1. Simplify each expression and give answers with positive exponents.

(a)
$$\frac{\left(3^{-1}x^2y^{-3}\right)^{-3}}{9x^{-4}y^{-5}}$$
 (3)

(b)
$$x^{\frac{3}{2}} \left(x^{\frac{1}{2}} - x^{-\frac{1}{2}} \right)$$
 (1)

2. Perform the following division:

(a)
$$\frac{x^2 - 4x^{\frac{1}{2}}}{\sqrt{x}}$$
 (1)

(b)
$$\frac{25x^3 + 10x^2 - 8x + 13}{5x - 1}$$

3. Rationalize the numerator and simplify your answer.

$$\frac{\sqrt{7} - \sqrt{5}}{2} \tag{2}$$

4. Factor completely:

(a)
$$5x^3 - 20x$$
 (2)

(b)
$$4ax + 2x^2y - 6ay - 3xy^2$$

(c)
$$8a^3 - 27$$
 (2)

5. Give exact values for the following radical expressions:

(a)
$$\frac{\sqrt[3]{(-8)^2}}{\sqrt[4]{16}}$$
 (1)

(b)
$$8 + 3\sqrt{27} - \sqrt{48} - (2\sqrt{2})^2$$

6. Perform the following operations and simplify your answers:

(a)
$$(2x-3)^2 + 8x - 4x^2 - 2(x+1)$$
 (2)

(b)
$$\frac{x^2 - x - 6}{2x^2 + 5x - 3} \div \frac{2x^2 + 5x + 2}{4x^2 - 1}$$
 (4)

(c)
$$\frac{2}{(x-1)^2} + \frac{1}{x-1} - \frac{1}{x}$$
 (4)

7. Given A(-3,2) and B(5,7), find:

(b) midpoint
$$M$$
 of the line segment \overline{AB} (1)

(c) slope
$$m$$
 of the line through A and B (1)

(d) equation of the line through A and B. Give
$$y = mx + b$$
 form. (2)

- (e) equation of a line that is perpendicular to the line AB and passing through the point B. Give ax + by + c = 0 form. (2)
- 8. Solve the following:

(a)
$$3x^2 - 2x - 3 = 0$$

(b)
$$\sqrt{3x+1}-1=x$$

(c)
$$\frac{x}{x-1} - \frac{2}{x} = \frac{1}{x^2 - x}$$
 (3)

(d)
$$\frac{2}{3}x - 5 \ge \frac{1}{3}$$
 (2)

(e)
$$\log(x+7) - \log(x-2) = 1$$
 (2)

(f)
$$8^{x+2} = 16$$
 (2)

- 9. Given: $f(x) = x^2 7x + 3$
 - (a) find and simplify $\frac{f(x+h) f(x)}{h}$ (3)
 - (b) evaluate your answer in part (a) when h = 0. (1)
- 10. If $f(x) = \sqrt{x}$ and g(x) = 2x + 1 find:

$$(a) f(g(x)) \tag{1}$$

$$(b) f(g(4)) \tag{1}$$

(c)
$$q^{-1}(x)$$
 (1)

11. Sketch the graph and state the domain and range:

(a)
$$y = -x^2 + 6x - 5$$

(b)
$$y = \begin{cases} x^2 - 1 & x < 1 \\ -2 & x \ge 1 \end{cases}$$
 (3)

12. Sketch the graph and give the coordinates of all intercepts and the equations of all asymptotes:

(a)
$$y = \frac{2-x}{x+1}$$

(b)
$$y = \log_2(x - 2)$$

13. Give the exact value for $3^{\log_3 5} + \log_3 81 - \ln e^3$ (1)

14. Write
$$\ln\left(\frac{x^8y^9}{\sqrt{z}}\right)$$
 using simple logarithms. (1)

15. Given $5^x = 3$

(b) Find
$$x$$
 correct to 3 decimal places. (1)

16. $\triangle ABC$ has $\angle C = 90^{\circ}$, side c = 7 and side b = 5.

Find the exact value for
$$\sin A$$
 and $\sec A$ (2)

17. Approximate to 4 decimal place accuracy:

(a)
$$\cot 134^{\circ}$$
 (1)

(b)
$$\sin 2.9$$
 (1)

(c) the acute angle
$$\theta$$
 with $\sec \theta = 2.3$ (Answer in degrees)

18. Give the exact value for the following. Use reference angles where applicable.

(a)
$$\cos 225^{\circ}$$
 (1)

(b)
$$\tan\left(-\frac{7\pi}{6}\right)$$
 (1)

(c) the angle
$$\frac{5}{12}$$
 radians, converted to degrees. (Answer in terms of π) (1)

(d)
$$\sin \theta$$
, given that $\tan \theta = -\frac{5}{4}$ and θ is in Quadrant IV. (1)

(e)
$$\theta$$
 in Quadrant II, given that $\sin \theta = \frac{\sqrt{3}}{2}$ (1)

19. Verify the following indentities:

(a)
$$\sec^2 \theta + \tan^2 \theta = 1 + 2 \tan^2 \theta$$
 (2)

(b)
$$\frac{\sec \theta - 1}{1 - \cos \theta} = \sec \theta \tag{2}$$

20. Given: $y = -2\cos(3x)$.

21. $\triangle ABC$ has $\angle C = 90^{\circ}$, $\angle A = 70^{\circ}$ and side c = 13. Solve the $\triangle ABC$.

22.
$$\triangle ABC$$
 has $\angle B = 108^{\circ}$, $\angle A = 29^{\circ}$ and side $c = 20$. Find side a . (3)

23.
$$\triangle ABC$$
 has side $a = 12$, side $b = 10$ and side $c = 15$. Find $\angle A$. (3)

Answers:

1
$$(a) \frac{3y^{14}}{x^2}$$
 $(b) x^2 - x$

2 (a)
$$x^{3/2} - 4$$
 (b) $5x^2 + 3x - 1 + \frac{12}{5x - 1}$

$$3 \ \frac{1}{\sqrt{2} + \sqrt{5}}$$

$$4 (a) 5x (x + 2) (x - 2) (b) (2x - 3y) (2a + xy) (c) 2a - 3 (4a^2 + 6a + 9)$$

$$5 (a) 2 (b) 5\sqrt{3}$$

6 (a)
$$-6x + 7$$
 (b) $\frac{x-3}{x+3}$ (c) $\frac{3x-1}{x(x-1)^2}$

7 (a)
$$\sqrt{89}$$
 (b) $\left(1, \frac{9}{2}\right)$ (c) $\frac{5}{8}$ (d) $y = \frac{5}{8}x + \frac{31}{8}$ (e) $8x + 5y - 75 = 0$

8 (a)
$$\frac{1 \pm \sqrt{10}}{3}$$
 (b) 0,1 (c) No solution (d) $x \ge 8$ (e) 3 (f) $-\frac{2}{3}$

9 (a)
$$2x + h - 7$$
 (b) $2x - 7$

10 (a)
$$\sqrt{2x+1}$$
 (b) 3 (c) $y = \frac{1}{2}x - \frac{1}{2}$

11(a) FIGURE

11(b) FIGURE

12(a)
$$X - int = (2,0)$$
, $Y - int = (0,2)$, $VA: x = -1$, $HA: y = -1$ FIGURE

12(b) FIGURE

$$13 \ 5 + 4 - 3 = 6$$

14
$$8 \ln x + 9 \ln y - \frac{1}{2} \ln z$$

15 (a)
$$x = \log_5 3$$
 (b) $x = \frac{\ln 3}{\ln 5} = .683$

16
$$\sin A = \frac{2\sqrt{6}}{7}$$
 and $\sec A = \frac{7}{5}$

$$17 (a) - .9657 (b) .2392 (c) 64.2^{\circ}$$

18 (a)
$$\frac{-1}{\sqrt{2}}$$
 (b) $\frac{-1}{\sqrt{3}}$ (c) $\frac{75}{\pi}$ (d) $\frac{-5}{\sqrt{41}}$ (e) 120° for $0^{\circ} \le \theta < 360^{\circ}$

19(a)
$$LHS = 1 + \tan^2 \theta + \tan^2 \theta = 1 + 2\tan^2 \theta = RHS$$
. N.B. $\sec^2 \theta = 1 + \tan^2 \theta$

19(b)
$$LHS = \frac{\frac{1}{\cos \theta} - 1}{1 - \cos \theta}$$

$$= \frac{\left(\frac{1}{\cos \theta} - 1\right)}{(1 - \cos \theta)} \times \frac{\cos \theta}{\cos \theta}$$

$$= \frac{1 - \cos \theta}{(1 - \cos \theta)\cos \theta}$$

$$= \frac{1}{\cos \theta}$$

$$= \sec \theta$$

$$= RHS$$

20(a) (a)
$$A=2$$
 and $P=\frac{2\pi}{3}$

- 20(b) FIGURE
 - 21 $\angle B=20^{\circ},\ a=12.22$ and b=4.45
 - $22 \ a = 14.21$
 - 23 $\angle A = 52.8^{\circ}$