
Two categorical approaches to differentiation (R.A.G. Seely)

In the past decade, we (coauthors Rick Blute, Robin Cockett and I) have
formulated two different abstract categorical approaches to differential cal-
culus, based on the structure of linear logic (an idea of Ehrhard and Regnier).
The basic idea has two types of maps (“analytic” or “smooth”, and “lin-
ear”), a comonad S (a “coalgebra modality”), somewhat like the ! of linear
logic, and a differentiation operator. In our first approach (monoidal dif-
ferential categories), the coKleisli category (the category of cofree coalge-
bras) of S consists of smooth maps, and differentiation operates on coKleisli
maps to smoothly produce linear maps. Our second approach (Cartesian
differential categories) reversed this orientation, directly characterizing
the smooth maps and situating the linear maps as a subcategory. If S
is a “storage modality”, meaning essentially that the “exponential isomor-
phisms” from linear logic (S(X × Y ) ' S(X) ⊗ S(Y ) and S(1) ' S(>))
hold, we get a tight connection between these approaches in the Cartesian
(monoidal) closed cases: the linear maps of a Cartesian closed differential
storage category form a monoidal closed differential storage category, and
the coKleisli category of a monoidal closed differential storage category is a
Cartesian closed differential storage category. Two technical aides in prov-
ing these results are the development of a graphical calculus as well as a
term calculus for the maps of these categories. With the term calculus,
one can construct arguments using a language similar to that of ordinary
undergraduate calculus.
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Preludium

2006 Monoidal differential categories—an additive monoidal
category of “linear” maps, a (suitable) comonad whose
coKleisli maps are “smooth”, and a differential combinator.
(This gave a “categorical reconstruction” of Ehrhard &
Regnier’s work)

2009 Cartesian differential categories—a left additive Cartesian
category with a differential operator, and subcategories of
“linear” maps. CDCs are the coalgebras of a “higher order
chain rule fibration” comonad Faà [2011].
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Preludium

• The coKliesli category of a monoidal differential (storage)
category is a Cartesian differential category [2009].

• The linear maps of a Cartesian differential (storage) category
form a monoidal differential category [2015].

Wished: Any Cartesian differential category is, or may be
full&faithfully embedded into, the coKliesli category of a
(suitable) monoidal differential category. (Partial answer:
conditions sufficient to ensure “is” in [2015].)

Wished: Any monoidal differential category may be represented as the
linear maps of a (suitable) Cartesian differential category.
(Partial answer: this is true in the presence of “storage”
[2015].)
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Coalgebra modality

We need some of the structure of the ! comonad from linear logic,
specifically, a coalgebra modality: namely
a comonad 〈S :X −→ X, δ:S −→ S2, ε: S −→ 1〉 on an additive
(commutative monoid enriched) symmetric monoidal category X,
so each object S(X ) is equipped with a natural coalgebra structure

> e←−− S(X )
∆−−→ S(X )⊗ S(X )

satisfying the “obvious” coherence conditions:
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Coalgebra modality: the conditions
〈S(X ),∆, e〉 is a comonoid (or coalgebra),
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1⊗∆
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and δ is a comonoid (or coalgebra) homomorphism.
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Note that we are not assuming that S etc. are monoidal.
5 / 1



Monoidal differential categories—the intuition

The basic intuition comes from linear logic, where a “linear” map
!A −→ B corresponds to a “smooth” map A −→ B (and so
categorically, if ! is a comonad, “smooth” maps are just maps in
the coKleisli category).
For a differential setting, consider a simple example from
multivariable calculus: f (x , y , z) = 〈x2 + xyz , z3 − xy〉. This is a
smooth function from IR3 to IR2. Its Jacobian (matrix) is(

2x + yz xz xy
−y −x 3z2

)
, i.e. a linear map from IR3 to IR2.

This gives a smooth assignment of a linear map from a point; i.e.
given a map f :A ⊆ IRn −→ IRm, one gets a smooth map D[f ]:A
−→ L(IRn, IRm): for a point x ∈ A, D[f ](x) is given by the Jacobian
of f at x .
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The formalism

So the type of the differential should be D[f ]: !A −→ A −◦B. To
avoid assuming our categories are closed, we transpose this to
obtain a differential combinator of the form:

f : !A −→ B
D[f ]:A⊗ !A −→ B

Finally, it turns out that we can replace the differential combinator
D with a deriving transformation d :A⊗ !A −→ !A. This will be the
formalism we’ll present today. And we’ll use S instead of the ! of
linear logic . . .
So we arrive at the following definition.

7 / 1



Monoidal differential categories

A monoidal differential category is a monoidal category with a
coalgebra modality equipped with a natural deriving transformation

d⊗:A⊗ S(A) −→ S(A)

[d.1] Constant maps: d⊗e = 0

[d.2] Linearity: d⊗εA = (1⊗ e)u⊗

[d.3] Product rule:
d⊗∆ = (1⊗∆⊗)a−1

⊗ (d⊗⊗1)+(1⊗∆⊗)a−1
⊗ (c⊗⊗1)a⊗(1⊗d⊗)

[d.4] Chain rule: d⊗δ = (1⊗∆⊗)a−1
⊗ (d⊗ ⊗ δ)d⊗

[d.5] Interchange rule: (1⊗ d⊗)d⊗ = a⊗(c⊗ ⊗ 1)a−1
⊗ (1⊗ d⊗)d⊗
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Interchange rule?

The interchange rule was not one of the original axioms in [2006],
and is not necessary for the basic theory of monoidal differential
categories (for example, first year differential calculus can be
modelled as a codifferential category without [d.5].) However, we
introduced it in [2009] in order to ensure that the coKleisli
category was a Cartesian differential category. It also turns out
that interchange law is necessary to characterize monoidal
differential storage categories as the linear maps of a Cartesian
differential category [2015].
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Circuits

As an example of the graphical calculus we use with monoidal
differential categories, here are the product rule and the
interchange rule, graphically. The thin horizontal “box” represents
the deriving transformation d⊗, the “wires” are objects & other
boxes are morphisms (some labelled to help the reader!).
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An example calculation

To illustrate the circuit calculus1, here is the calculation of the
derivative of u2 for a (smooth) function u: !A −→ A ; we assume
the existence of a (linear, commutative) “multiplication” operator
•:A⊗ A −→ A so that u2 means u • u.

D[u2] =

S(A)

S(A) S(A)S(A)A A A

A A A

�� �� �� �� �� ��∆ ∆ ∆

u u uu u u

• • •
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�
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= +
E
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EE

= 2u • u′

1Pun intended
11 / 1



Storage

A storage modality S on a symmetric monoidal category X is a
symmetric monoidal comonad 〈S , δ, ε〉 so that each cofree object is
naturally a commutative comonoid 〈S(A),∆, e〉, and so that the
comonoid structure is a coalgebra morphism for the comonad.

Equivalently, a symmetric monoidal category has a storage
modality iff the induced symmetric tensor on the category of
coalgebras for the comonad is a product.

This implies the existance of the “exponential” or “storage”
isomorphisms:

S(A)⊗ S(B) −→ S(A× B) and > −→ S(1)
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Cartesian differential categories
Now we focus on the category of smooth maps, regarding linear
maps as constituting a full subcategory. The idea is that we are
describing what was the coKleisli category in the previous monoidal
differential setting.

We suppose the ambient category X is a Cartesian left additive
category, meaning that each hom-set is a commutative monoid,
f (g + h) = fg + fh, f 0 = 0 (left-additivity), and X has finite
products (including 1) whose structure maps are (left and right)
additive (i.e. commutative monoid homomorphisms). Note that in
such a setting, products are in fact biproducts.

Given such an X, the differential operator will be typed thus:

X
f−−→ Y

X × X −−−−→
D×[f ]

Y
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Cartesian differential categories

In this setting, we require D× to satisfy the following axioms:

[CD.1] D×[f + g ] = D×[f ] + D×[g ] and D×[0] = 0 (D is linear)

[CD.2] 〈h + k, v〉D×[f ] = 〈h, v〉D×[f ] + 〈k , v〉D×[f ] and
〈0, v〉D×[f ] = 0 (D is additive in 1st argument)

[CD.3] D×[1] = π0, D×[π0] = π0π0 and D×[π1] = π0π1

[CD.4] D×[〈f , g〉] = 〈D×[f ],D×[g ]〉 (D is “coherent” wrt ×)

[CD.5] D×[fg ] = 〈D×[f ], π1f 〉D×[g ] (Chain rule)

[CD.6] 〈〈g , 0〉, 〈h, k〉〉D×[D×[f ]] = 〈g , k〉D×[f ] (D[f ] is “linear”
in 1st argument)

[CD.7] 〈〈0, h〉, 〈g , k〉〉D×[D×[f ]] = 〈〈0, g〉, 〈h, k〉〉D×[D×[f ]]
(Equality of mixed partials)
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Properties of CDCs

The main “first fact” about Cartesian differential categories is

Theorem: The coKleisli category of a monoidal differential
category is a Cartesian differential category. [2009]

And secondly, they arise naturally from the structure of
differentiation. Specifically, one can construct a comonad Faà on
the category of Cartesian left additive categories and
sum-product-preserving (on the nose) functors, essentially given by
the higher order chain rules, for which Cartesian differential
categories are precisely the coalgebras. [2011]
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Example of a CDC

The canonical example of a Cartesian differential category is, of
course, from ordinary college calculus:

Finite dimensional vector spaces and smooth maps form a
Cartesian differential category, with D given by the Jacobian.

D×[〈f1, . . . , fn〉](~x , ~y) = [(∂xi fj)(~y)]m,n
i ,j=1,1 ~x

To parse this, consider f (x1, x2, x3) = x1x2x3: IR3 −→ IR.

Its Jacobian is the linear function given by the matrix
[x2x3, x1x3, x1x2]: IR3 −→ IR.

Given 〈y1, y2, y3〉 ∈ IR3, D×[f ](~x , ~y) = y2y3x1 + y1y3x2 + y1y2x3.
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Linear maps
We think of the maps of a CDC as being “smooth”; we must also
ask “what are the linear maps?”.

Definition: In a Cartesian differential category, a map f is linear if
D×[f ] = π0f .

Proposition: In a CDC:

• Every linear map is additive
• 0 is linear; if f , g are linear, so is f + g
• Linear maps compose; identity maps are linear (so linear maps

form a subcategory)
• Projections are linear; pairs of linear maps are linear
• 〈1, 0〉D×[f ] is linear
• a, b linear and af ′ = fb (some f , f ′), then

(a× a)D×[f ′] = D×[f ] b
• If g is linear and a retraction and gh is linear, then h is linear
• If f is linear and an isomorphism, then f −1 is linear.
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Linear maps

Hence:

Corollary: The linear maps of a CDC X form an additive
subcategory Xlin which has biproducts;

Xlin ↪→ X reflects isos and creates products.
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Term calculus
One tool we have found useful is a term calculus for Cartesian
differential categories [2009]. Here’s a hint at its flavour. Consider
f : IR3 −→ IR2: 〈x , y , z〉 7→ 〈x2 + xyz , z3 − xy〉
We may think of the Jacobian evaluated at (r , s, t) thus:

∂〈x2 + xyz , z3 − xy〉
∂(x , y , z)

(r , s, t) =

(
2r + st rt rs
−s −r 3t2

)

We apply this Jacobian to a vector to obtain a point in IR2:(
2r + st rt rs
−s −r 3t2

)
·(u, v ,w) = ((2r+st)u+rtv+rsw ,−su−rv+3t2w)

This is what we write in the term logic as

∂(x2 + xyz , z3 − xy)

∂(x , y , z)
(r , s, t) · (u, v ,w)
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The Chain Rule

Then, in this term calculus, the chain rule (for example) looks like
this:

∂t[t ′/p′]

∂p
(s) · u =

∂t

∂p′
(t ′[s/p]) ·

(
∂t ′

∂p
(s) · u

)
(where no variable of p may occur in t)

Compare with the combinator version:

D×[fg ] = 〈D×[f ], π1f 〉D×[g ]

In [2009] we show this term calculus is sound and complete for
CDCs.
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Generalized CDCs

More recently, Geoff Cruttwell [MSCS 2015] has generalized the
definition of CDCs, equipping each object X with a commutative
monoid 〈L0(X ),+X , 0X 〉 so that every f :X −→ Y induces a map
D[f ]: L0(X )× X −→ L0(Y ) (instead of D[f ]:X × X −→ Y ).

One should think of L0(X ) as “vectors” (and X as “points”). In
IRn these are usually identified, an identification carried over in the
abstraction of CDCs.

Cruttwell’s approach makes the distinction, which enables him to
get somewhat “better” results for generalized CDCs (especially
when one passes to restriction structure, which we shall not
mention further here). In particular, the generalized CDCs are
comonadic over Cartesian categories (ordinary CDCs are only
monadic over Cartesian left additive categories).
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Is this what Ehrhard & Regnier had in mind?

The original work (by Ehrhard and Regnier) on abstract differential
structures that inspired our research was partly aimed at the
differential λ-calculus, and related structures. Our original work
(on monoidal differential categories [2006]) was rather more
“ascetic”, using less structure to capture as much of simple
differential calculus as possible—though we did consider the
situation of adding “just about everything short of closedness” to
compare our work with theirs.
But can we now say more? Can we add closed structure, for
example, and if we do, is the result different in any essentials from
the (recent) work by Ehrhard and others on, say, the differential λ
calculus, or the resource λ calculus?
Well . . .
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Closed structure

It is in fact straightforward to extend these structures to be
(monoidally or Cartesian, as appropriate) closed. With the addition
of storage, we arrive then at the categorical semantics for what is
essentially Ehrhard and Regnier’s original notion of differential
structure. In [2015] we gave a detailed analysis of how storage
works in various contexts, culminating in the following facts:

Theorem: The linear maps of a Cartesian closed differential storage
category (in which linear idempotents split) form a monoidal closed
differential storage category.

Theorem: (A strengthening of a previous result) The coKleisli
category of a monoidal closed differential storage category is a
Cartesian closed differential storage category.
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