Examinations from previous terms

1. Simplify each of the following expressions as much as possible.

a.
$$4(7x^2 + 3x - 5)$$
 b. $3^0 - 2 \cdot |3 - 5|$

2. Factor each of the following completely.

a.
$$2x^2 + 8x - 42$$

b. $12x^3 + 8x^2 + 3x + 2$
c. $4x^2 - 3x - 10$

- 3. Find an equation of the line through (6, -7) and (9, 1).
- 4. Find an equation of the line through (-1,3) that is perpendicular to the line $y = -\frac{1}{3}x + 4.$
- 5. Here are the equations of two lines: y = 6x + 7, $y = \frac{1}{6}x + 7$. Are these lines parallel? Are these lines perpendicular?
- 6. Does the point (-3, 8) lie on the line 5x + 3y = 9? Explain your answer.
- 7. Simplify each of the following as much as possible. Leave no square under a square root. (Assume that all variables are positive.)

a.
$$\sqrt{48x^2y} - \sqrt{12x^2y}$$

b. $\sqrt{18ab^3}\sqrt{2a^3b}$
c. $(7 - \sqrt{2})(2 + \sqrt{3})$
d. $(5 + 3\sqrt{2})(3 - \sqrt{2})$

8. Solve each of the following equations.

a.
$$5(3-2x) + 4 = 3(2x+1)$$

b. $\frac{7}{3}x - \frac{1}{4} = 5$
c. $x^2 = x+2$
d. $5x^3 + 3x^2 - 20x - 12 = 0$
e. $\frac{7}{x+1} - \frac{2}{x^2 - 2x - 3} = \frac{1}{x-3}$
f. $3x^2 - 5 = 4x$
g. $7 = 2 + \sqrt{3x+4}$

- 9. Divide: $(6x^3 + 7x^2 6x + 17) \div (2x + 5)$.
- 10. Simplify each of the following expressions as much as possible.
 - a. $18y^{-2}(3y^{-1})^{-3}$ b. (3x-2)(3x+2)c. $(x^2 - 2x + 2)(x^2 + 2x + 2)$
- 11. Rationalize the denominator of $\frac{8}{3-\sqrt{5}}$
- 12. Perform the indicated operations and simplify your answer as much as possible.

a.
$$\frac{x^2 + 7x + 6}{x^2 - 3x} \cdot \frac{x^2 - 9}{2x^2 + x - 1}$$
 b.
$$\frac{2}{x + 3} - \frac{2x - 7}{x^2 + 5x + 6}$$

c.
$$\frac{y - \frac{2}{y - 1}}{1 - \frac{1}{y - 1}}$$

- 13. Sketch the graph of 7y + 4x + 12 = 0. What is its x-intercept? What is its y-intercept?
 - 1. a. $28x^2 + 12x 20$ b. -3

2. a. 2(x+7)(x-3) b. $(4x^2+1)(3x+2)$

- c. (4x+5)(x-2)
- 3. 8x 3y = 69
- 4. 3x y = -6
- 5. They are neither parallel nor perpendicular.
- 6. Yes, because its coordinates satisfy the given equation.
- 7. a. $2x\sqrt{3y}$ b. $6a^2b^2$
- c. 14 + 7 $\sqrt{3}$ 2 $\sqrt{2}$ $\sqrt{6}$ d. 9 + 4 $\sqrt{2}$ 8. a. 1 b. $\frac{9}{4}$ c. -1, 2 d. $-\frac{3}{5}$, ±2 e. 4 f. $\frac{2}{3}$ ±
- $\frac{1}{2}\sqrt{19}$ g. 7

- 14. Find the solution of the system: $\begin{cases} 5x 4y = 3, \\ 3x 2y = 7. \end{cases}$
- 15. Do the lines 8x + 6y = 4 and y = 19 5x ever meet? Explain your answer. If the lines do meet, find the point where they meet.
- 16. Complete the square: $x^2 12x + 1$.
- 17. Find x. Round your answer to four decimal places.

- 18. Anne invested \$2500 in an account that pays simple interest. Two years later, she had \$2575 in the account. What is the interest rate? Express your answer as a mixed fraction.
- 19. Find *x*.

20. A poster is printed on a piece of paper that is 18 inches wide and 15 inches high. There printed area is 130 square inches, and there is a uniform margin around it (on all sides). How wide is the margin?

- 21. An 18 foot ladder is leaning against the side of a house. If the bottom of the ladder is 4 feet from house, what is the angle between the ladder and the ground? Round your answer to two decimal places.
- 9. $3x^2 4x + 7 \frac{18}{2x+5}$ 10. a. $\frac{2}{3}y$ b. $9x^2 4$ c. $x^4 + 4$
- 11. $2(3 + \sqrt{5})$
- 12. a. $\frac{(x+6)(x+3)}{x(2x-1)}$ b. $\frac{11}{(x+3)(x+2)}$

ANSWERS

- 13. The slope of the line is $-\frac{4}{7}$, its *x*-intercept is (-3, 0) its *y*-intercept is $(0, -\frac{12}{7})$. (You draw it.)
- 14. x = 11, y = 13.
- 15. Yes, they meet at the point (5, -6).

1

- 16. $(x-6)^2 35$
- 17. $x = \frac{17}{(\sin 26^\circ)} \approx 38.7799$
- 18. The interest rate is $1\frac{1}{2}$ %.
- 19. x = 14
- 20. The margin is two and one-half inches wide.
- 21. The angle between the ladder and the ground is approximately 77.16°.