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Résuḿe. Dans cet article, on établit une relation entre la notion decat́egorie
codiff́erentielle et la théorie, plus classique, des différentielles de Kähler,
qui appartient à l’algèbre commutative. Une catégorie codifférentielle est
une catégorie monoı̈dale additive, ayant une monadeT qui est en outre une
modalité d’algèbre, c.à.d. une attribution naturelle d’une structure d’algèbre
associative à chaque object de la formeT (C). Enfin, une catégorie cod-
ifférentielle est équipée d’une transformation dérivante, qui satisfait quelques
axiomes typiques de différentiation, exprimés algèbriquement.
La notion classique de différentielle de Kähler définit celle d’un module des
formesA-différentielles par rapport àA, oùA est unek-algèbre commuta-
tive. Ce module est équipé d’uneA-dérivation universelle. Unecat́egorie
Kähler est une catégorie monoı̈dale additive, ayant une modalit´e d’algèbre et
unobjet des formes différentiellesassocié à chaque objet. Suivant l’hypothèse
que la monade algèbre libre existe et que l’application canonique versT est
epimorphique, les catégories codifférentielles sont K¨ahler.
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Abstract. This paper establishes a relation between the notion of acodiffer-
ential categoryand the more classic theory of Kähler differentials in commu-
tative algebra. A codifferential category is an additive symmetric monoidal
category with a monadT , which is furthermore an algebra modality,i.e. a
natural assignment of an associative algebra structure to each object of the
form T (C). Finally, a codifferential category comes equipped with a deriv-
ing transformation satisfying typical differentiation axioms, expressed alge-
braically.
The traditional notion of Kähler differentials defines thenotion of a module of
A-differential forms with respect toA, whereA is a commutativek-algebra.
This module is equipped with a universalA-derivation. AKähler category
is an additive monoidal category with an algebra modality and anobject of
differential formsassociated to every object. Under the assumption that the
free algebra monad exists and that the canonical map toT is epimorphic,
codifferential categories are Kähler.
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1. Introduction

Differential categories were introduced in [3] in part to categorify work
of Ehrhard and Regnier on differential linear logic and the differential λ-
calculus [10, 11]. In the present paper, we shall work with the dual notion
of a codifferential category. The notion was also introduced with an eye to-
wards capturing the interaction in certain monoidal categories between an
abstract differentiation operator and a (possibly monoidal) monad or co-
monad. We require our monads to be equipped withalgebra modalities, i.e.
each object naturally obtains the structure of an algebra with respect to the
monoidal structure. The primary examples of differential and codifferential
categories were the categories of vector spaces, relationsand sup-lattices,
each with some variation of the symmetric algebra monad. Differentiation is
formal differentiation of polynomials. The notion of algebra modality is also
fundamental in the categorical formulation of linear logic[4]. Thus both the
work of Ehrhard and Regnier as well as our work can be seen as anattempt
to extend linear logic to include differential structure.
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The logical and semantic consequences of this sort of extension of linear
logic look to be very promising, likely establishing connections to such areas
as functional analysis, as in theKöthe spacesor finiteness spacesintroduced
by Ehrhard, [8, 9]. Recent work [5] shows that the category ofconvenient
vector spaces[12] is also a differential category. This category is of great
interest as it provides underlying linear structure for thecategory ofsmooth
spaces[12], a cartesian closed category in which one can consider infinite-
dimensional manifolds.

Two significant areas in which there is a well-established notion of ab-
stract differentiation is algebraic geometry and commutative algebra, where
Kähler differentialsare of great significance. There the Kähler module of
differential forms is introduced, for instance see [13, 14]. This is similar in
concept to various aspects of the definition of differentialcategory; in par-
ticular, the notion of differentiation must satisfy the usual Leibniz rule. But,
in addition, Kähler differentials have a universal property that the notion of
differential category seems to be lacking. Roughly, given acommutative al-
gebraA, the KählerA-module of differential forms is a module equipped
with a derivation satisfying Leibniz, which is universal inthe sense that to
any otherA-module equipped with a derivation, there is a uniqueA-module
map commuting with this differential structure. There is nosuch (explicit)
universal structure in the definition of differential category.

With this in mind, we introduce the new notion of aKähler category. A
Kähler category is an additive symmetric monoidal category equipped with
a monadT and an algebra modality. We further require that each object
be assigned an object of differential forms,i.e. an object equipped with a
derivation and satisfying a universal property analogous to that arising from
the Kähler theory in commutative algebra.

Our main result is that every codifferential category, satisfying a minor
structural property, is Kähler. In retrospect, this perhaps should not have
been surprising. In any symmetric monoidal category, one can define both
the notions of associative algebra and module over an associative algebra.
Furthermore ifA is any associative algebra in a symmetric monoidal cat-
egory andC is an arbitrary object, then one can form the freeA-module
generated byC, asA⊗C. This satisfies the usual universal property of free
A-modules. So in a codifferential category,TC is automatically an associa-
tive algebra, and thusTC ⊗ C is the freeTC-module generated byC. This
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is what we will take to be our object of differential forms.
The difficulty in the proof is in demonstrating that the map ofTC-

modules arising from the freeness ofTC⊗C also commutes with the differ-
ential structure. This is where an additional property, which we callProperty
K, becomes necessary. We assume that our category has sufficient coprod-
ucts to construct free associative algebras. As such, thereis a canonical
morphism of monads between this free algebra monad and the monad giv-
ing the differential structure. PropertyK requires that this morphism be an
epimorphism. In many codifferential categories, this is indeed the case. The
proof that this condition suffices reveals additional structure in the definition
of codifferential category.

A different approach to capturing the universality of Kähler differentials
is contained in [7]. There the work is grounded in the notion of Lawvere
algebraic theory, as opposed to linear logic in the present framework. A
comparison of the two approaches would be interesting.

AcknowledgmentsThanks to the University of Ottawa for providing the
third author with aDistinguished Visiting Professorship. We also want to
thank Anders Kock for asking the right question, and the anonymous referee
for insightful comments.

2. Codifferential categories

We here review the basic definition in the paper [3]. The emphasis there was
on differential categories. We here need the dual definitionof codifferential
category. We refer the reader to [3] for more details and motivations.

2.1 Basic definitions

Definition 2.1. 1. A symmetric monoidal categoryC is additiveif it is en-
riched over commutative monoids1. Note that in an additive symmetric
monoidal category, the tensor distributes over the sum.

2. An additive symmetric monoidal category has analgebra modalityif
it is equipped with a monad(T, µ, η) such that for every objectC in

1In particular, we only need addition on Hom-sets, rather than abelian group structure.
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C, the object,T (C), has a commutative associative algebra structure

m:T (C)⊗ T (C) −→ T (C), e: I −→ T (C)

and this family of associative algebra structures satisfiesevident nat-
urality conditions.

3. An additive symmetric monoidal category with an algebra modality is
a codifferential categoryif it is also equipped with aderiving transfor-
mation2, i.e. a natural transformation

d:T (C) −→ T (C)⊗ C

satisfying the following four equations3:

(d1) e; d = 0 (Derivative of a constant is 0.)

(d2) m; d = (id⊗ d); (m⊗ id) + (d⊗ id); c; (m⊗ id) (wherec is the
appropriate symmetry) (Leibniz Rule)

(d3) η; d = e⊗ id (Derivative of a linear function is constant.)

(d4) µ; d = d;µ⊗ d;m⊗ id (Chain Rule)

For a diagrammatic presentation of (the duals of) these equations, see
[3].

We will need an iterated version of the Leibniz rule, which westate now.
(The proof is straightforward.)

Lemma 2.2. In any codifferential category, the composite:

TC⊗n m
−−→ TC

d
−−→ TC ⊗ C

is equal to the sum overi of the composites:

TC⊗n id⊗ id · · · d · · · ⊗ id
−−−−−−−−−−−−→ TC ⊗ · · ·TC ⊗ C ⊗ · · ·TC

c
−→ TC ⊗ · · ·TC ⊗ · · ·TC ⊗ C
m⊗ id

−−−−−→ TC ⊗ C

In this composite thed occurs in thei-th position. Thec is the appropri-
ate symmetry to move theC to the final position without changing the order
of theTC terms.

2We use the terminology of aderiving transformationin both differential and codiffer-
ential categories.

3For simplicity, we assume the monoidal structure is strict
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2.2 The polynomial example

We review the canonical example of a codifferential category, as this con-
struction will be generalized in a number of different ways.Let k be a field,
andVec the category ofk-vector spaces. It is well-established thatVec is an
additive, symmetric monoidal category, and further that the free symmetric
algebra construction determines an algebra modality. Specifically, if V is a
vector space, set

T (V ) = k + V + (V ⊗s V ) + (V ⊗s V ⊗s V ) . . . ,

where⊗s denotes the usual symmetrized tensor product.
An equivalent, basis-dependent description is obtained asfollows. LetJ

be a basis forV , then
T (V ) ∼= k[xj | j ∈ J ],

in other words,T (V ) is the polynomial ring generated by the basisJ . We
have thatT (V ) provides the free commutativek-algebra generated by the
vector spaceV , and as such provides an adjoint to the forgetful functor from
the category of commutativek-algebras toVec. The adjunction determines
a monad onVec, and the usual polynomial multiplication makesT (V ) an
associative commutative algebra, and endowsT with an algebra modality.

FurthermoreVec is a codifferential category [3]. It is probably easiest to
see using the basis-dependent definition. Noting that, evenif V is infinite-
dimensional, any polynomial only has finitely many variables appearing, the
coderiving transformation is defined by

f(xj1 , xj2, . . . , xjn) 7→

n∑

i=1

∂f

∂xji

(xj1 , xj2, . . . , xjn)⊗ ji

where ∂f

∂xji

is defined in the usual way for polynomial functions.

Theorem 2.3. (See [3]) The above construction makesVec a codifferential
category.

By similar arguments, we can state:
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Theorem 2.4.

1. The categoryRel of sets and relations is a differential and codifferen-
tial category4.

2. The categorySup of sup-semi lattices and homomorphisms is a codif-
ferential category.

Further details can be found in [3].

3. Review of Kähler differentials

To see the origins of our theory of Kähler categories and introduce our main
example, we now consider the classical case of Kähler differentials; see [13,
14] and many other sources, for details.

Let k be a field,A a commutativek-algebra, andM anA-module5.

Definition 3.1. AnA-derivationfromA to M is ak-linear map∂:A −→ M
such that∂(aa′) = a∂(a′) + a′∂(a).

One can readily verify under this definition that∂(1) = 0 and hence
∂(r) = 0 for anyr ∈ k.

Definition 3.2. LetA be ak-algebra. Amodule ofA-differential formsis an
A-moduleΩA together with anA-derivation∂:A −→ ΩA which is universal
in the following sense: for anyA-moduleM , for anyA-derivation∂′:A
−→ M , there exists a uniqueA-module homomorphismf : ΩA −→ M such
that∂′ = ∂f .

Lemma 3.3. For any commutativek-algebraA, a module ofA-differential
forms exists.

There are several well-known constructions. The most straightforward,
although the resulting description is not that useful, is obtained by construct-
ing the freeA-module generated by the symbols{∂a | a ∈ A} divided out
by the evident relations, most significantly∂(aa′) = a∂(a′) + a′∂(a). Of
more value is the following description, found, for instance, as Proposition
8.2A of [13].

4Noting the self-duality which commutes with the monoidal structure.
5All modules throughout the paper will beleft modules.
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Lemma 3.4. LetA be ank-algebra. Consider the multiplication ofA:

µ:A⊗ A −→ A.

Let I be the kernel ofµ and setΩA = I/I2. Define a map∂:A −→ ΩA by

∂b = [1⊗ b− b⊗ 1]

where we use square brackets to represent the equivalence class. The pair
(ΩA, ∂) acts as a module of differential forms. 2

Example 3.5. For the key example, letA = k[x1, x2, . . . , xn], thenΩA is
the freeA-module generated by the symbolsdx1, dx2, . . . , dxn, so a typical
element ofΩA looks like

f1(x1, x2, . . . , xn)dx1 + f2(x1, x2, . . . , xn)dx2 + fn(x1, x2, . . . , xn)dxn.

Note how this compares to our polynomial example of a codifferential cate-
gory. If V is ann-dimensional space, then there is a canonical isomorphism:

ΩT (V )
∼= T (V )⊗ V.

This provides the basis for our main theorem on Kähler categories below.

4. Kähler categories

In all of the following, the categoryC will be symmetric, monoidal and ad-
ditive. Unless otherwise stated, all algebras will be assumed to be both as-
sociative and commutative for the remainder of the paper.

Definition 4.1. LetA be an algebra, andM = 〈M, ·M :A ⊗M −→ M〉 an
A-module. Then anA-derivation toM is an arrow∂:A −→ M such that

µ; ∂ = c; id⊗ ∂; ·M + id ⊗ ∂; ·M and ∂(1) = 0

Note that if we are enriched over abelian groups, the second condition may
be dropped.
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Definition 4.2. A Kähler categoryis an additive symmetric monoidal cate-
gory with

• a monadT ,

• a (commutative) algebra modality forT ,

• for all objectsC, a module ofT (C)-differential forms∂C :T (C) −→
ΩC , viz a T (C)-moduleΩC , and aT (C)-derivation,∂C :T (C) −→
ΩC , which is universal in the following sense: for everyT (C)-module
M, and for everyT (C)-derivation ∂′:T (C) −→ M , there exists a
uniqueT (C)-module maph: ΩC −→ M such that∂; h = ∂′.

T (C)
∂ //

∂′

""F
FF

FF
FF

F
ΩC

h
��

M

Remark 4.3. We remark thatΩ is functorial, indeed, is left adjoint to a
forgetful functor, in the following sense. Consider the categoryDer(T ) of
“T -derivations”: its objects are tuples(C,M, ∂), for C an object ofC, M
a T (C)-module, and∂:T (C) −→ M a derivation. A morphism(C,M, ∂)
−→ (C ′,M ′, ∂′) is a pair(f :C −→ C ′, g:M −→ M ′), wheref is a morphism
in C andg is aT (C)-module morphism, satisfying∂; g = T (f); ∂′:T (C)
−→ M ′. The universal property ofΩ allows us to regard it as a functorC
−→ Der(T ), since givenf :C −→ C ′, T (f); ∂′:T (C) −→ ΩC′ is a derivation
if ∂′ is, and hencef inducesΩf : ΩC −→ ΩC′ . MoreoverΩ is easily seen
to be left adjoint to the forgetful functorDer(T ) −→ C given by the first
projection.

Theorem 4.4. The category of vector spaces over an arbitrary field is a
Kähler category, with structure as described in the previoussection.

We would like to show that codifferential categories are Kähler, but are
not in a position to do so at the moment, although we do not havea coun-
terexample. The difficulty in getting a general result lies in the fact that in
the definition of differential or codifferential category,there is noa priori
universal property; evidently universality is fundamental in Kähler theory.
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However there is a universal property at our disposal: sinceour monad is
equipped with an algebra modality, we can use the fact thatT (C)⊗C is the
freeT (C) module generated byC.

Now suppose thatC is a Kähler category. For each objectC, we wish to
construct an objectΩC , with a universal derivation. As already suggested,
we will defineΩC = T (C)⊗ C.

So suppose we have aT (C)-derivation∂:T (C) −→ M . We must con-
struct the uniqueT (C)-module maph : T (C) ⊗ C −→ M with the re-
quired property. But because of the universal property of the free leftT (C)-
module generated byC, we already know there is a uniqueT (C)-module
maph:T (C)⊗ C −→ M .

It remains to verify thatd; h = ∂, which is the focus of the remainder
of the paper. The key to our approach is that there must be an interaction
between theT -algebra structure and the associative algebra structure.

4.1 Free associative algebrasvs. algebra modalities

We assume we have a symmetric monoidal additive category with an algebra
modality and with finite biproducts and countable coproducts. We will also
need to consider the tensor algebra,i.e.

F (C) = I + C + C ⊗ C + C ⊗ C ⊗ C . . .

As always, this is the free (not-necessarily-commutative)associative al-
gebra generated byC. As such, the functor induces a monad(F, µ̄, η̄) on our
category, and that monad has its own (noncommutative) algebra modality.

Because of the existence of biproducts, we are able to establish close
connections between the tensor algebra monad and the associative algebras
arising from our algebra modality. These are expressed as a collection of
natural transformations.

By the universality ofF , we have the following natural transformations:
α:FT −→ T (given by the lifting of the identityT −→ T ), andϕ:F −→ T
(given by the lifting of the unitη: I −→ T ). More explicitly, these are given
by the following constructions.

For any objectC, αC :FT (C) −→ T (C) can be built out of each com-
ponent (since its domain is a coproduct). So we want a mapαn:T (C)⊗n

−→ T (C), but this is just then-fold multiplication onT (C). In the case
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wheren = 0, there is the canonical mapη: I −→ T (C). The mapαC is the
usual quotient of the free associative algebra generated by(the underlying
object of)T (C) ontoT (C).

Also we observe thatϕC :FC −→ TC is simplyFηC ;αC :FC −→ FTC
−→ TC.

Lemma 4.5.ϕ is a morphism of monads

Proof. This follows immediately from Proposition 6.1, Chapter 3 of[1]
(where the reader can also find the definition of a morphism of monads).
That proposition states thatϕ will be a morphism of monads if the following
diagrams commute:

T (C)
η

//

1
$$I

II
II

II
II

FT (C)

α

��

T (C)

FFT (C)
µ

//

Fα
��

FT (C)

α

��

FTT (C)

α

��

Fµ
oo

FT (C) α
// T (C) TT (C)µ

oo

These are straightforward, and in fact are an immediate consequence of
the universal property ofF , since the individual morphisms in these dia-
grams are all associative algebra maps (and so each composite is the unique
lifting of the obvious map). More concretely, since objectsof the formF (C)
are all coproducts, it suffices to check the equations componentwise, which
is a simple exercise. 2

Definition 4.6. The monadT satisfiesPropertyK if the natural transforma-
tionϕ:F −→ T is a componentwise epimorphism.

If we are working in a category in which there is an evident monad, we
will say that the category satisfies PropertyK, rather than the monad.

Proposition 4.7. The categories of vector spaces, relations and sup-lattices,
as described in Theorems 2.3, 2.4, satisfy PropertyK.

Proof. (Sketch) For vector spaces, for example, this is the usual quotient by
symmetrizing. The other two examples are similar. 2
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4.2 Codifferential categories satisfyingK are Kähler

We now present the main result of the paper. In fact, we offer two proofs to
illustrate different aspects of the notions involved.

Theorem 4.8. If C is a codifferential category, whose monad satisfies Prop-
ertyK, thenC is a Kähler category, withΩC = T (C)⊗ C.

Proof. We consider the “inclusion” mapη; d:C −→ T (C)⊗C. By equation
1 in the definition of codifferential category, we haveη; d = u; e⊗ idC .

Hence by the freeness ofT (C) ⊗ C, for anyT (C)-moduleM and for
any morphismh:C −→ M , there exists a uniquemap ofT (C)-modules,
ĥ:T (C) ⊗ C −→ M such thatη; d; ĥ = u; e ⊗ idC ; ĥ = h. Suppose as
in the definition of Kähler category that we have aT (C)-moduleM and a
T (C)-derivation∂:T (C) −→ M . Takingh = η; ∂, we thus have a unique
T (C)-module map̂h:T (C)⊗ C −→ M such thatη; d; ĥ = h = η; ∂

So our goal is to show that we can cancel theη’s in the previous equation.

Proof #1 The first proof is a straight calculation. We consider the mor-
phisms:

Φ = Fη;α; d; ĥ and Ψ = Fη;α; ∂

If we can show these two maps are equal, we are done given that PropertyK
gives thatFη;α is surjective and thusd; ĥ = ∂.

Since the domain ofΦ andΨ is a coproduct, it suffices to show that the
maps are equal on each component.

For theI component, both composites are 0, by definition.
For theC component, we haveη; d; ĥ = η; ∂, which has already been

shown.
We next argue the binaryC ⊗ C component, to demonstrate the tech-

niques for then-ary case. We wish to show that the composite

Φ2 = C ⊗ C
η⊗η
−→ TC ⊗ TC

m
−→ TC

d
−→ TC ⊗ C

ĥ
−→ M

is equal to:

Ψ2 = C ⊗ C
η⊗η
−→ TC ⊗ TC

m
−→ TC

d′

−→ M
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Proceed as follows. Throughout the proof, we assume strict associativity.
Any unit isomorphism is denoted byu andc always denotes a symmetry. It
will always be clear from the context what the relevant symmetry is.

Φ2 = η ⊗ η; id⊗ d;m⊗ id; ĥ+ η ⊗ η; d⊗ id; c;m⊗ id; ĥ

= η ⊗ u; id⊗ e⊗ id;m⊗ id; ĥ+ u⊗ η; id⊗ e⊗ id; c;m⊗ id; ĥ

= η ⊗ id; ĥ+ id⊗ η; c; ĥ

Now note that

Ψ2 = η ⊗ η; id⊗ ∂; ·M + η ⊗ η; ∂ ⊗ id; ·M

= η ⊗ h; ·M + h⊗ η; c; ·M

The result then follows from the universal property of̂(−). In particular,
idTC ⊗ h; ·M = ĥ.

This calculation shows the structure for the generaln-ary case, which
requires then-ary Leibniz rule of Section 2. Then-ary versions ofΦ andΨ
are

Φn = η⊗n;m⊗n−1; d; ĥ Ψn = η⊗n;m⊗n−1; ∂

Expanding, we obtain

Φn =
n∑

i=1

η⊗i−1 ⊗ id⊗ η⊗n−i; c;m⊗n−2; ĥ

and

Ψn =
n∑

i=1

η⊗i−1 ⊗ h⊗ η⊗n−i; c;m⊗n−2; ·M

The result again follows from the definition ofĥ. 2

We now give a more conceptual proof, using the universality of F (as the
free associative algebra functor), rather than its explicit construction.

Suppose thatA is a (commutative) algebra, andM anA-module. Then
in factA+M has the structure of an algebra, in the following way. The unit

is I
〈e, 0〉

−−−−→ A+M , and the multiplication(A+M)⊗ (A+M) −→ A+M
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is induced by the following three maps:

A⊗A
m

−−→ A −→ A+M

A⊗M
·

−−→ M −→ A+M

M ⊗M
0

−→ M −→ A+M

Moreover, this construction is functorial inM , so given a module morphism
M −→ N , the mapA+M −→ A+N is an algebra morphism.

The following well-known observation [6] was used in the early work of
Beck [2].

Lemma 4.9. If A is a (commutative) algebra,M anA-module, thenA
∂

−−→

M is a derivation iffA
〈1, ∂〉

−−−−→ A+M is an algebra morphism.

Proof #2 We note thatd; ĥ = ∂ if and only if

T (C)
〈1,d〉

//

〈1,∂〉 ((P
PP

PP
PP

PP
PP

P
T (C) + T (C)⊗ C

1+ĥ
��

T (C) +M

(∗)

Now, given propertyK, this previous diagram commutes if and only if

F (C)

rreeee
eeee

eeee
eeee

eeee
eeee

eeee
eeee

eeee

uujjj
jj
jj
jj
jj
jj
jj
jj

zzuu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
u

T (C)
〈1,d〉

//

〈1,∂〉 ((P
PP

PP
PP

PP
PP

P
T (C) + T (C)⊗ C

1+ĥ
��

T (C) +M

Note that aT (C)-derivation followed by aT (C)-module map is a deriva-
tion. So in the diagram above, every morphism is a morphism ofalgebras.
SinceF (C) is the free algebra generated byC, this diagram commutes if
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and only if it commutes on the image ofC.

F (C)

rreeee
eeee

eeee
eeee

eeee
eeee

eeee
eeee

eeee

uujjj
jj
jj
jj
jj
jj
jj
jj

zzuu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
u

C
η

oo

T (C)
〈1,d〉

//

〈1,∂〉 ((P
PP

PP
PP

PP
PP

P
T (C) + T (C)⊗ C

1+ĥ
��

T (C) +M

But this amounts to the equationη; d; ĥ = η; ∂, which is already established.
2
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[12] [A. Frölicher, A. Kriegl, 1988]Linear Spaces and Differentiation The-
ory, Wiley.

[13] [R. Hartshorne, 1977]Algebraic Geometry. Springer-Verlag.

[14] [H. Matsumura, 1970]Commutative Algebra, W.A. Benjamin Co.

Richard Blute6

Dept of Mathematics and Statistics
University of Ottawa
Ottawa, Ontario, Canada
rblute@uottawa.ca

J.R.B. Cockett6

Dept of Computer Science
University of Calgary
Calgary, Alberta, Canada
robin@cpsc.ucalgary.ca

Timothy Porter
WIMCS
School of Computer Science
University of Bangor
Bangor, Wales, United Kingdom
t.porter@bangor.ac.uk

R.A.G. Seely7

Dept of Mathematics and Statistics
McGill University
Montreal, Quebec, Canada
rags@math.mcgill.ca

6Research supported in part by NSERC.
7Research supported in part by NSERC & FQRNT.

16


