frac{\pi}{15}$ (b) 315° (c) 34.38° **23.** 37° **24.** (a) -0.2794 (b) 63.4349° (c) -1.5243 (d) θ does not exist **25.** 9.37 m **26.** 35.19

- **26**. 35.10°

- **27.** (a) 30° (b) $-\frac{\sqrt{3}}{2}$ **28.** 135° , 315° **29.** 120° **30.** $-\frac{\sqrt{5}}{2}$
- **31.** (a) $\sec A \cot A = \frac{1}{\cos A} \cdot \frac{\cos A}{\sin A} = \frac{1}{\sin A} = \csc A$
 - (b) $(1 \cos B)(1 + \cos B) = 1 \cos^2 B = \sin^2 B = \frac{\sin B}{1/\sin B} = \frac{\sin B}{\csc B}$
- **32**. Amplitude: 5

Period: 4

33. (a) 21.05 (b) 3.52 cm **34.** 63.54°