
The Faà di Bruno construction

R.A.G. Seely

John Abbott College

& McGill University

(Joint work with J.R.B. Cockett)

1

Francesco Faà di Bruno (1825-1888) was an Italian of noble

birth, a soldier, a mathematician, and a priest. In 1988 he was

beatified by Pope John Paul II for his charitable work teach-

ing young women mathematics. As a mathematician he studied

with Cauchy in Paris. He was a tall man with a solitary dispo-

sition who spoke seldom and, when teaching class, not always

successfully. Perhaps his most significant mathematical contribu-

tion concerned the combinatorics of the higher-order chain rules.

These results were the cornerstone of “combinatorial analysis”:

a subject which never really took off. It is the combinatorics

underlying the higher-order chain rule which is of interest to us

here.

According to a paper by Craik in the American Mathematical

Monthly 2005, the Faà di Bruno formula was known and pub-

lished 50 years before Faà di Bruno, by the French mathematician

Arbogast. But following modern tradition, we shall continue to

refer to it by the name of our mathematical saint.

2

Outline

• Differential and Cartesian differential categories

• The bundle fibration

• The Faà di Bruno construction

• The comonad

• The coalgebras

Theorem Cartesian differential categories are exactly coalgebras

of the Faà di Bruno comonad.

3

Prehistory: Differential categories

(Inspired by Ehrhard & Regnier; particularly a talk by E at U

Ottawa 2002)

Context: a category of both smooth and linear maps; this might

be thought of as a category (of linear maps) and its coKleisli

category (of free coalgebras) (whose maps are smooth), for a

“good” comonad. Then a differential operator takes a smooth

map to a smooth family of linear maps (for each point, the

Jacobian at that point defines a linear map):

f : ! A −→ B
D[f]: A ⊗ ! A −→ B

Think D(f): ! A −→ (A −◦B), but we do not want to assume

monoidal closed structure.

4

Consider a simple example: f(x, y, z) = 〈x2 + xyz, z3 − xy〉. This

is a smooth function from R3 to R2. Its Jacobian is
(

2x + yz xz xy

−y −x 3z2

)

Given a choice of x, y and z, i.e. a point of R3, we obtain a linear

map from R3 to R2. But the assignment of the linear map for

a point is smooth.

So, given a smooth map f :A ⊆ Rn −→ Rm, one gets a smooth

map D(f): A −→ L(A,Rm): for a point x ∈ A: D(f) is given by

the Jacobian of f at x.

5

There is some key structure on the ambient category needed to

make this work. Certainly we expect some additive structure: we

assume that the category is commutative monoid enriched. We

also put some conditions on the comonad (! , δ, ε), viz that each

object ! X comes equipped with natural coalgebra structure

∆: ! X −→ ! X ⊗ ! X e: ! X −→ >

satisfying some “obvious” coherence conditions, viz that (! X,∆, e)

is a comonoid and δ is a morphism of comonoids.

6

A differential combinator D (as before) is supposed to be addi-

tive, to “preserve” commutativity of diagrams (this is just the

property of being a combinator)

!C Dg
//

!A

!C

!u

��

!A B
f

// B

D

v

��

⇐⇒

C⊗!C D
D[g]

//

A⊗!A

C⊗!C

u⊗!u

��

A⊗!A B
D[f]

// B

D

v

��

and to satisfy the following “obvious” properties of a differential:

7

[D.1] Constant maps:

D[eA] = 0

[D.2] Product rule:

D[∆(f⊗g)] = (1⊗∆)a−1
⊗ (D[f]⊗g)+(1⊗∆)a−1

⊗ (c⊗⊗1)a⊗(f⊗D[g])

where f : ! A −→ B, g: ! A −→ C, and a⊗, c⊗ are the associa-

tivity and commutativity isomorphisms

[D.3] Linear maps:

D[εAf] = (1 ⊗ eA)u⊗f

where f :A −→ B and u⊗ is the unit isomorphism

[D.4] The chain rule:

D[δ !f g] = (1 ⊗ ∆)a−1
⊗ (D[f] ⊗ δ !f)D[g]

where ! A
f

−−→ B and ! B
g

−−→ C

8

This work (Blute, Cockett, Seely, “Differential categories”, MSCS

2006) gave a good categorical semantics for Ehrhard’s calculus,

had some very natural models, and seemed quite satisfactory, un-

til (provoked by conversations with Nicola Gambino!) we thought

of reversing the perspective, and focus instead on the coalgebra

category of smooth maps (with linear maps being “carved out”

inside it). This led to the notion of a Cartesian differential cat-

egory.

9

Key structure:

X
f

−−→ Y : x 7→ f(x)

X × X
D[f]

−−−−→ Y : 〈a, s〉 7→ df
dx (s) · a

(linear in a but not in s)

Example, revisited:

If f : 〈x, y, z〉 7→ 〈x2 + xyz, z3 − xy〉

then:
d〈x2+xyz,z3−xy〉

d〈x,y,z〉 =

(

2x + yz xz xy

−y −x 3z2

)

and
d〈x2+xyz,z3−xy〉

d〈x,y,z〉 (〈r, s, t〉) =

(

2r + st rt rs

−s −r 3t2

)

and
d〈x2+xyz,z3−xy〉

d〈x,y,z〉 (〈r, s, t〉) · 〈a, b, c〉 =

〈(2r + st)a + rtb + rsc,−sa − rb + 3t2c〉

10

Cartesian Differential Categories

1. Category X, Cartesian left additive†: hom-sets are commu-

tative monoids & f(g + h) = (fg) + (fh), f0 = 0.

(h is additive if also (f + g)h = (fh) + (gh) and 0h = 0.)

‘Well-behaved’ products: π0, π1, ∆ additive

f , g additive ⇒ f × g additive.

2. Differential operator D:

X
f

−−→ Y
X × X −−−−→

D[f]
Y

(Ref: [Blute-Cockett-Seely] TAC 2009)

†Eg (of “left additive”): the category of commutative monoids & set maps

is left additive; the additive maps are homomorphisms.

11

Satisfying:

[CD.1] D[f + g] = D[f] + D[g] and D[0] = 0

[CD.2] 〈h + k, v〉D[f] = 〈h, v〉D[f] + 〈k, v〉D[f] and 〈0, v〉D×[f] = 0

[CD.3] D[1] = π0, D[π0] = π0π0 and D[π1] = π0π1

[CD.4] D[〈f, g〉] = 〈D[f], D[g]〉

[CD.5] D[fg] = 〈D[f], π1f〉D[g]

[CD.6] 〈〈g,0〉, 〈h, k〉〉D[D[f]] = 〈g, k〉D[f]

[CD.7] 〈〈0, h〉, 〈g, k〉〉D[D[f]] = 〈〈0, g〉, 〈h, k〉〉D[D[f]]

12

[Dt.1]
d(f1 + f2)

dp
(s) · a =

df1

dp
(s) · a +

df2

dp
(s) · a and

d0

dp
(s) · a = 0;

[Dt.2]
df

dp
(s) · (a1 + a2) =

df

dp
(s) · a1 +

df

dp
(s) · a2 and

df

dp
(s) · 0 = 0;

[Dt.3]
dx

dx
(s) · a = a,

df

d(p, p′)
(s, s′) · (a,0) =

df [s′/p′]

dp
(s) · a

and
df

d(p, p′)
(s, s′) · (0, a′) =

df [s/p]

dp′
(s′) · a′;

[Dt.4]
d(f1, f2)

dp
(s) · a =

(
df1

dp
(s) · a,

df1

dp
(s) · a

)

;

[Dt.5]
dg[f/p′]

dp
(s) ·a =

dg

dp′
(f [s/p]) ·

(
df

dp
(s) · a

)

(no variable of p may occur in f);

[Dt.6]
ddf

dp
(s) · p′

dp′
(r) · a =

df

dp
(s) · a.

[Dt.7]
d df

dp1
(s1) · a1

dp2

(s2) · a2 =
d df

dp2
(s2) · a2

dp1

(s1) · a1

13

The Chain Rule

D[fg] = 〈D[f], π1f〉D[g]

dg[f/x′]
dx (s) · a = dg

dx′
(f [s/x]) ·

(
df
dx(s) · a

)

(fg)(1)(s) · a = g(1)(f) · (f(1)(s) · a)

a

•

•

14

Bun(X), the Bundle Fibration over X

Objects: (A, X) (pairs of objects of X)

Morphisms: (f∗, f1): (A, X) −→ (B, Y): f∗:X −→ Y in X;

f1:A × X −→ B in X, additive in its first argument.

Composition: (f∗, f1)(g∗, g1) = (f∗g∗, 〈f1, π1f∗〉g1)

(Think f1 = D(f∗))

Some Properties:

– Additive structure: defined “component-wise”

– p: Bun(X) −→ X: (A, X) 7→ A; (f∗, f1) 7→ f∗ is a fibration

– If X is Cartesian left additive, so are the fibres, and so is

the total category. Furthermore, p is a Cartesian left additive

functor.

15

Suppose p: Bun(X) −→ X has a left additive section D:X −→

Bun(X). Some interesting consequences follow (motivation for

(some of) the axioms of a Cartesian differential operator?).

Notation: write D(A) = (A, d0(A)) and D(f) = (f, D[f]).

(D a section ⇒ first component as given)

Note then that D[f]: A × d0(A) −→ d0(B) is additive in its first

argument.

Also, D a functor forces the following equation:

〈D[f], π1f〉D[g] = D[fg]

(since the lefthand side is the second component of D(f)D(g)

and the righthand side is the second component of D(fg))

So Bun(X) captures differential structure of X, where composi-

tion in Bun(X) is governed by the chain rule.

16

In addition, D preserves identities, so 1 = (π0,1) = (D[1],1), so:

D[1] = π0

Also D(π0) = (π0, π0π0), so:

D[π0] = π0π0

Similarly

D[π1] = π0π1

D preserves +: D(f + g) = D(f) + D(g), and so

D[f + g] = D[f] + D[g]

In short, the first 5 axioms of a Cartesian differential operator D

follow from the existence of a left additive section D to p.

17

The point of the rest of the talk is to generalise this fibration

to include higher order differentiation so as to “justify” the re-

maining two axioms.

(Actually, all we need is second-order differentiation, but once

one goes beyond 1 it’s hard to stop . . .)

So: let’s look at the 2nd order chain rule (an excellent high-

school exercise, if you’ve never done it).

18

2nd Order Chain Rule

d(2)g(f(x))
dx (s) · a1 · a2

= dg
dx (f(s)) ·

(

d(2)f
dx (s) · a1 · a2

)

+ d(2)g
dx (f(s)) ·

(
df
dx (s) · a1

)

·
(

df
dx (s) · a2

)

i.e.

(fg)(2)(s) · a1 · a2

= g(1)(f(s)) · (f(2)(s) · a1 · a2))

+ g(2)(f(s)) · (f(1)(s) · a1) · (f
(1)(s) · a2)

a1 a2

•

999999

������

•
+

a1 a2

• •

•

???????

�������

19

The differential of a symmetric tree

a1

•
•

�
∂a2

//

a1 a2

• •
•

a1 a2

•
•

a1 a2

• •
•

uuuuuuuu

�
∂a3

//

a1 a2 a3 a1 a3 a2

• • • • •

•

FFFFFFFF •

FFFFFFFF

xxxxxxxx

a1 a2 a3

• •

•

???????

�������

a1 a2

•
}}}}}}

•

�
∂a3

//

a1 a2 a3

•
~~~~~~~ •

•

FFFFFFFF

a1 a2 a3

•

@@@@@@@

•

20



Faà(X), the Fàa di Bruno Fibration over X

Objects: (A, A) (pairs of objects of X)

(for “pedegogical reasons” we shall write such pairs as (A, X),

with the unstated assumption that A = X)

Morphisms: f = (f∗, f1, f2, . . . ): (A, X) −→ (B, Y ), where:

f∗:X −→ Y in X;

for r > 0: fr:A × . . . × A
︸ ︷︷ ︸

r
×X −→ B a “symmetric form” (i.e.

additive and symmetric in the first r arguments

(think fr:A⊗r
/r! × X −→ B, even though X need not have ⊗)

Composition? This is where the higher order chain rules come

in . . .

21



Faà di Bruno convolution

τ : a symmetric tree of height 2, width r, on variables {a1, . . . , ar};

(A, X)
f

−−→ (B, Y )
g

−−→ (C, Z) in Faà(X).

Then (f ? g)τ :A × . . . × A
︸ ︷︷ ︸

r
×X −→ C is defined thus (for example):

for τ the tree on the left, interpret it as the tree on the right:

a1 a2 a4 a3

•
EEEEEE

yyyyyy •
•

KKKKKKKK

ssssssss

a1 a2 a4 a3 x

ONMLHIJKf3

999999

������ ONMLHIJKf1 ONMLHIJKf∗

GFED@ABCg2

9999999

�������

(f?g)τ = g2(f∗(x), f1(a3, x), f3(a1, a2, a4, x)):A×A×A×A×X −→ C

NB: (f?g)τ is additive in each argument except the last whenever

the components of f and g have this property.

22



ι
a1
2 is the (unique) height 2 width 1 tree (with variable a1)

T
a1,... ,ar
2 = ∂a2,... ,ar(ι

a1
2 ),

i.e. the bag of trees obtained by “deriving” ι
a1
2 r-times with

respect to the given variables. (This is the set of all symmetric

trees of height 2 and width r.)

The Faà di Bruno convolution (composition in Faà(X)) of f and

g is given by setting (fg)∗ = f∗g∗, and for r > 0

(fg)r = (f ? g)
T

a1,... ,ar
2

=
∑

n · τ ∈ T a1,... ,ar

2

n · (f ? g)τ

(This is well-defined: permuting the variables of any τ ∈ T
a1,... ,ar
2

either leaves τ fixed or produces a new tree in T
a1,... ,ar
2 .)

Proposition For any Cartesian left additive category X, Faà(X)

is a Cartesian left additive category.

23



Faà:CLAdd −→ CLAdd is a functor:

X 7→ Faà(X) ; (f∗, f1, . . . ) 7→ (F (f∗), F (f1), . . . )

ε: Faà(X) −→ X: (A, X) 7→ X, (f∗, f1, . . . ) 7→ f is a fibration.

(and a natural transformation)

There is a functor (indeed, a natural transformation)

δ: Faà(X) −→ Faà(Faà(X)) so that (Faà, ε, δ) is a comonad on

CLAdd.

On objects: δ: (A, X) 7→ ((A, A), A, X)

On morphisms, things are a bit “complicated”. Some notation:

we write f = (f∗, f1, f2, . . . ): (A, X) −→ (B, Y ) as follows

f∗:X −→ Y : x 7→ f∗(x)

fn:An × X −→ B : (a∗1, . . . , a∗n, x) 7→ fn(x) · a∗1 · . . . · a∗n

24



We then define δ: Faà(X) −→ Faà(Faà(X)) as follows:

on objects, δ takes (A, X) to ((A, A), A, X).

On arrows, f 7→ δ(f) = (f, f [1], f [2], . . . ) by setting

f
[n]
∗ :An × X −→ B: (a∗1, . . . , a∗n, x) 7→ fn(x) · a∗1 · . . . · a∗n

f
[n]
r : (An × A)r × (An × X) −→ B:








a11 . . . a1n a1∗
... ...
ar1 . . . arn ar∗

a∗1 . . . a∗n x








7→
∑

s ≤ n& s ≤ r
& ramps

r,n(α | γ)

fr+n−s(x)·aα11·. . .·aαnn·aγ1∗·. . .·aγr−s ∗

where the “ramp” condition amounts to choosing (for each

s ≤ min(r, n)) s elements from (aij)i≤r,j≤n, at most one from

each row and column, (this amounts to choosing a partial iso-

morphism) and constructing the function term as follows (for

example,):

25



If σ is the following partial iso (here n = 4, r = 5, and s = 3):













a11 a12 a13 a14 a1∗
a21 a22 a23 a24 a2∗
a31 a32 a33 a34 a3∗
a41 a42 a43 a44 a4∗
a51 a52 a53 a54 a5∗
a∗1 a∗2 a∗3 a∗4 x













;














a11 a12 a13 a14 a1∗

a21 a22 a23 a24 a2∗
a31 a32 a33 a34 a3∗

a41 a42 a43 a44 a4∗
a51 a52 a53 a54 a5∗

a∗1 a∗2 a∗3 a∗4 x














Then construct

fσ = f6(x) · a11 · a52 · a∗3 · a34 · a2∗ · a4∗

f6 since we need n+ r−s = 6 linear arguments. The linear argu-

ments of f are determined by putting in the selected arguments

and arguments from the bottom row and rightmost column cor-

responding to the rows and columns not containing a selected

argument. Then we set f
[n]
r to be the sum of all such expressions:

f
[n]
r =

∑

σ∈ParIso(r,n)

fσ

26



Let’s explicitly develop some of these terms. First f [0], which is

just f :
(

x
)

7→ f∗(x)

(

a1∗
x

)

7→ f1(x) · a1∗






a1∗
a2∗
x




 7→ f2(x) · a1∗ · a2∗

...

27



Next f [1]:
(

a∗1 x
)

7→ f1(x) · a∗1
(

a11 a1∗
a∗1 x

)

7→
f2(x) · a∗1 · a1∗
+f1(x) · a11






a11 a1∗
a21 a2∗
a∗1 x




 7→

f3(x) · a∗1 · a1∗ · a2∗
+f2(x) · a21 · a1∗
+f2(x) · a11 · a2∗

...

28



Here are the first few terms of f [2]:
(

a∗1 a∗2 x
)

7→ f2(x) · a∗1 · a∗2

(

a11 a12 a1∗
a∗1a∗2 x

)

7→
f3(x) · a∗1 · a∗2 · a1∗
+f2(x) · a11 · a∗2
+f2(x) · a∗1 · a12






a11 a12 a1∗
a21 a22 a2∗
a∗1 a∗2 x




 7→

f4(x) · a∗1 · a∗2 · a1∗ · a2∗
+f3(x) · a21 · a∗2 · a1∗
+f3(x) · a∗1 · a22 · a1∗
+f3(x) · a11 · a∗2 · a2∗
+f3(x) · a∗1 · a12 · a2∗
+f2(x) · a11 · a22
+f2(x) · a21 · a12

...

29



Remark: The intended interpretation of f
[n]
r is the rth higher

order differential term

drf(x)·a1· ··· ·an
d(x,a1,... ,an)

(x, a1, . . . , an)·(a1, a11, . . . , a1n)· · · · ·(ar, ar1, . . . , arn)

Properties: f
[n]
r is additive, symmetric in its first r arguments.

(f + g)
[n]
r = f

[n]
r + g

[n]
r

If F is Cartesian left additive, Faà(F )(f [n]) = (Faà(F )(f))[n]

δ: Faà(X) −→ Faà(Faà(X)) is a functor, and is natural (as a nat-

ural transformation).

(Faà, ε, δ) is a comonad on CLAdd.

30



An example of the proofs:

Let’s show that δ(f)δ(g) = δ(fg):

For the most part (as seen in the sequence of equations on

the next slide) this involves expanding the definitions, followed

by several applications of additivity; only the last step requires

comment, as it involves a combinatorial argument.

(There’s a sense in which this result is “obvious” — each side

is just a sum of the “natural” chain-rule-type terms — but ver-

ifying the details didn’t seem so “obvious” to us at first . . . still

doesn’t!)

31



δ(f)δ(g) =
∑

τ1,τ2

(δ(f) ? δ(g))τ1×τ2

=
∑

τ1,τ2









∑

σ:i−→j

fσ





ij

?




∑

σ′:k−→l

gσ′





kl






τ1×τ2

=
∑

τ1,τ2




∑

σ′

gσ′










∑

σij:αi−→βj

fσij






ij

=
∑

τ1,τ2

∑

σ′

gσ′




∑

σij

fσij





ij

=
∑

τ1,τ2

∑

σ′

gσ′




∑

σij

fσij





ij∈σ′

=
∑

τ1,τ2

∑

σ′,σij,ij∈σ′

gσ(. . . , fσij , . . . )

=
∑

σ:n−→m

∑

τ∈T|σ∗|

(f ? g)σ
τ = δ(fg)

32



The key combinatorial lemma is the equivalence of the following

data:

• Partitions τ1 = (α1, . . . , αk), τ2 = (β1, . . . , βl) and partial iso-

morphisms σ′: k −→ l and σij:αi −→ βj for (i, j) ∈ σ′

• Partial isomorphism σ:n −→ m and partition τ of σ∗.

where n is the set partitioned by τ1, m the set partitioned by τ2,

σ is the union of the σij, and

σ∗ = σ ∪ {(x, ∗) | x ∈ n \ π1σ} ∪ {(∗, y) | y ∈ m \ π2σ}

Notice that |σ∗| = n + m − |σ|.

We sketch the proof, with an example as illustration.

33



We shall frequently identify an integer n with the set of integers

from 1 to n, unless otherwise stated. We shall represent a partial

isomorphim as the set of pairs (i, j) where i 7→ j.

More notation: write σi =
⋃

j σij and σj =
⋃

i σij

(and similarly for σi∗, σj∗).

Suppose we are given partitions τ1 = (α1, . . . , αk), τ2 = (β1, . . . , βl)

and partial isomorphisms σ′: k −→ l and σij:αi −→ βj for (i, j) ∈ σ′

We define a partition τ on σ∗ as τ :=

{σij∗}(i,j)∈σ′ ∪ {((αi \ π1σi) × {∗}) \ σi∗}i∈k

∪ {({∗} × (βj \ π2σj)) \ σj∗}j∈l

This means that pairs from the same σij∗ end up in the same

partition, and pairs with a ∗ end up in the same partition if

the “other” elements come from the same αi or βj (and aren’t

already in some σij∗).

34



Consider the following example:

τ1 = ((1,3), (2,5), (4,6))

τ2 = ((1,2,4), (3), (5)) (so k = l = 3)

σ′: 3 −→ 3 = {(1,3), (3,1)} (so e.g. (2,2) is not in σ)

σ13: {1,3} −→ {5} = {(3,5)}

σ31: {4,6} −→ {1,2,4} = {(4,4), (6,1)}

Then σ =
⋃

ij σij: 6 −→ 5 = {(3,5), (4,4), (6,1)} and

n = 6, m = 5, |σ| = 3

σ∗ = {(3,5), (4,4), (6,1), (1, ∗), (2, ∗), (5, ∗), (∗,2), (∗,3)}

σ13∗ = {(3,5), (1, ∗)}

σ31∗ = {(4,4), (6,1), (∗,2)}

And so we get

τ = (((4, 4), (6,1), (∗,2)), ((3,5), (1, ∗)), ((2, ∗), (5, ∗)), ((∗,3)))

(This completes one direction of the equivalence)

35



What’s going on?

The given partitions and partial isos amount to this selection

from a variable base:

















(

a1,1 a1,2 a1,4
a3,1 a3,2 a3,4

) (

a1,3
a3,3

) (

a1,5
a3,5

)

(

a2,1 a2,2 a2,4
a5,1 a5,2 a5,4

) (

a2,3
a5,3

) (

a2,5
a5,5

)




a4,1 a4,2 a4,4

a6,1 a6,2 a6,4





(

a4,3
a6,3

) (

a4,5
a6,5

)

















and it’s clear that what both sets of data are defining is the

following term from the sums that define δ(f)δ(g) and δ(fg):

g4(x) · (f3(x) · a44 · a61 · a∗2) · (f2(x) · a35 · a1∗) · (f2(x) · a2∗ · a5∗) ·

(f1(x) · a∗3)

36



The other direction:

Suppose we are given a partial isomorphism σ:n −→ m and a

partition τ of σ∗.

We must construct partitions τ1 = (α1, . . . , αk), τ2 = (β1, . . . , βl)

and partial isomorphisms σ′: k −→ l and σij:αi −→ βj for (i, j) ∈ σ′,

of appropriate sizes.

Since τ is a partition of a matrix, we easily obtain partitions

τ1, τ2 of the rows and columns: define π′
iγ = πiγ \ {∗}, and let

τ̂ = (γ1, . . . , γp); then define τ1 = (π′
1γi)i and τ2 = (π′

2γi)i

We can also construct partial isomorphisms from τ , by ignor-

ing the pairs with ∗s, and taking the remaining pairs from each

partition: let τ1 = (α1, . . . , αk) and τ2 = (β1, . . . , βl) and then

define σ′ = {(i, j) | (αi × βj) ∩ σ∗ 6= ∅} and, for (i, j) ∈ σ′, define

σij = (αi×βj)∩σ∗. Note that by this construction, σ is the union

of these partial isomorphisms, as required.

37



Example: Let’s take the σ of the previous example, with a new

τ :

σ: 6 −→ 5 = {(3,5), (4,4), (6,1)}

so σ∗ = {(3,5), (4,4), (6,1), (1, ∗), (2, ∗), (5, ∗), (∗,2), (∗,3)}

τ = (((3, 5)), ((4,4), (6,1)), ((1, ∗), (2, ∗), (∗,3)), ((5, ∗), (∗,2)))

Then we obtain

τ1 = ((3), (4,6), (1,2), (5)) and τ2 = ((5), (4,1), (3), (2))

(note k = l = 4, and n = 6, m = 5 as required).

38



Then

σ′ = {(1,1), (2,2)}

(since {(3,5)} is a pair from σ∗ coming from the first partition in

τ1 and the first partition in τ2, and {(4,4), (6,1)} are pairs in σ∗

coming from the second partition in τ1 and the second partition

in τ2).

Also

σ11 = {(6,1)} and σ22 = {(4,4), (3,5)}

whose union is the σ: 6 −→ 5 = {(3,5), (4,4), (6,1)} we started

with.

And this completes the construction. (That these processes are

inverse we leave as homework!)

39



What’s going on?

This time we have the following selection from the variable base:

















(

a3,5

) (

a3,4 a6,3

) (

a3,3

) (

a3,2

)

(

a4,5
a6,5

) 


a4,4 a4,1

a6,4 a6,1





(

a4,3
a6,3

) (

a4,2
a6,2

)

(

a1,5
a2,5

) (

a1,4 a1,1
a2,4 a2,1

) (

a1,3
a2,3

) (

a1,2
a2,2

)

(

a5,5

) (

a5,4 a5,1

) (

a5,3

) (

a5,2

)


















and the common function term corresponding to this is

g6(x) · (f1(x) ·a35) · (f2(x) ·a44 ·a61) · (f2(x) ·a1∗ ·a2∗)·(f1(x) ·a5∗) ·

(f1(x) · a∗3) · (f1(x) · a∗2)

40



Coalgebras

Suppose X, D:X −→ Faà(X) is a coalgebra (so εD = 1, DFaà(D) =

Dδ).

What is the effect of D on objects?

Let D(X) = (D0(X),D1(X)); then

X = ε(D(X)) = ε(D0(X),D1(X)) = D1(X) so D1(X) = X.

Also

(DFaà(D))(X) = Faà(D)(D(X)) =

Faà(D)(D0(X), X) = ((D0(D0(X)),D0(X))(D0(X), X))

And

(Dδ)(X) = δ(D0(X), X) = ((D0(X),D0(X)), (D0(X), X))

so D0(D0(X)) = D0(X), i.e. D0 is an idempotent. But since

D0(X) = D1(X) = X, in fact D0 is identity on objects.

41



Since the bundle fibration is included in the Faà di Bruno fibra-

tion, we know (BCS, TAC2009) D induces a differential structure

satisfying [CD.1]–[CD.5]:

The differential combinator D[f ] is the second component f (1)

of D(f):= (f, f(1), f(2), . . . ).

But [CD.6], [CD.7] . . . ?

For that we consider the effect of D on morphisms.

42



On morphisms: Write D(f) = (f, f (1), f(2), . . . ). The coalgebra

equation for δ tells us these are equal:

Faà(D)(D(f)) =














f f(1) f(2) f(3) f(4) . . .

f(1) (f(1))(1) (f(2))(1) (f(3))(1) (f(4))(1) . . .

f(2) (f(1))(2) (f(2))(2) (f(3))(2) (f(4))(2) . . .

f(3) (f(1))(3) (f(2))(3) (f(3))(3) (f(4))(3) . . .

f(4) (f(1))(4) (f(2))(4) (f(3))(4) (f(4))(4) . . .
. . .














δ(D(f)) =
















f D(f)
[1]
∗ D(f)

[2]
∗ D(f)

[3]
∗ D(f)

[4]
∗ . . .

f(1) D(f)
[1]
1 D(f)

[2]
1 D(f)

[3]
1 D(f)

[4]
1 . . .

f(2) D(f)
[1]
2 D(f)

[2]
2 D(f)

[3]
2 D(f)

[4]
2 . . .

f(3) D(f)
[1]
3 D(f)

[2]
3 D(f)

[3]
3 D(f)

[4]
3 . . .

f(4) D(f)
[1]
4 D(f)

[2]
4 D(f)

[3]
4 D(f)

[4]
4 . . .

. . .
















(which is enough to guarantee [CD.6] & [CD.7]):

43



(Why?)

Since (f(1))(1) = D(f)
[1]
1 ,

(

a1,1 x1

a∗,1 x

)

7→ (f(1))(1)

(

x1
x

)

·

(

a1,1
a∗,1

)

= f(2)(x) · a∗,1 · x1 + f(1)(x) · a1,1

Setting a∗,1 = 0 which yields [CD.6]:

(f(1))(1)

(

x1
x

)

·

(

a1,1
0

)

= f(1)(x) · a1,1

and setting a1,1 = 0 yields [CD.7]:

(f(1))(1)

(

x1
x

)

·

(

0
a∗,1

)

= f(2)(x) · a∗,1 · x1

= f(2)(x) · x1 · a∗,1

= (f(1))(1)

(

a∗,1
x

)

·

(

0
x1

)

44



It is worth noticing that we have in fact proved more: the coal-

gebra is in the following sense determined by the differential

combinator of the Cartesian differential category: each f (n) is in

fact determined by D[f ] = f(1).

For, as we have just seen,

D(f)
[1]
1

(

0 a1
a∗1 x

)

= (f(1))(1)

(

a1∗
x

)

·

(

0
a∗1

)

= f(2)(x) · a∗1 · a1∗ + f(1)(x) · 0

= f(2)(x) · a∗1 · a1∗ + 0

= f(2)(x) · a∗1 · a1∗

In this manner, we can reconstruct f (2) from (f(1))(1), and sim-

ilarly (by induction) f(n+1) from (f(n))(1).

45



So we have proved

Proposition Every coalgebra of the Faà di Bruno comonad is

a Cartesian differential category. And moreover, the coalgebra

structure is determined by the induced differential operator.

To prove the converse involves some calculations using the term

calculus of Cartesian differential categories. Here are some high-

lights.

46



Higher order derivatives

Define d(1)t
dx (s) · a = dt

dx (s) · a and

d(n)t
dx (s) · a1 · . . . · an =

dd(n−1)t
dx (x)·a1·...·an−1

dx (s) · an

Then
dt[x+s/y]

dx (0) · a = dt
dy (s) · a (x not free in s)

d(2)t
dx (s) · a1 · a2 = d(2)t

dx (s) · a2 · a1 (x not free in a1, a2)

d(n)t
dx (s) · a1 · . . . · an = d(n)t

dx (s) · aσ(1) · . . . · aσ(n) (for any σ ∈ Sn.)

dd(n)t
dz (s)·a1·...·x·...·an

dx

(

s′
)

· ar = d(n)t
dz (s) · a1 · . . . · ar · . . . · an

d dt
dx(p)·a

dy

(

p′
)

· a′ = d(2)t
dx

(

p[p′/y]
)

· a[p′/y] ·
(

dp
dy

(

p′
)

· a′
)

+ dt
dx

(

p[p′/y]
)

·
(

da
dy

(

p′
)

· a′
)

(for y 6∈ t)

47



Corollary: In any cartesian differential category:

d(n)g(f(x))
dx (z) · a1 · . . . · an = (f ? g)

T
a1,... ,an
2

(z)

Furthermore

d(m)fn(fn−1(...(f(x))··· ))
dx (z) · a1 · · · am = (f1 ? f2 ? · · · ? fn)T

a1,... ,am
n

(z)

In other words, the higher order derivatives connect with the Faà

di Bruno convolution in exactly the right way, . . .

48



. . . and so (after some technical calculations!):

Theorem Cartesian differential categories are exactly coalgebras

of the Faà di Bruno comonad.

49


