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Résung. Dans cet article, on établit une relation entre la notiocategorie
codifferentielle et la théorie, plus classique, des differentielles dénl&ia
qui appartient a I'algebre commutative. Une catégondiftérentielle est
une catégorie monoidale additive, ayant une morfadei est en outre une
modalité d’algébre, c.a.d. une attribution naturellené structure d'algebre
associative a chaque object de la forffi@”'). Enfin, une catégorie cod-
ifferentielle est équipée d’'une transformation dénite, qui satisfait quelques
axiomes typiques de differentiation, exprimés alggleiment.

La nation classique de difféerentielle de Kahler défimtle d’'un module des
formes A-différentielles par rapport &, ou A est unek-algebre commuta-
tive. Ce module est équipé d'uné-dérivation universelle. Uneategorie
Kahler est une catégorie monoidale additive, ayant une med#ktigebre et
unobjet des formes défentiellesassocié a chaque objet. Suivant I'hnypothese
gue la monade algebre libre existe et que I'applicatioron@ue versl™ est
epimorphique, les catégories codifféerentielles soahli€r.



Abstract. This paper establishes a relation between the notioncotiifer-
ential categoryand the more classic theory of Kahler differentials in camm
tative algebra. A codifferential category is an additivensyetric monoidal
category with a monad’, which is furthermore an algebra modalitye. a
natural assignment of an associative algebra structuradio ebject of the
form T'(C). Finally, a codifferential category comes equipped witrea\d
ing transformation satisfying typical differentiationiams, expressed alge-
braically.

The traditional notion of Kahler differentials defines tiaion of a module of
A-differential forms with respect td, whereA is a commutative:-algebra.
This module is equipped with a universatderivation. AKahler category
is an additive monoidal category with an algebra modalitg anobject of
differential formsassociated to every object. Under the assumption that the
free algebra monad exists and that the canonical map i® epimorphic,
codifferential categories are Kahler.
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1. Introduction

Differential categories were introduced in [3] in part taeggorify work
of Ehrhard and Regnier on differential linear logic and tligedcential \-
calculus [10, 11]. In the present paper, we shall work with dimal notion
of a codifferential category. The notion was also introdbagh an eye to-
wards capturing the interaction in certain monoidal catiegobetween an
abstract differentiation operator and a (possibly monipideonad or co-
monad. We require our monads to be equipped afgebra modalitiesi.e.
each object naturally obtains the structure of an algebtia r@spect to the
monoidal structure. The primary examples of differentrad @odifferential
categories were the categories of vector spaces, relagiothsup-lattices,
each with some variation of the symmetric algebra monadet&ihtiation is
formal differentiation of polynomials. The notion of algabmodality is also
fundamental in the categorical formulation of linear logit Thus both the
work of Ehrhard and Regnier as well as our work can be seen agempt
to extend linear logic to include differential structure.



The logical and semantic consequences of this sort of artens$linear
logic look to be very promising, likely establishing conhens to such areas
as functional analysis, as in tK@&the spacesr finiteness spacestroduced
by Ehrhard, [8, 9]. Recent work [5] shows that the categorgaivenient
vector space$§l?] is also a differential category. This category is ofajre
interest as it provides underlying linear structure for¢heegory ofsmooth
spaceqd12], a cartesian closed category in which one can considirite-
dimensional manifolds.

Two significant areas in which there is a well-establishetiomoof ab-
stract differentiation is algebraic geometry and comningadlgebra, where
Kahler differentialsare of great significance. There the Kahler module of
differential forms is introduced, for instance see [13,. I#his is similar in
concept to various aspects of the definition of differentetiegory; in par-
ticular, the notion of differentiation must satisfy the akueibniz rule But,
in addition, Kahler differentials have a universal prdgehat the notion of
differential category seems to be lacking. Roughly, giveommutative al-
gebraA, the KahlerA-module of differential forms is a module equipped
with a derivation satisfying Leibniz, which is universaltime sense that to
any otherA-module equipped with a derivation, there is a unigumodule
map commuting with this differential structure. There issuzh (explicit)
universal structure in the definition of differential cabeg

With this in mind, we introduce the new notion okKaihler category A
Kahler category is an additive symmetric monoidal catggmuipped with
a monadl’ and an algebra modality. We further require that each object
be assigned an object of differential form&. an object equipped with a
derivation and satisfying a universal property analogoubat arising from
the Kahler theory in commutative algebra.

Our main result is that every codifferential category, &ging a minor
structural property, is Kahler. In retrospect, this p@dahould not have
been surprising. In any symmetric monoidal category, omededine both
the notions of associative algebra and module over an ags@calgebra.
Furthermore ifA is any associative algebra in a symmetric monoidal cat-
egory andC' is an arbitrary object, then one can form the fréenodule
generated by’, asA ® C'. This satisfies the usual universal property of free
A-modules. So in a codifferential categofy(' is automatically an associa-
tive algebra, and thuBC' ® C'is the freel'C'-module generated by. This



is what we will take to be our object of differential forms.

The difficulty in the proof is in demonstrating that the map7of'-
modules arising from the freenessiof’ ® C' also commutes with the differ-
ential structure. This is where an additional property,clivie callProperty
K, becomes necessary. We assume that our category has stffigprod-
ucts to construct free associative algebras. As such, ieesiecanonical
morphism of monads between this free algebra monad and theadrgiv-
ing the differential structure. Properkyrequires that this morphism be an
epimorphism. In many codifferential categories, this teied the case. The
proof that this condition suffices reveals additional dinee in the definition
of codifferential category.

A different approach to capturing the universality of K&hdlifferentials
is contained in [7]. There the work is grounded in the notibh.awvere
algebraic theory, as opposed to linear logic in the presamhdwork. A
comparison of the two approaches would be interesting.

Acknowledgments Thanks to the University of Ottawa for providing the
third author with aDistinguished Visiting ProfessorshipNe also want to
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2. Codifferential categories

We here review the basic definition in the paper [3]. The erajgithere was
on differential categories. We here need the dual definaiforodifferential
category. We refer the reader to [3] for more details and vatons.

2.1 Basic definitions

Definition 2.1. 1. A symmetric monoidal categafyis additiveif it is en-
riched over commutative monoid$Note that in an additive symmetric
monoidal category, the tensor distributes over the sum.

2. An additive symmetric monoidal category hasadgebra modalityf
it is equipped with a monafll’, 1., ) such that for every object' in

Yn particular, we only need addition on Hom-sets, rathen tiaelian group structure.



C, the object.I'(C'), has a commutative associative algebra structure

m:T(C)RT(C)— T(C), el — T(C)
and this family of associative algebra structures satisfadent nat-
urality conditions.

3. An additive symmetric monoidal category with an algeboalatity is
a codifferential categorif it is also equipped with aeriving transfor-
matior?, i.e. a natural transformation

dTC)—TC)xC
satisfying the following four equatiofis

(d1) e;d =0 (Derivative of a constant is 0.)
(d2) m;d = (id®d); (m®id) + (d®1id); ¢; (m ® id) (wherec is the
appropriate symmetry) (Leibniz Rule)
(d3) n;d =e®id (Derivative of a linear function is constant.)
(d4) p;d=d;p®d;m®id (Chain Rule)
For a diagrammatic presentation of (the duals of) thesetmmsa see

[3].
We will need an iterated version of the Leibniz rule, whichstate now.
(The proof is straightforward.)

Lemma 2.2. In any codifferential category, the composite:
TC® s TC -5 TC @ C

is equal to the sum oveérof the composites:
dRid---d--- ®1id

TC®™ y TC®---TCRC®---TC
SN TC®---TC®---TCxC
_meid, TC®C

In this composite thé occurs in thei-th position. The: is the appropri-
ate symmetry to move ttieto the final position without changing the order
of theT'C terms.

2We use the terminology of @eriving transformatiorin both differential and codiffer-
ential categories.
3For simplicity, we assume the monoidal structure is strict
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2.2 The polynomial example

We review the canonical example of a codifferential catggas this con-
struction will be generalized in a number of different walyst & be a field,

andVec the category of-vector spaces. It is well-established tRat is an

additive, symmetric monoidal category, and further thatftlee symmetric
algebra construction determines an algebra modality. ifsqadty, if V' is a

vector space, set

TV)=k+V4+ (Ve V)+(Ve,Ve,V)...,

where®, denotes the usual symmetrized tensor product.
An equivalent, basis-dependent description is obtainddliasvs. Let.J
be a basis fol/, then
(V)= klz; | j e J],

in other words,T’(V) is the polynomial ring generated by the bagisWe
have thatl'(V') provides the free commutativealgebra generated by the
vector spacé’, and as such provides an adjoint to the forgetful functanfro
the category of commutativiealgebras td/ec. The adjunction determines
a monad orVec, and the usual polynomial multiplication makégl’) an
associative commutative algebra, and enddweith an algebra modality.

Furthermoreé/ec is a codifferential category [3]. It is probably easiest to
see using the basis-dependent definition. Noting that, #vEns infinite-
dimensional, any polynomial only has finitely many varigd@pearing, the
coderiving transformation is defined by

where-2L is defined in the usual way for polynomial functions.

8:03'1.
Theorem 2.3. (See [3]) The above construction makés a codifferential
category.

By similar arguments, we can state:



Theorem 2.4.

1. The categoryrel of sets and relations is a differential and codifferen-
tial category.

2. The categorpup of sup-semi lattices and homomorphisms is a codif-
ferential category.

Further details can be found in [3].

3. Review of Kahler differentials

To see the origins of our theory of Kahler categories anadice our main
example, we now consider the classical case of Kahlerrdiiials; see [13,
14] and many other sources, for details.

Let k be a field,A a commutative:-algebra, and// an A-modulé.

Definition 3.1. An A-derivationfrom A to M is ak-linear mapo: A — M
such that(ad’) = ad(a’) 4+ a'0(a).

One can readily verify under this definition th@tl) = 0 and hence
d(r) = 0 foranyr € k.

Definition 3.2. Let A be ak-algebra. Amodule ofA-differential formsis an

A-modulef? 4, together with anA-derivationd: A — Q4 which is universal
in the following sense: for anyl-module M, for any A-derivationd’: A

— M, there exists a uniqgud-module homomorphisni: 24 — M such
thato’ = 0f.

Lemma 3.3. For any commutativé-algebra A, a module ofA-differential
forms exists.

There are several well-known constructions. The mostgtitiarward,
although the resulting description is not that useful, imoted by construct-
ing the freeA-module generated by the symbgisa | « € A} divided out
by the evident relations, most significantWaa’') = ad(a’) + a’0(a). Of
more value is the following description, found, for instanas Proposition
8.2A of [13].

4Noting the self-duality which commutes with the monoidalisture.
SAll modules throughout the paper will beft modules.
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Lemma 3.4. Let A be ank-algebra. Consider the multiplication of:
wA®A— A
Let I be the kernel of: and set), = I/I?. Define a ma@: A — Q4 by
h=10b—-bx1]

where we use square brackets to represent the equivaleass. cThe pair
(Q4, 0) acts as a module of differential forms. O

Example 3.5. For the key example, let = k[xq,zs,...,z,], thenQ, is
the freeA-module generated by the symbadls,, dz-, . . ., dz,, SO a typical
element of2 4 looks like

fi(zy, e, .. xp)day + folxy, oy ..o xy)dxy + fr(x1, 22, . .., 2p)dT,.

Note how this compares to our polynomial example of a couifigal cate-
gory. If V is ann-dimensional space, then there is a canonical isomorphism:

Qroy =T(V) V.

This provides the basis for our main theorem on Kahler categ below.

4. Kahler categories

In all of the following, the categorg will be symmetric, monoidal and ad-
ditive. Unless otherwise stated, all algebras will be as=ito be both as-
sociative and commutative for the remainder of the paper.

Definition 4.1. Let A be an algebra, and/ = (M, -y;: A® M — M) an
A-module. Then anl-derivation to)M is an arrowd: A — M such that

;0 =¢;id ® 0; -y +1id ® 05y and 0(1)=0

Note that if we are enriched over abelian groups, the seconditton may
be dropped.



Definition 4.2. A Kahler categorys an additive symmetric monoidal cate-
gory with

e amonadr’,
e a (commutative) algebra modality fdf,

e for all objectsC, a module ofl’'(C)-differential formso.: T'(C') —
Qc, viz a T'(C)-moduleQ), and aT'(C)-derivation, d-: T'(C) —
Q¢, which is universal in the following sense: for ev&tyC')-module
M, and for everyT(C)-derivation?’: T(C) — M, there exists a
uniqueT'(C)-module maph: Q0 — M such thatd; h = 0.

T(C) -2~ Q¢

\

M

Remark 4.3. We remark that? is functorial, indeed, is left adjoint to a
forgetful functor, in the following sense. Consider theecgiry Der(T') of
“T-derivations”: its objects are tuplés’, M, 0), for C an object ofC, M
aT(C)-module, an®:T(C) — M a derivation. A morphismiC, M, 0)
— (C",M', ') isapair(f:C — C",g: M — M’), wheref is a morphism
in C andg is aT'(C)-module morphism, satisfying;g = T(f); 0" T(C)
— M'. The universal property df? allows us to regard it as a functGr
— Der(T), since givenf:C' — C', T(f); 0:T(C) — Q¢ is a derivation
if 0’ is, and hencef induces(;: Q- — Q. Moreover( is easily seen
to be left adjoint to the forgetful functaber(7T') — C given by the first
projection.

Theorem 4.4. The category of vector spaces over an arbitrary field is a
Kahler category, with structure as described in the previsestion.

We would like to show that codifferential categories arenked, but are
not in a position to do so at the moment, although we do not has@un-
terexample. The difficulty in getting a general result lieghe fact that in
the definition of differential or codifferential categompere is noa priori
universal property; evidently universality is fundamenmtaKahler theory.
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However there is a universal property at our disposal: sowemonad is
equipped with an algebra modality, we can use the factfat)  C' is the
freeT(C') module generated by.

Now suppose that is a Kahler category. For each obj&ctwe wish to
construct an objec®., with a universal derivation. As already suggested,
we will defineQc = T'(C) ® C.

So suppose we haveTZd C')-derivationo: T'(C) — M. We must con-
struct the uniquél’(C')-module maph : T(C) ® C — M with the re-
quired property. But because of the universal property eftée left7'(C)-
module generated by, we already know there is a uniqgC')-module
maph:T(C) @ C — M.

It remains to verify thatl; h = 0, which is the focus of the remainder
of the paper. The key to our approach is that there must betaraation
between th& -algebra structure and the associative algebra structure.

4.1 Free associative algebrags. algebra modalities

We assume we have a symmetric monoidal additive categohyamitilgebra
modality and with finite biproducts and countable coprodu¥e will also
need to consider the tensor algebra,

FC)=I+C+C®C+CoC&C...

As always, this is the free (not-necessarily-commutai@gspciative al-
gebra generated lfy. As such, the functor induces a mondd /i, 77) on our
category, and that monad has its own (honcommutative) edgabdality.

Because of the existence of biproducts, we are able to edtatibse
connections between the tensor algebra monad and the @ssoaigebras
arising from our algebra modality. These are expressed adleciton of
natural transformations.

By the universality ofF’, we have the following natural transformations:
a: FT — T (given by the lifting of the identityl" — T'), andyp: FF — T
(given by the lifting of the uni): I — T'). More explicitly, these are given
by the following constructions.

For any objecC, a¢: FT(C) — T(C) can be built out of each com-
ponent (since its domain is a coproduct). So we want a mag’(C)*"
— T'(C), but this is just then-fold multiplication on7'(C). In the case
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wheren = 0, there is the canonical map/ — T'(C'). The mapac is the
usual quotient of the free associative algebra generatdthbyunderlying
object of)T'(C) ontoT'(C).

Also we observe thapo: FC — T'C'is simply Fne; ac: FC — FTC
— TC.

Lemma 4.5. ¢ is a morphism of monads

Proof. This follows immediately from Proposition 6.1, Chapter 3[bf
(where the reader can also find the definition of a morphism afiads).
That proposition states thatwill be a morphism of monads if the following
diagrams commute:

T(C) -1~ FT(C)  FFT(C)-t~FT(C)<% FTT(C)

I S T -

T(0) FT(C) —5—=T(C) <—— TT(C)

These are straightforward, and in fact are an immediatestpuence of
the universal property of’, since the individual morphisms in these dia-
grams are all associative algebra maps (and so each com®oie unique
lifting of the obvious map). More concretely, since objegftthe formF'(C')
are all coproducts, it suffices to check the equations comtwise, which
is a simple exercise. O

Definition 4.6. The monad’” satisfiedPropertyK if the natural transforma-
tion o: FF — T is a componentwise epimorphism.

If we are working in a category in which there is an evident ashrwe
will say that the category satisfies Propdftyrather than the monad.

Proposition 4.7. The categories of vector spaces, relations and sup-Iattice
as described in Theorems 2.3, 2.4, satisfy Propkrty

Proof. (Sketch) For vector spaces, for example, this is the ususlient by
symmetrizing. The other two examples are similar. O

11



4.2 Codifferential categories satisfyingK are Kahler

We now present the main result of the paper. In fact, we offergroofs to
illustrate different aspects of the notions involved.

Theorem 4.8.1f C is a codifferential category, whose monad satisfies Prop-
erty K, thenC is a Kahler category, witf = T(C) @ C.

Proof. We consider the “inclusion” mag; d: C' — T'(C') ® C'. By equation
1 in the definition of codifferential category, we hayel = u; e ® idc.

Hence by the freeness 6f(C) @ C, for any7'(C)-module M and for
any morphismh: ¢ — M, there exists a uniqumap of 7'(C)-modules
h:T(C) ® C — M such thaty;d; h = u;e ® idc;h = h. Suppose as
in the definition of Kahler category that we havd'&')-module M and a
T(C)-derivation0: T(C) — M. Takingh = n;0, we thus have a unique
T(C')-module maph: T(C) ® C — M such thaty; d; b = h = ;9

So our goal is to show that we can cancelslsan the previous equation.

Proof #1 The first proof is a straight calculation. We consider the-mor
phisms: )
®=Fn,a;d;h  and W= Fn;a;0

If we can show these two maps are equal, we are done givenrthae iy K
gives thatF'n; a is surjective and thug; i = 0.

Since the domain ob andV is a coproduct, it suffices to show that the
maps are equal on each component.

For thel component, both composites are 0, by definition.

For theC' component, we have; d; . = n; 8, which has already been
shown.

We next argue the binarg' @ C' component, to demonstrate the tech-
niques for then-ary case. We wish to show that the composite

D= CRC L TCORTC 2 TC - TC®C 5 M

is equal to:

U,=CoC ™ rCoTC S TC L5 M
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Proceed as follows. Throughout the proof, we assume ssa@ativity.
Any unit isomorphism is denoted hyandc always denotes a symmetry. It
will always be clear from the context what the relevant syrmynis.

b, = 77®n;id@d;m®id;ﬁ+n®n;d®id;c;m®id;ﬁ
nQuid®e®id;mQid;h+u@mn;id® e ® id;c;m ® id; h
= 77®id;iz+id®7];c;fz

Now note that

Uy = n@n;id®0;-p+n@n;0®id; um
= N®hiu+h®@ncu

~

The result then follows from the universal property(ef). In particular,
idpe ® h; -y = h.

This calculation shows the structure for the generalry case, which
requires ther-ary Leibniz rule of Section 2. The-ary versions ofb and¥
are

®,, = n®m® L d b U, =0 m® 10
Expanding, we obtain

o, = Z n® 1 ®id @ n®" 7 ¢; mPn h

=1

and

n

Vo= ¥ @h@ g™ em® Ty

=1
The result again follows from the definition bf O
We now give a more conceptual proof, using the universafity ¢as the
free associative algebra functor), rather than its exgimnstruction.

Suppose that is a (commutative) algebra, add an A-module. Then
in fact A + M has the structure of an algebra, in the following way. Thé uni

is7 —“%, A+ M, and the multiplicatiofiA + M) ® (A+ M) — A+ M
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is induced by the following three maps:

AA 5 A — A4+ M

AOM — M — A4+M

MoM % M — A+M

Moreover, this construction is functorial if, so given a module morphism
M — N, the mapA + M — A+ N is an algebra morphism.

The following well-known observation [6] was used in thelgarork of
Beck [2].

Lemma 4.9. If A is a (commutative) algebray an A-module, therd BN
M is a derivation iffA —22 4 + M is an algebra morphism.

Proof #2 We note thatl; 1 = 0 if and only if

(Ld)

T(C)—T{C)+T(C)®C (*)
(1.0) l1+ﬁ
TC)+ M

Now, given propert¥, this previous diagram commutes if and only if

F(C)

/

T(C) === T(C)+ T(C) & C

(1.9) l1+ﬁ
TC)+ M

Note that & (C')-derivation followed by &'(C')-module map is a deriva-

tion. So in the diagram above, every morphism is a morphisalggbras.
Since F(C) is the free algebra generated bYy this diagram commutes if
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and only if it commutes on the image ©6f

F(C)<1-C

%

—T(0)+T(O)

) l1+h
TC)+ M

r(c)

But this amounts to the equatignd; i = n; 9, which is already established.
O
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