
THE FAÀ DI BRUNO CONSTRUCTION

J.R.B. COCKETT AND R.A.G. SEELY

ABSTRACT. In the context of Cartesian differential categories [BCS 09], the structure of
the first-order chain rule gives rise to a fibration, the “bundle category”. In the present
paper we generalise this to the higher-order chain rule (originally developed in the traditional
setting by Faà di Bruno in the nineteenth century); given any Cartesian differential category
X, there is a “higher-order chain rule fibration” Faà(X) −→ X over it. In fact, Faà is a
comonad (over the category of Cartesian left (semi-)additive categories). Our main theorem
is that the coalgebras for this comonad are precisely the Cartesian differential categories. In
a sense, this result affirms the “correctness” of the notion of Cartesian differential categories.

Introduction

Francesco Faà di Bruno (1825-1888) was an Italian of noble birth, a soldier, a mathematician,
and a priest. In 1988 he was beatified by Pope John Paul II, apparently for his charitable work
teaching young women mathematics. As a mathematician he studied with Cauchy in Paris.
He was a tall man with a solitary disposition who spoke seldom and, when teaching class,
not always successfully. Perhaps his most significant mathematical contribution concerned
the combinatorics of the higher-order chain rules. These results were the cornerstone of
“combinatorial analysis”: a subject which never really took off. It is the combinatorics
underlying the higher-order chain rule which is of interest to us here. [OR 97, L 09]

The paper is a sequel to our work on Cartesian differential categories [BCS 09]. In that
paper we established that from any Cartesian left additive category one could construct a
“bundle” fibration in which the fibres were additive, and where the composition had the
same form as the chain rule; moreover the existence of a left additive section of this fibration
provided an operator which already satisfies many of the axioms of a differential operator.
We pointed out in that paper that all the axioms could be generated by a similar fibrational
analysis involving the higher-order chain rule. Presenting the details of that claim is the
main aim of the present paper.

After some combinatorial preliminaries, we give the definition of the Faà di Bruno cate-
gory over a Cartesian left additive category X. The most complicated aspect of the definition
is the composition, which we shall see corresponds to the higher-order chain rule. Most of
the paper is devoted to proving that the Faà di Bruno construction is in fact a comonad over
the category of left additive categories. Finally, we show that the coalgebras of this comonad
are exactly Cartesian differential categories.

c© J.R.B. Cockett and R.A.G. Seely, 2011. Permission to copy for private use granted.

1

2

1. Some combinatorics of symmetric trees

Counting trees of various shapes and sizes is a deeply combinatoric subject. It is also an issue
which is of no small algebraic and analytic interest as these combinatoric numbers occur as
coefficients in formulae such as the higher-order chain rule. Our current preoccupation is
not so much with the bald numbers as with the structural relationships which cause these
numbers to become important. We start this appreciation by introducing the combinatorial
structures which underlie the chain rule.

1.1. Symmetric trees. A symmetric tree of height n ≥ 0 and of width m > 0, in
variables V = {x1, . . . , xm}, is defined inductively by:

• The only symmetric tree of height 0 has width 1 and is a variable y;

• A symmetric tree of height n ≥ 1, of width m, in the variables {x1, . . . , xm}, is an
expression •r(t1, . . . , tr) where each ti is a symmetric tree of height n−1 in the variables
Vi, where

⊔r
i=1 Vi = V .

Here, the operation • is symmetric (so we are really considering equivalence classes), as
indicated in the discussion below.

Note that the inductive step involves splitting the variables into r disjoint non-empty
subsets. The combinatorics of this step are classical: Stirling numbers, of the second kind, are
precisely the number of ways of partitioning a set with n elements into r non-empty partitions
and are often written S(n, r). Thus, we may already begin to see how combinatorics enters
into our subject matter.

We may regard these trees in various ways. For what follows an important perspective
will be to regard them as algebraic expressions: in this view the operations at the nodes are
symmetric, or commutative, thus

•r(t1, . . . , tr) = •r(tσ(1), . . . , tσ(r))

for any permutation σ ∈ Sr. One can also regard these expressions as trees (in the graph
theoretic sense) in which the leaves are uniquely labeled (as the root or by one of the
variables) but in which no other node or edge is labeled. Two symmetric trees are the same
if graph theoretically they are isomorphic in a way which respects the leaf labeling.

Here are two representations of the same symmetric tree:

x1 x2 x3 x4 x5 x6 x7

•
:::: ���� • •

:::: ���� •
:::: ����

• •

HHHHHH
~~~~~ •

•

RRRRRRRRR

vvvvvv

dddddddddddddddddddd

x7 x6 x2 x1 x4 x5 x3

•
:::: ���� •

>>>>
���� •

:::: ���� •

• • •

@@@@@
vvvvvv

•

VVVVVVVVVVVVV

ffffffffffffffff



3

An important way to regard a symmetric tree of height n and width m is as a chain of
surjective maps:

V = V0 −→ V1 −→ . . . −→ Vn−1 = 1

in which V is the set of variables, |V | = m (the width of the tree), |Vn−1| = 1, and Vi

represents the nodes at the ith-level. This way of viewing a symmetric tree suggests a rather
compact notation, representing the nodes as equivalence classes of the variables and then
equivalence classes of these etc. Thus, a tree of height n can be represented as an element
of Pn(V ), where V is the (non-empty) set of variables and such that the iterated union is of
these subsets is just the set of variables. This allows us to represent the height 3 tree above
as:

{{{x1, x2}}, {{x3}, {x4, x5}}, {{x6, x7}}}

If one wishes to generate all the symmetric trees of a given height and width one is
presented by a combinatoric problem as one must avoid generating trees which are already
represented. In fact, as we shall see, there is a simple method for generating these trees.
Meanwhile here is a classification of the first few symmetric trees separated by height and
width:

width width width
1 2 3

hgt
1 x1

•

x1 x2

•
>>>>

����

x1 x2 x3

•
CCCC

{{{{

hgt
2 x1

•
•

x1 x2

•
555 			

•

x1 x2

• •

•

:::::
�����

x1 x2 x3

• •
<<<<

•

BBBBB
|||||

x1 x2 x3

•
���� •

•

BBBBB
|||||

x1 x3 x2

•
���� •

•

BBBBB
|||||

x1 x2 x3

• • •
•

CCCCC
{{{{{

x1 x2 x3

•
<<<< ����

•

1.2. The differential of symmetric trees. The differential of a symmetric tree τ of
height n and width r produces a bag of m trees of height n and width r+ 1, where m is the
number of nodes of τ . The new trees of the differential are produced by picking a node and
adding a “limb” to the new variable. The limb consists of a series of unary nodes applied to
the new variable: these unary nodes are necessary in order to retain the uniform height of
the tree.

For example the differential (introducing x2) of the tree below is a pair of trees:

x1

•
•

� ∂x2
//

x1 x2

• •
•

x1 x2

•
•



4

while the differential, introducing x3, of the following tree (which is the first tree of the
derivative above) is three trees:

x1 x2

• •
•

mmmmm

� ∂x3 //

x1 x2 x3 x1 x3 x2

• • • • •

•

HHHHHH •

HHHHHH
vvvvvv

x1 x2 x3

• •

•

DDDDD
zzzzz

1.2.1. Proposition. Every symmetric tree of height h and width d can be obtained as a
member of the dth-derivative of the unary tree of the height h, denoted ιh.

Proof. To see this it is perhaps easier to think of the process in reverse: that is of reducing
a tree by stripping out the limb of the tree whose leaf is the last introduced variable: that
is the leaf and all the unary nodes below that leaf. Notice this process retains the height of
the tree but at each step reduces the width by 1. Eventually any tree of height h can be
reduced to the unique tree, ιx1

h , of the height h and width 1 (on variable x1). Reversing the
process thus generates all the trees of the required width and height.

Furthermore, this process never generates the same tree twice. If at some step the same
tree had been generated then stripping out the last limb shows that the previous step had
also had a tree represented more than once. This means one can preserve the presence of
repetition back to the starting point. As, in this case, we started with a single tree, ιx1

h , we
know there can be no repetitions.

Notation: Recall that ιx1
2 is the (unique) height 2 width 1 tree with variable x1; by

T V
2 = T x1,...,xr

2 = ∂x2,...,xr
(ιx1

2 )

is meant the bag of trees obtained by formally deriving ιx1
2 r-times with respect to the given

variables V = {x1, . . . , xr}. By the above discussion of the combinatorics of trees we know
this is the set of all symmetric trees of height 2 and width r.

2. Faà di Bruno Bundle Categories

Given a Cartesian left additive category, X, we shall construct two categories which we shall
refer to as the Faà di Bruno (bundle) categories, BFaà(X) and a full subcategory Faà(X).
The objects of the category BFaà(X) are pairs of objects of the original category (A,X).
The objects of Faà(X) are those such pairs where X = A. We shall define the maps in
a moment, but it might be worth pausing to remark on the choices of these objects. The
more general pairs (A,X) will prove to be unsuitable when we come to our main theorem
(characterizing Cartesian differential categories as coalgebras for the comonad Faà), but
otherwise the constructions to get us there work most transparently if we keep quite separate
the two roles the object A plays (which is why we prefer to take the objects as pairs (A,A)
rather than as simply objects A). The more general construction BFaà(X) seems actually to
be more natural, and this is an indication that the construction has more general forms which



5

we shall not explore here. In the meantime, at the very least it will help both writers and
readers to keep track of variables in positions where they should be additive (where we use
A) or not necessarily additive (where we shall use X). That will be apparent immediately,
as we define the maps of the categories.

The maps or arrows f : (A,X) −→ (B, Y ) of the category consist of infinite sequences of
maps

f = (f∗, f1, f2, . . .): (A,X) −→ (B, Y )

As the notation suggests the first map in this sequence is of a slightly different nature than
the remainder. We require simply that f∗:X −→ Y is a map in X. For r > 0 we require

fr:A× . . .× A
︸ ︷︷ ︸

r

×X −→ B

is a symmetric form. This means that it is additive in each of the first r arguments and
symmetric in these arguments. (The reader might think of this as fr:A

⊗r

/r! × X −→ B,
apart from the unfortunate fact that X need not have the tensor ⊗.) It will soon become
apparent that the intended interpretation of fn is they will be summands in the expression
for higher order differential term. (See the remark following Proposition 2.2.3.)

The difficulty is, of course, to define a composition for these arrows, which is where the
Faà di Bruno convolution is used.

2.1. Faà di Bruno convolution. The description of the composition fg of two maps in
BFaà(X) is our next objective. The easy part is the composition in the first coordinate which
is just, as expected, given by the composition in X. The description of the composition on
the remaining coordinates is more involved.

First suppose τ is a symmetric tree of height 2 and width r on the variables V =
{x1, . . . , xr}. This means that τ ∈ T V

2 . Furthermore, suppose f : (A,X) −→ (B, Y ) and
g: (B, Y ) −→ (C,Z) in BFaà(X), then by the component of the composite at τ :

(f ⋆ g)τ :A× . . .×A
︸ ︷︷ ︸

r

×X −→ C

is meant the map obtained by substituting all the layer one nodes of arity i with fi and the
(one) node of τ at layer two with the function gj, where j is the appropriate arity. Thus
when τ is the following tree

x1 x2 x4 x3

•
CCCC

{{{{ •

•

HHHHHH
vvvvvv

then

(f ⋆ g)τ = g2(f1(x3, x), f3(x1, x2, x4, x), f∗(x)):A× . . .×A
︸ ︷︷ ︸

4

×X −→ C.



6

x1 x2 x4 x3 x

?>=<89:;f3

<<< ��� ?>=<89:;f1 ?>=<89:;f∗

76540123g2

<<<<
����

We may replace the single tree τ by any bag T of trees in T V
2 in which case we simply

sum the components

(f ⋆ g)T =
∑

n·τ∈T

n · (f ⋆ g)τ

The Faà di Bruno convolution composition of f and g is then

(fg)r = (f ⋆ g)T x1,...,xr
2

which is well-defined as the result is clearly a symmetric form as permuting the variables of
any τ ∈ T x1,...,xr

2 either leaves τ fixed or produces a new tree which still has the same height
and therefore is in T x1,...,xr

2 . Thus we take this convolution to be the composition in the Faà
di Bruno category. We have:

2.1.1. Proposition. For any Cartesian left additive category X, BFaà(X) (and so Faà(X))
as defined above are Cartesian left additive categories.

Proof. It is quite easily checked that this composition has as identity maps 1 =
(1, π0, 0, . . .): (A,X) −→ (A,X). That the composition is associative follows immediately
from the fact that the composition is given by summing over all the trees of height 2 (and
appropriate width). A threefold composition is then just the sum over all trees of height 3
(and appropriate width) and so immediately associative.

The additive structure on the homsets is given pointwise:

f + g = (f∗, f1, f2, . . .) + (g∗, g1, g2, . . .) = (f∗ + g∗, f1 + g1, f2 + g2, . . .)

This composition is left additive as clearly, with respect to point-wise addition,

(f ⋆ (g + g′))τ = (f ⋆ g1)τ + (f ⋆ g2)τ

as the underlying category is left additive and it immediately follows that this also holds for
bags of such terms.

Furthermore the category has additive products: the product of (A,X) and (B, Y ) is
(A × B,X × Y ), given f : (C,Z) −→ (A,X) and g: (C,Z) −→ (B, Y ) we define 〈f, g〉 as
(〈fi, gi〉)

∞
i=0. The projections are πi = (πi, π0πi, 0, 0, . . .) for i = 1, 2 and the diagonal ∆ =

(∆, π0∆, 0, 0, . . .). These are additive as the first level of the Faà di Bruno category is the
bundle fibration.



7

Clearly we may truncate BFaà(X) to any given number of levels to obtain a left additive
category, BFaàn(X), as the composition at any given level always only involves maps from
that and lower levels. As mentioned above BFaà1(X) is the more standard bundle fibration
of X [BCS 09].

Our aim now is to show that the obvious functor

ε:BFaà(X) −→ X :
(A,X) 7→ X
(f∗, f1, f2, . . .) 7→ f∗

is also a fibration, (and similarly for Faà(X)). Toward this end first note that ε is clearly a
left additive functor which preserves the Cartesian structure on the nose. Now consider

(C.Z)
(fg,f1,f2,...)

  

(f,f1,f2,...)

""

(A,X)
(g,π0,0,0)

// (B, Y )

_

ε

��

Z
f

// X g
// Y

It is easily checked that the map sitting above f is uniquely determined. Thus we have:

2.1.2. Proposition. For any Cartesian left additive category X

ε:BFaà(X) −→ X

is a strict Cartesian left additive functor which is a fibration. Similarly, ε: Faà(X) −→ X is a
strict Cartesian left additive functor and a fibration.

The additive maps in a fiber are precisely those of the form (1, f1, 0, 0, . . .) which above
the second component vanish. This means that the fibers are far from being additive.

The maps in the Faà di Bruno category should be thought of as higher-order symmetric
forms. When a differential is already present, as for ordinary differential equations, they will
not, in general, be realizable as the differential forms of a function. However, what is true
- and is the subject of the next section – is that a differentiable function gives rise such a
form so that these forms should be viewed as abstract differentiable functions.

2.2. Functorial properties of the Faà di Bruno construction. It is worth
noting that the Faà di Bruno construction is functorial on the category of Cartesian left
additive categories, CLAdd, where the functors are taken to preserve addition and the product
structure on the nose:



8

2.2.1. Lemma. The Faà di Bruno constructions are functors.

BFaà:CLAdd −→ CLAdd Faà:CLAdd −→ CLAdd

Proof. That these are functors is clear provided we are assured that additivity in an
argument is preserved by Cartesian left additive functors, as in that case forms are carried
to forms. The fact that this is true relies on the fact that f :A×X −→ B is additive in its first
argument in a left additive category if and only if ((π0 + π1)× 1)f = (π0 × 1)f + (π1 × 1)f .
This property is clearly preserved by the Cartesian left additive functors. We then define:

BFaà:CLAdd −→ CLAdd:

X

F
��

Y

7→

BFaà(X)

BFaà(F )
��

BFaà(Y)

where BFaà(F )(f∗, f1, f2, . . .) = (F (f∗), F (f1), F (f2), . . .). Faà is handled the same way (just
restrict to the appropriate subcategories).

It is also clear that ε = εX:BFaà(X) −→ X is a natural transformation (natural in X).
However, more is true: there is a functor δ = δX:BFaà(X) −→ BFaà(BFaà(X)), introduced
below, natural in X, such that:

2.2.2. Theorem. (BFaà, ε, δ) is a comonad on CLAdd, as is the restriction to Faà.

The remainder of this section is given over to proving this theorem, which we shall do
for BFaà, leaving the restriction to Faà to the reader. But first, in order to describe the
functor δ: = δX for some Cartesian left additive category X, it will be useful to develop some
conventions and fix notation. First for f ∈ BFaà(X) we write f = (f∗, f1, f2, . . .): (A,X)
−→ (B, Y ) where

f∗:X −→ Y ; x 7→ f∗(x)

fn:A
n ×X −→ B ; (a∗1, . . . , a∗n, x) 7→ fn(x) · a∗1 · . . . · a∗n

Notice that we have “highlighted” the additive arguments by writing them as if they were
simple multipliers. This should seem very familiar to the reader familiar with the term
calculus for Cartesian differential categories from [BCS 09]; this is intended, of course.

We then define δ:BFaà(X) −→ BFaà(BFaà(X)) as follows: on objects, δ takes (A,X) to
((A,A), (A,X)). On arrows, f 7→ δ(f) = (f, f [1], f [2], . . .) by setting

f [n]
∗ :An ×X −→ B : (a∗1, . . . , a∗n, x) 7→ fn(x) · a∗1 · . . . · a∗n

f [n]
r : (An ×A)r × (An ×X) −→ B :








a11 . . . a1n a1∗
...

...
ar1 . . . arn ar∗
a∗1 . . . a∗n x








7→
∑

s ≤ n& s ≤ r

& rampsr,n(α | γ)

fr+n−s(x) · aα11 · . . . · aαnn · aγ1∗ · . . . · aγr−s ∗



9

where rampsr,n(α | γ) is a condition defined as follows.

α is an injection {1, 2, . . . , n} −→ {∗, 1, 2, . . . , r} (which we shall denote n −→ r∪∗ for brevity),
with the property that the inverse image α−1({∗}) of ∗ has size r− s. γ is an injection r− s
−→ r, whose image is disjoint from that of α (meaning no αi can equal any γj). The effect
of this is to assign s linear arguments of the form aij, n− s arguments of the form a∗j , and
r−s arguments of the form aj∗ in such a way that the selected linear arguments will include
just one from each column and just one from each row (including the bottom row and the
right column, but not = x, which is not linear).

Another way to express this is to say that there is an equality of bags:

rampsr,n(α | γ) iff * α1, . . . , αn, γ1, . . . , γr−s+ = *(n− s) · ∗, 1, . . . , r+

This is a little complicated, so we shall look at this several ways. First let us explicitly
develop some of these terms. First consider f [0]: this is just f as the ramp condition forces
all the action into the indices for the ai∗ and so there is no choice. We shall display this
sequence in the term logic as follows:

(
x
)

7→ f∗(x)
(

a1∗
x

)

7→ f1(x) · a1∗




a1∗
a2∗
x



 7→ f2(x) · a1∗ · a2∗

. . .

Now consider f [1]:

(
a∗1 x

)
7→ f1(x) · a∗1

(
a11 a1∗
a∗1 x

)

7→
f2(x) · a∗1 · a1∗
+f1(x) · a11





a11 a1∗
a21 a2∗
a∗1 x



 7→
f3(x) · a∗1 · a1∗ · a2∗
+f2(x) · a21 · a1∗
+f2(x) · a11 · a2∗

. . .

Notice how the domain is specified as a product with 2 components, then 4 components,
then 6 components, . . .



10

Here are the first few terms of f [2]:

(
a∗1 a∗2 x

)
7→ f2(x) · a∗1 · a∗2

(
a11 a12 a1∗
a∗1a∗2 x

)

7→
f3(x) · a∗1 · a∗2 · a1∗
+f2(x) · a11 · a∗2
+f2(x) · a∗1 · a12





a11 a12 a1∗
a21 a22 a2∗
a∗1 a∗2 x



 7→

f4(x) · a∗1 · a∗2 · a1∗ · a2∗
+f3(x) · a21 · a∗2 · a1∗
+f3(x) · a∗1 · a22 · a1∗
+f3(x) · a11 · a∗2 · a2∗
+f3(x) · a∗1 · a12 · a2∗
+f2(x) · a11 · a22
+f2(x) · a21 · a12

. . .

We may visualize this as a combinatoric process in which we start with a symmetric tree
with one node with variables at the base level 0 and either adding a completely new dotted
branch to an a at the current level or turn one of the existing solid branches into a dotted
branch while attaching it to the new variable at the current level corresponding to its original
variable:

a∗1
DD

DD
D
a∗2 a∗2

zz
zz
z

• 7→

a∗1
GG

GG
a∗2 a∗3
ww
ww

a1∗

•

a11 a∗2 a∗3
ww
ww

•

a∗1
GG

GG
a12 a∗3
ww
ww

•

a∗1
GG

GG
a∗2 a13

•

The next step then has two dotted branches entering each node. Here are the results of
applying this process to two of the trees produced above:

a∗1

EE
EE

E
a∗2 a∗3

yy
yy
y

a1∗

• 7→

a∗1

GG
GG
a∗2 a∗3

ww
ww

a1∗ a2∗

•

a∗1 a22 a∗3

ww
ww

a1∗

•

a∗1

GG
GG
a22 a∗3

ww
ww

a1∗

•

a∗1

GG
GG
a∗2 a23 a1∗

•

a11 a∗2 a∗3

yy
yy
y

• 7→

a11 a∗2 a∗3

ww
ww

a2∗

•

a11 a22 a∗3

ww
ww

•

a11 a∗2 a23

•



11

As before we then clothe these trees with the particular forms:

a∗1
AA

AA
a22 a∗3

}}
}}

a1∗ x

?>=<89:;f4

to obtain the expressions for f [n] as described above.
The ramp condition can also be described by selecting partial isomorphisms from r to n,

and thereby selecting certain entries from the following ‘augmented’ r by n variable base:








a11 . . . a1n a1∗
. . .

...
ar1 . . . arn ar∗
a∗1 . . . a∗n x








The selection process involves choosing a partial isomorphism σ between the top r rows and
leftmost n columns, that is to say choosing places in the array subject to the following rules:

• At most one variable must be chosen from each of the top r rows (one cannot choose
from the bottom row);

• At most one variable may be chosen from each of the leftmost n columns (one cannot
choose from the rightmost column).

(We call this a “scatter set”.) Here is an example when n = 4 and r = 5: σ is given by











a11 a12 a13 a14 a1∗
a21 a22 a23 a24 a2∗
a31 a32 a33 a34 a3∗
a41 a42 a43 a44 a4∗
a51 a52 a53 a54 a5∗
a∗1 a∗2 a∗3 a∗4 x











;
σ











a11 a12 a13 a14 a1∗
a21 a22 a23 a24 a2∗
a31 a32 a33 a34 a3∗
a41 a42 a43 a44 a4∗
a51 a52 a53 a54 a5∗
a∗1 a∗2 a∗3 a∗4 x











This selection can now can be “clothed” as above to represent the term fσ:











a11 a12 a13 a14 a1∗
a21 a22 a23 a24 a2∗
a31 a32 a33 a34 a3∗
a41 a42 a43 a44 a4∗
a51 a52 a53 a54 a5∗
a∗1 a∗2 a∗3 a∗4 x











7→ fσ = f6(x) · a11 · a52 · a∗3 · a34 · a2∗ · a4∗

The function f6 is selected since if s coordinates are selected one needs n + r − s linear
arguments. In this case three coordinates were selected so n + r − s = 4 + 5− 3 = 6 linear



12

arguments are required. The linear arguments of f are determined by putting in the selected
arguments and arguments from the bottom row and rightmost column corresponding to the
rows and columns not containing a selected argument.

In general, given a partial isomorphism σ: r −→ n, let

σ∗ = σ ∪ {(x, ∗) | x ∈ r \ π1σ} ∪ {(∗, y) | y ∈ n \ π2σ}

Note that the set σ∗ has r + n − |σ| elements. Then we set fσ = fm(x) •
(i, j) ∈ σ∗

ai,j, where
m = n+ r − |σ|.

Then it is clear that the term f
[n]
r is then mapped under δ to the sum of the clothed

scatter sets for the r by n augmented argument matrix with which we started:

2.2.3. Proposition.
f [n]
r =

∑

σ∈ParIso(r,n)

fσ

This perspective suggests a symmetry between f
[n]
r and f

[r]
n by transposition; of course

this is only possible if the types A and X are the same.
Remark: It might help the reader if, at this stage, we recall that the intended interpre-

tation of f
[n]
r is the differential term

drf(x) · a1∗ · · · · · an∗
d(x, a1∗, . . . , an∗)

(a1∗, . . . , an∗, x) · (a11, . . . , a1n, a1∗) · · · · · (ar1, . . . , arn, ar∗)

We shall return to this point when we consider coalgebras later.

2.2.4. Lemma.

(i) f
[n]
r is an additive symmetric form in its first r arguments;

(ii) (f + g)
[n]
r = f

[n]
r + g

[n]
r ;

(iii) For any Cartesian left additive functor F , BFaà(F )(f [p]) = (BFaà(F )(f))[p];

Proof.

(i) Recall that f
[n]
r has the following form:

f
[n]
r : (An ×A)r × (An ×X) −→ B :







a11 . . . a1n a1∗
...

...
ar1 . . . arn ar∗
a∗1 . . . a∗n x








7→
∑

s ≤ n& s ≤ r
& rampsr,n(α | γ)

fr+n−s(x) · aα11 · . . . · aαnn · aγ1∗ · . . . · aγr−s ∗

we must show that this term is additive in (ai1 . . . ain ai∗) (i > 0). However, note that
in each term there is only one occurrence of a variable from any ith-level when i > 0.
This makes the term additive in that variable and thus the whole term is additive in
the whole level.



13

(ii) This is immediate as the “differential” in this second sense clearly preserves addition.

(iii) We have:

BFaà(F )(f [p]) = (F (f [p]
∗ ), F (f

[p]
1 ), F (f

[p]
2 ), . . .)

= (F (f)[p]∗ , F (f)
[p]
1 , F (f)

[p]
2 , . . .)

= BFaà(F )(f)[p]

where the penultimate step uses the fact that a left-additive functor preserves all the
structure used to construct f

[n]
r .

Our first objective is to show why the following is true:

2.2.5. Proposition. δ:BFaà(X) −→ BFaà(BFaà(X)) is a functor which is (as a transfor-
mation δX) natural in X.

Of course, this is not so easy as δ itself involves some combinatorics and the composi-
tion in the Faà di Bruno categories is also combinatoric. In fact, just the composition in
BFaà(BFaà(X)) is a small challenge to understand. This is what we discuss next.

A map in BFaà(BFaà(X)), f : ((A,X), (A′, X ′)) −→ ((B, Y ), (B′, Y ′)) is a doubly indexed
array

f∗,∗ f1,∗ f2,∗ f3,∗ f4,∗ . . .
f∗,1 f1,1 f2,1 f3,1 f4,1 . . .
f∗,2 f1,2 f2,2 f3,2 f4,2 . . .
f∗,3 f1,3 f2,3 f3,3 f4,3 . . .
f∗,4 f1,4 f2,4 f3,4 f4,4 . . .
. . .

where the columns are maps in BFaà(X):

f∗ = (f∗,∗, f∗,1, . . .): (A
′, X ′) −→ (B′, Y ′); x 7→ f∗(x)

fn = (fn,∗, fn,1, . . .): (A,X)n × (A′, X ′) = (An ×A′, Xn ×X ′) −→ (B, Y );

(a1, . . . , an | x) 7→ fn(x) · a1 · . . . · an



14

so that the individual maps look like:

f∗,∗ : X ′ −→ Y ′; x 7→ f∗,∗(x)

f∗,n : A′n ×X ′ −→ B′; (a∗1, . . . , a∗n | x) −→ f∗,n(x) · a∗1 · . . . · a∗n

fn,∗ : Xn ×X ′ −→ Y ;







a1
. . .
an
x







7→ fn,∗







a1
. . .
an
x







fn,m : (An × A′)m × (Xn ×X ′) −→ B;






a11 . . . a1m a1
. . .

an1 . . . anm an
a∗1 . . . a∗m x







7→ fn,m








a1
...
an
x








·








a11
...
an1
a∗1








· . . . ·








a1m
...
anm
a∗m








The first difficulty is to describe what a composition in BFaà(BFaà(X)) looks like; to show
that δ preserves composition we shall need a very concrete description of this composition.
The composition in BFaà(BFaà(X)) has two levels: the first step is a convolution over trees
clothed from BFaà(X): but the compositions in these trees must then, in turn, be translated
out into convolutions. We shall now describe the effect of this in one step by describing
(fg)i,j as

(fg)i,j =
∑

τ∈T i
2

∑

τ ′∈T j
2

(f ⋆ g)(τ×τ ′)

To explain this we must, in turn, unravel the notation (f ⋆ g)(τ×τ ′). To do this we first need
to explain what the tree τ ×τ ′ looks like. For this it is convenient to view a tree, τ , of height
n, as being given by a chain of surjective maps:

X = X0 −→ X1 −→ . . . −→ Xn−2 −→ Xn−1 = 1

where X0 is the set of variables and Xi, for 0 < i < n are the symmetric operations. If τ ′ is
another such tree of height n

Y = Y0 −→ Y1 −→ . . . −→ Yn−2 −→ Yn−1 = 1

then their product, τ × τ ′ is the tree:

X × Y = X0 × Y0 −→ X1 × Y1 −→ . . . −→ Xn−2 × Yn−2 −→ Xn−1 × Yn−1 = 1

Note that in this tree each operation h = (h1, h2) ∈ Xi × Yi has a matrix of arguments
whose two dimensions are the number of arguments of h1 and the number of arguments of
h2. Consider the two height 2 trees:

τ1 = •2(•2(a1, a3), •2(a2, a4)) and τ2 = •2(•3(a1, a2, a4), •1(a3))



15

the product tree may be presented as

τ1 × τ2 = •2,2







•2,3

(
a1,1 a1,2 a1,4
a3,1 a3,2 a3,4

)

•2,1

(
a1,3
a3,3

)

•2,3

(
a2,1 a2,2 a2,4
a4,1 a4,2 a4,4

)

•2,1

(
a2,3
a4,3

)







As before we must clothe the tree to form (f ⋆g)(τ1×τ2) where this time f, g ∈ BFaà(BFaà(X)).
Recall that this means each of f and g are specified by infinite dimensional arrays and each
fi,j has an i+1 by j +1 dimensional argument list (as opposed to i by j dimensional shown
above). Thus we need to fill in the “fringes” which is accomplished as follows:

(f ⋆ g)(τ1×τ2) = g2,2













f2,3





a1,1 a1,2 a1,4 a1
a3,1 a3,2 a3,4 a3
a∗,1 a∗,2 a∗,4 x



 f2,1





a1,3 a1
a3,3 a3
a∗,3 x



 f2,∗





a1
a3
x





f2,3





a2,1 a2,2 a2,4 a2
a4,1 a4,2 a4,4 a4
a∗,1 a∗,2 a∗,4 x



 f2,1





a2,3 a2
a4,3 a4
a∗,3 x



 f2,∗





a2
a4
x





f∗,3
(
a∗,1 a∗,2 a∗,4 x

)
f∗,1

(
a∗,3 x

)
f∗,∗ (x)













This then explains what the composition is in BFaà(BFaà(X)).

Proof (of 2.2.5). Our objective is to show that δ preserves composition, thus that
δ(f)δ(g) = δ(fg). We show that each is the sum of the same set of composites; formally, the
proof is given by the following equations.



16

δ(f)δ(g) =
∑

τ1,τ2

(δ(f) ⋆ δ(g))τ1×τ2 (1)

=
∑

τ1,τ2





(
∑

σ:i−→j

fσ

)

ij

⋆

(
∑

σ′:k−→l

gσ
′

)

kl





τ1×τ2

(2)

=
∑

τ1,τ2

(
∑

σ′

gσ
′

)


∑

σij :αi−→βj

fσij





ij

(3)

=
∑

τ1,τ2

∑

σ′

gσ
′




∑

σij

fσij





ij

(4)

=
∑

τ1,τ2

∑

σ′

gσ
′




∑

σij

fσij





ij∈σ′

(5)

=
∑

τ1,τ2

∑

σ′,σij ,ij∈σ′

gσ(. . . , fσij , . . .) (6)

=
∑

σ:n−→m

∑

τ∈Tσ∗

(f ⋆ g)στ (7)

= δ(fg) (8)

Equations (1 – 3), and (8) are definitional; (4 – 6) are consequences of additivity; the
combinatorial heart of the proof rests with equation (7), which amounts to the following
lemma.

2.2.6. Lemma. There is an equivalence between the following two sets of data:

• Partitions τ1 = (α1, . . . , αk), τ2 = (β1, . . . , βl) and partial isomorphisms σ′: k −→ l and
σij :αi −→ βj for (i, j) ∈ σ′

• Partial isomorphism σ:n −→ m and a partition τ of σ∗

where n is the set partitioned by τ1, m the set partitioned by τ2, and σ is the union of the
σij.

Proof (of 2.2.6). In this proof, we shall represent a partial isomorphism as the set of pairs
(i, j) where i 7→ j. To start with, we suppose we are given partitions τ1 = (α1, . . . , αk), τ2 =
(β1, . . . , βl) and partial isomorphisms σ′: k −→ l and σij :αi −→ βj for (i, j) ∈ σ′ We must
construct τ , a partition of σ∗.

Recall that for a partial isomorphism σ:n −→ m,

σ∗ = σ ∪ {(x, ∗) | x ∈ n \ π1σ} ∪ {(∗, y) | y ∈ m \ π2σ}



17

and that |σ∗| = n + m − |σ|. In addition, we shall write σi =
⋃

j σij and σj =
⋃

i σij (and
similarly for σi∗, σj∗).

We define a partition τ on σ∗ as

τ = {σij∗}(i,j)∈σ′ ∪ {((αi \ π1σi)× {∗}) \ σi∗}i∈k ∪ {({∗} × (βj \ π2σj)) \ σj∗}j∈l

This means that pairs from the same σij∗ end up in the same partition, and pairs with
a ∗ end up in the same partition if the “other” elements come from the same αi or βj (and
aren’t already in some σij∗).

This completes one direction of the equivalence.
Example:

τ1 = ((1, 3), (2, 5), (4, 6))
τ2 = ((1, 2, 4), (3), (5)) (so k = l = 3)
σ′: 3 −→ 3 = {(1, 3), (3, 1)} (so e.g. (2, 2) is not in σ)
σ13: {1, 3} −→ {5} = {(3, 5)}
σ31: {4, 6} −→ {1, 2, 4} = {(4, 4), (6, 1)}

Then σ =
⋃

ij σij : 6 −→ 5 = {(3, 5), (4, 4), (6, 1)} and n = 6, m = 5, |σ| = 3
Furthermore we have

σ∗ = {(3, 5), (4, 4), (6, 1), (1, ∗), (2, ∗), (5, ∗), (∗, 2), (∗, 3)}
σ13∗ = {(3, 5), (1, ∗)}
σ31∗ = {(4, 4), (6, 1), (∗, 2)}

and so
τ = (((4, 4), (6, 1), (∗, 2)), ((3, 5), (1, ∗)), ((2, ∗), (5, ∗)), ((∗, 3)))

Before proceeding to the other direction, let’s consider what’s going on. The given
partitions and partial isomorphisms amount to this selection from a variable base:














(
a1,1 a1,2 a1,4
a3,1 a3,2 a3,4

) (
a1,3
a3,3

) (
a1,5
a3,5

)

(
a2,1 a2,2 a2,4
a5,1 a5,2 a5,4

) (
a2,3
a5,3

) (
a2,5
a5,5

)

(

a4,1 a4,2 a4,4

a6,1 a6,2 a6,4

) (
a4,3
a6,3

) (
a4,5
a6,5

)














and it’s clear that what both sets of data are defining is the following term from the sums
that define δ(f)δ(g) and δ(fg):

g4(x) · (f3(x) · a44 · a61 · a∗2) · (f2(x) · a35 · a1∗) · (f2(x) · a2∗ · a5∗) · (f1(x) · a∗3)

Now we turn to consider the other direction of the equivalence:



18

Suppose we are given a partial isomorphism σ:n −→ m and a partition τ of σ∗. We must
construct partitions τ1 = (α1, . . . , αk), τ2 = (β1, . . . , βl) and partial isomorphisms σ′: k −→ l
and σij :αi −→ βj for (i, j) ∈ σ′, of appropriate sizes.

Since τ is a partition of a matrix, we easily obtain partitions τ1, τ2 of the rows and
columns: define π′

iγ = πiγ \ {∗}, and let τ̂ = (γ1, . . . , γp); then define τ1 = (π′
1γi)i and

τ2 = (π′
2γi)i

We can also construct partial isomorphisms from τ , by ignoring the pairs with ∗s, and
taking the remaining pairs from each partition: let τ1 = (α1, . . . , αk) and τ2 = (β1, . . . , βl)
and then define σ′ = {(i, j) | (αi×βj)∩σ∗ 6= ∅} and, for (i, j) ∈ σ′, define σij = (αi×βj)∩σ∗.
Note that by this construction, σ is the union of these partial isomorphisms, as required.

This completes the other direction of the equivalence; that these processes are inverse is
clear from their construction.

Example: Let’s take the σ of the previous example, with a new τ :

σ: 6 −→ 5 = {(3, 5), (4, 4), (6, 1)}
so σ∗ = {(3, 5), (4, 4), (6, 1), (1, ∗), (2, ∗), (5, ∗), (∗, 2), (∗, 3)}
τ = (((3, 5)), ((4, 4), (6, 1)), ((1, ∗), (2, ∗), (∗, 3)), ((5, ∗), (∗, 2)))

Then we obtain

τ1 = ((3), (4, 6), (1, 2), (5)) and τ2 = ((5), (4, 1), (3), (2))

(note k = l = 4, and n = 6, m = 5 as required).
Then σ′ = {(1, 1), (2, 2)} (since {(3, 5)} is a pair from σ∗ coming from the first partition

in τ1 and the first partition in τ2, and {(4, 4), (6, 1)} are pairs in σ∗ coming from the second
partition in τ1 and the second partition in τ2). Also σ11 = {(6, 1)} and σ22 = {(4, 4), (3, 5)},
whose union is the σ: 6 −→ 5 = {(3, 5), (4, 4), (6, 1)} we started with.

Again, one might wonder what’s going on.
This time we have the following selection from the variable base:















(

a3,5
) (

a3,4 a6,3
) (

a3,3
) (

a3,2
)

(
a4,5
a6,5

) (

a4,4 a4,1

a6,4 a6,1

) (
a4,3
a6,3

) (
a4,2
a6,2

)

(
a1,5
a2,5

) (
a1,4 a1,1
a2,4 a2,1

) (
a1,3
a2,3

) (
a1,2
a2,2

)

(
a5,5

) (
a5,4 a5,1

) (
a5,3

) (
a5,2

)















and the common function term corresponding to this is

g6(x) · (f1(x) · a35) · (f2(x) · a44 · a61) · (f2(x) · a1∗ · a2∗) · (f1(x) · a5∗) · (f1(x) · a∗3) · (f1(x) · a∗2)



19

Figure 1: A 3-D scatter set

It is clear that δ preserves identities and that it is natural, as is evident from its combi-
natorial construction, completing our proof of 2.2.5.

It is also easy to see that δε = F and δBFaà(ε) = 1BFaà(X). It remains to show that the
comultiplication is associative:

Proof (of 2.2.2). To show it is a comonad we need to show that δ(δ(f)) = BFaà(δ)(δ(f)).

We know that δ(δ(f)) is defined to be a “matrix” (δ(f)
[n]
r )rn, where δ(f)

[n]
r =

∑

σ:r−→n

δ(f)σ,

in this case, the sum being a sum of “vectors”

δ(f)σ = f [|σ∗|](x) •i∈σ ai,σ(i) •i/∈π1σ ai,∗ •j /∈π2σ a∗,j

where the ai,j (etc.) are vectors of terms; notice that we have a 3-D variable base matrix here.

Look at the mth coordinate of f [|σ∗|]: f
[|σ∗|]
m =

∑

σ′:(n+r−|σ|)−→m

fσ′

. Regard the ai,j, ai,∗, a∗,j as

columns in a 3-D matrix. It is from these column-positions that σ picks out a scatter set,
and σ′ picks (from each column) a “height” (including “height 0” if it doesn’t choose one).
No two columns can have the same chosen “height” (other than 0). An illustration of such
a situation may be seen in Figure 1, where the rows and columns with 0s in their entries
are removed from the sides of the cube, and where the partial isomorphisms are indicated
by shading the columns (σ) and indicating their heights (σ′: note that two selected columns
have 0 height, and so are not picked by σ′).

With this intuition (in which we have replaced ∗ by 0), we can regard the situation as a
three dimensional infinite array of maps fr,n,m where the domain of the map is given by a



20

three dimensional matrix of variables:

(ai,j,k)i = 0 . . . p
j = 0 . . . q
k = 0 . . . r

The components of fr,n,m are given by choosing a “scattered” subset

σ ⊂sc {(i, j, k) | i = 0 . . . r, j = 0 . . . n, k = 0 . . .m}

where being scattered means that:

• For each (i, j, k) ∈ σ at least two of i, j, and k are non-0 (i.e. not ∗);

• If (i, j, k), (i′, j′, k′) ∈ σ then either they are equal or i 6= i′, j 6= j′ and k 6= k′.

To each scattered subset we can associate a term fσ where

fσ = fl(x) •







ai,j,k

∣
∣
∣
∣
∣
∣
∣
∣

(i, j, k) ∈ S
∨(j = k = 0 ∧ (i, , ) 6∈ S)
∨(i = k = 0 ∧ ( , j, ) 6∈ S)
∨(i = j = 0 ∧ ( , , k) 6∈ S)







(where l = m+ n+ r − (| σ | + | σ′ |)), and then

fr,n,m = (ai,j,k) 7→
∑

σ

fσ

The point is that BFaà(δ)(δ(f)) chooses exactly the same sort of 3-D scatter set, the
term above being the natural 3-D generalization of σ∗, albeit possibly making the choice in
a different order, and so produces the same sum, and so equals δ(δ(f)).

We have arrived at the point now where we want to take the subfibration Faà as our main
focus. We want to show that a coalgebra for this comonad, i.e. a Cartesian left additive
category X with a functor D:X −→ Faà(X) such that Dε = 1 and DFaà(D) = Dδ, in fact
consists of a Cartesian left additive category X with a differential combinator D, making X

a Cartesian differential category.
First let us observe what happens on objects. Setting D(X) = (D0(X),D1(X)) and using

the first coalgebra equation gives X = ε(D(X)) = ε(D0(X),D1(X)) = D1(X) so that we
have D1(X) = X . Using the second coalgebra equation we have:

(DFaà(D))(X) = Faà(D)(D(X)) = Faà(D)(D0(X), X) = ((D0(D0(X)),D0(X))(D0(X), X))

(Dδ)(X) = δ(D0(X), X) = ((D0(X),D0(X)), (D0(X), X))

so that D0(D0(X)) = D0(X), that is D0 is an idempotent on objects. But in Faà(X), the
objects were pairs (A,A), rather than the more general (A,X). So in fact, since D0(X) =
D1(X) = X , D0 is more than idempotent: it is the identity on objects.



21

The fact that we have a functor into the Faà di Bruno category means we have a functor
into the ordinary bundle category and this immediately means that [CD.1]-[CD.5] [BCS
09] hold for the combinator

A
f

−−→ B
A× A −−−−−−−→

D[f ] = f(1)
B

where we write D(f) = (f, f (1), f (2), . . .), the first entry being forced to be the original
function f by the unit equation for coalgebras. The second coalgebra equation, DFaà(D) =
Dδ, then equates two different tables of functions:

Faà(D)(D(f)) =











f f (1) f (2) f (3) f (4) . . .
f (1) (f (1))(1) (f (2))(1) (f (3))(1) (f (4))(1) . . .
f (2) (f (1))(2) (f (2))(2) (f (3))(2) (f (4))(2) . . .
f (3) (f (1))(3) (f (2))(3) (f (3))(3) (f (4))(3) . . .
f (4) (f (1))(4) (f (2))(4) (f (3))(4) (f (4))(4) . . .
. . .











δ(D(f)) =












f D(f)
[1]
∗ D(f)

[2]
∗ D(f)

[3]
∗ D(f)

[4]
∗ . . .

f (1) D(f)
[1]
1 D(f)

[2]
1 D(f)

[3]
1 D(f)

[4]
1 . . .

f (2) D(f)
[1]
2 D(f)

[2]
2 D(f)

[3]
2 D(f)

[4]
2 . . .

f (3) D(f)
[1]
3 D(f)

[2]
3 D(f)

[3]
3 D(f)

[4]
3 . . .

f (4) D(f)
[1]
4 D(f)

[2]
4 D(f)

[3]
4 D(f)

[4]
4 . . .

. . .












If these are in fact equal, i.e. if X,D form a coalgebra, then in particular (f (1))(1) =

D(f)
[1]
1 , which when it is unravelled says:
(

a11 a1
a∗1 x

)

7→ (f (1))(1)
(

a1∗
x

)

·

(
a11
a∗1

)

= f (2)(x) · a∗1 · a1∗ + f (1)(x) · a11

which yields [CD.6] by setting a∗1 = 0

(f (1))(1)
(

a1∗
x

)

·

(
a11
0

)

= f (1)(x) · a11

and [CD.7] as

(f (1))(1)
(

a1∗
x

)

·

(
0
a∗1

)

= f (2)(x) · a∗1 · a1∗

= f (2)(x) · a1∗ · a∗1

= (f (1))(1)
(

a∗1
x

)

·

(
0
a1∗

)

We have now proven:



22

2.2.7. Proposition. Every coalgebra of the Faà di Bruno comonad Faà is a Cartesian
differential category.

It is worth noticing that we have in fact proved more: the coalgebra is in the following
sense determined by the differential combinator of the Cartesian differential category: each
f (n) is in fact determined by D[f ] = f (1). For, as we have just seen,

D(f)
[1]
1

(
0 a1
a∗1 x

)

= (f (1))(1)
(

a1∗
x

)

·

(
0
a∗1

)

= f (2)(x) · a∗1 · a1∗ + f (1)(x) · 0

= f (2)(x) · a∗1 · a1∗ + 0

= f (2)(x) · a∗1 · a1∗

In this manner, we can reconstruct f (2) from (f (1))(1), and similarly (by induction) f (n+1)

from (f (n))(1).

3. Higher-Order Differentials and Chain Rules

Our objective is now to show that for any Cartesian differential category the differential
supplies a coalgebra structure map into the Faà di Bruno category:

D:X −→ Faà(X);
A 7→ (A,A)
f 7→ (f, f (1), f (2), . . .)

which is a section of the fibration ε: Faà(X) −→ X, where the f (n) are the higher-order
derivatives defined below, based on the combinator D. The existence of this functor is the
structural generalization of Faà di Bruno’s original result on the higher differentials.

The technical details in this section require us to link the Faà di Bruno convolution
composition to the higher-order chain rules. This involves some calculations for which we
shall use the term logic [BCS 09].

In the notation of the previous section, our specific goal is to show, by induction on j,
that D(f)

[i]
j = (f [i])(j), and hence that the two tables representing Faà(D)(D(f)) and δ(D(f))

are equal. (The other coalgebra equation is obvious from the definition of D(f).)

3.1. Higher-order derivatives. First we define the higher-order derivatives recursively
by:

d(1)t

dx
(p) · u =

dt

dx
(p) · u

d(n)t

dx
(p) · u1 · . . . · un =

dd
(n−1)t
dx

(x) · u1 · . . . · un−1

dx
(p) · un

Note that it is immediate from this definition that the nth-order derivative is additive in each
u1, . . . , un thus the higher differentials define symmetric forms.

In order understand higher-order derivatives it is useful to start with some basic obser-
vations:



23

3.1.1. Lemma.

(i) dt[x+s/y]
dx

(0) · u = dt
dy

(s) · u , x not free in s

(ii)
d

dt
dx

(x)·u1

dx
(s) · u2 =

d
dt
dx

(x)·u2

dx
(s) · u1 that is d

(2)t
dx

(s) · u1 · u2 =
d
(2)t
dx

(s) · u2 · u1, x not free
in u1, u2

(iii) d(n)t
dx

(s) · u1 · . . . · un = d(n)t
dx

(s) · uσ(1) · . . . · uσ(n) for any σ ∈ Sn.

Remark: Item (ii) is actually equivalent to [Dt.7] [BCS 09], and is a more direct
translation of [CD.7].

Proof.

(i)

dt[x+ s/y]

dx
(0) · u =

dt

dy
(s) ·

(
d(x+ s)

dx
(0) · u

)

because x+ s[0/x] = 0 + s = s

=
dt

dy
(s) ·

(
dx

dx
(0) · u+

ds

dx
(0) · u

)

=
dt

dy
(s) · u

(ii) The problem in this calculation is that in order to swap u1 and u2 we need to differen-
tiate with respect to variables not involved in the position of the differential. The first
part of the lemma allows us to arrange this - but we have to use it twice:

d dt
dx

(x) · u1

dx
(s) · u2 =

d dt
dx

(x′) · u1

dx′
(s) · u2

=
d
dt[x1+x′/x]

dx1
(0) · u1

dx′
(s) · u2

=
d
dt[x1+x′/x]

dx1
(0) · u1[x2 + s/x′]

dx2

(0) · u2

=
d
dt[x1+x2+s/x]

dx1
(0) · u1

dx2
(0) · u2

=
d
dt[x1+x2+s/x]

dx2
(0) · u2

dx1
(0) · u1 by [Dt.7]

=
d dt
dx

(x) · u2

dx
(s) · u1

(iii) The result is trivially true for n = 1 and the previous result proves it for n = 2.
Assuming it true for n+1 we show it is true for n+2 by showing how we can exchange



24

un+1 and un+2:

d(n+2)t

dx
(s) · u1 · . . . · un+1 · un+2 =

dd(n+1)t
dx

(x) · u1 · . . . · un+1

dx
(p) · un+2

=
d
d
d
(n)t
dx

(x)·u1·...·un

dx
(x) · un+1

dx
(p) · un+2

=
d
d
d
(n)t
dx

(x)·u1·...·un

dx
(x) · un+2

dx
(p) · un+1

=
d(n+2)t

dx
(s) · u1 · . . . · un+2 · un+1

This demonstrates that the second-order differential gives rise to a symmetric form and
whence that the nth-order differential gives a symmetric form.

A useful fact to note is that differentiating a higher-differential with respect to one of its
linear components satisfies the generalization of [Dt.6]:

3.1.2. Corollary. In any Cartesian differential category

dd(n)t
dz

(s) · u1 · . . . · x · . . . · un

dx
(s′) · ur =

d(n)t

dz
(s) · u1 · . . . · ur · . . . · un

Proof. We use symmetry to move the variable into the last place at which point the
linearity of the differential can be used:

dd(n)t
dz

(s) · u1 · . . . · x · . . . · un

dx
(s′) · ur

=
dd

(n)t
dz

(s) · u1 · . . . · ur−1 · ur+1 . . . · un · x

dx
(s′) · ur

=
d
d
d
(n−1)s

dt
(u1·...·ur−1·ur+1...·un)·

dz
(z) · x

dx
(s′) · ur

=
dd

(n−1)s
dt

(u1 · . . . · ur−1 · ur+1 . . . · un) ·

dz
(z) · ur

=
d(n)t

dz
(s) · u1 · . . . · ur−1 · ur+1 · . . . · un · ur

=
d(n)t

dz
(s) · u1 · . . . · ur · . . . · un



25

3.2. Chain rules. Let us start by explicitly calculating the second-order chain rule. We
do this by first proving a lemma which tells us how to differentiate differentials with respect
to variables not in the term. We shall then generalize this calculation to obtain the general
form of the higher order chain rule in a Cartesian differential category.

3.2.1. Lemma. When y 6∈ t we have

d dt
dx

(p) · u

dy
(p′) · u′ =

d(2)t

dx
(p[p′/y]) · u[p′/y] ·

(
dp

dy
(p′) · u′

)

+
dt

dx
(p[p′/y]) ·

(
du

dy
(p′) · u′

)

Proof.

d dt
dx

(p) · u

dy
(p′) · u′

=
d dt
dx

(a) · b

d(a, b)
(p[p′/y], u[p′/y]) · (

dp

dy
(p′) · u′,

du

dy
(p′) · u′)

=
d dt
dx

(a) · u[p′/y]

da
(p[p′/y]) ·

(
dp

dy
(p′) · u′

)

+
d dt
dx

(p[p′/y]) · b

db
(u[p′/y]) ·

(
du

dy
(p′) · u′

)

=
d(2)t

dx
(p[p′/y]) · u[p′/y] ·

(
dp

dy
(p′) · u′

)

+
dt

dx
(p[p′/y]) ·

(
du

dy
(p′) · u′

)

We may apply this to get the second-order chain rule:

d(2)f(g(x))

dx
(p) · u1 · u2 =

d
df(g(y))

dy
(x) · u1

dx
(p) · u2

=
d
df(z)
dz

(g(x)) ·
(

dg(y)
dy

(x) · u1

)

dx
(p) · u2

=
d(2)f(z)

dz
(g(p)) ·

(
dg(y)

dy
(p) · u1

)

·

(
dg(x)

dx
(p) · u2

)

+
df(x)

dx
(g(p)) ·

(
d(2)g(x)

dx
(p) · u1 · u2

)

With each function [x 7→ f(x)] in a differential category we can associate a series of
functions:

f (1)(z) · u1 =
df(x)

dx
(z) · u1

f (2)(z) · u1 · u2 =
d(2)f(x)

dz
(u1 · u2) ·

. . .

f (n)(z) · u1 · . . . · un =
d(2)f(x)

dz
(u1 · . . . · un) ·

. . .



26

This allows us in a Cartesian differential category, given a sequence of functions

X1
f1

−−→ X2
f2

−−→ X3 −→ . . .
fn

−−→ Xn+1

and a symmetric tree τ of height n and width r with variables U = {u1, . . . , ur} (which we
should think of as the leaves of a tree) to define the meaning of (f1 ⋆ . . . ⋆ fn)τ (z) inductively
by:

• Variables ( )ιui0 = ui become variables. (Recall ιui

0 is defined in Proposition 1.2.1 as the

unique tree of height 0, width 1, and leaf or variable ui.)

• Given a chain of one or more maps we define

(f1 ⋆ . . . ⋆ fn+1)•m(τ1,...,τm)(z)

=
d(m)fn+1(x)

dx
(fn−1(. . . , f1(z) . . .)) · (f1 ⋆ . . . ⋆ fn)τ1(z) · . . . · (f1 ⋆ . . . ⋆ fn)τm(z)

For T a bag of trees we define:

(f1 ⋆ . . . ⋆ fn+1)T (z) =
∑

τ∈T

(f1 ⋆ . . . ⋆ fn+1)τ (z)

Examining the second-order chain rule we see that it is:

f (2)(z) · (g(1)(z) · u1) · (g
(1)(z) · u2) + f (1)(z) · (g(2)(z) · u1 · u2))

which is precisely (f ⋆ g)T 2
2
(z) relating the higher-order chain rules to these symmetric trees.

We now have the following key result:

3.2.2. Proposition. In any Cartesian differential category:

(i) The first differential of a composite of functions is given by :

dfn(. . . , f1(x) . . .)

dx
(z) · u = (f1 ⋆ . . . ⋆ fn)ιun(z)

(ii) For any bag of trees, T , of height n and width r on variables {u1, . . . , ur}

d(f1 ⋆ . . . ⋆ fn)T (x)

dx
(z) · ur+1 = (f1 ⋆ . . . ⋆ fn)∂ur+1T (x)(z)



27

Proof.

(i) We may use the ordinary chain rule to prove the result. First note that for n = 0 the
result holds as:

( )uι0(z) = u =
dz

dz
(z) · u

Suppose now the result holds for n then:

dfn+1(fn(. . . f1(x) . . .)

dx
(z) · u =

dfn+1(x)

dx
(fn(. . . f1(z) . . .)) ·

dfn(. . . f1(z) . . .)

dz
(z) · u

=
dfn+1(x)

dx
(fn(. . . f1(z) . . .)) · (f1 ⋆ . . . ⋆ fn)ιun(z)

= (f1 ⋆ . . . ⋆ fn ⋆ fn+1)ιun+1
(z)

(ii) The differential of a variable
d(⋆)ui (x)

dz
(z) · ur+1 = 0.

The differential of (f1 ⋆ . . . ⋆ fn+1)•r(τ1,...,τr)(z) is

d(f1 ⋆ . . . ⋆ fn+1)•r(τ1,...,τr)(z)

dz
(z) · ur+1

=
d
d(r)fn+1(x)

dx
(fn(. . . f1(z) . . .)) · (f1 ⋆ . . . ⋆ fn)τ1(z) · . . . · (f1 ⋆ . . . ⋆ fn)τm(z)

dz
(z) · ur+1

=
d
d
(r)fn+1(x)

dx
(x) · x1 · . . . · xr

d(x, x1, . . . , xr)







fn(. . . f1(z) . . .),
(f1 ⋆ . . . ⋆ fn)τ1(z),
. . . ,
(f1 ⋆ . . . ⋆ fn)τr(z)







·

(dfn(... f1(z)...)
dz

(z) · ur+1)·

(
d(f1⋆...⋆fn)τ1 (z)

dz
(z) · ur+1)·

. . . ·

(d(f1⋆...⋆fn)τr (z)
dz

(z) · ur+1)

=
d
d(r)fn+1(x)

dx
(x) · x1 · . . . · xr

d(x, x1, . . . , xr)







fn(. . . f1(z) . . .),
(f1 ⋆ . . . ⋆ fn)τ1(z),
. . . ,
(f1 ⋆ . . . ⋆ fn)τr(z)







·

((f1 ⋆ . . . ⋆ fn)ιn(z)·
((f1 ⋆ . . . ⋆ fn)∂ur+1τ1

(z)·

. . . ·
((f1 ⋆ . . . ⋆ fn)∂ur+1τr

(z))

=
d
d
(r)fn+1(x)

dx
(x)·(f1⋆...⋆fn)τ1 (z)·...·(f1⋆...⋆fn)τr (z)

dx
(z) · (f1 ⋆ . . . ⋆ fn)ιn(z)

+
d
d
(r)fn+1(x)

dx
(fn(...f1(z)...))·x1·(f1⋆...⋆fn)τ2 (z)·...·(f1⋆...⋆fn)τr (z)

dx1
(z) · (f1 ⋆ . . . ⋆ fn)∂ur+1τ1

(z)

+ . . .

+
d
d
(r)fn+1(x)

dx
(fn(...f1(z)...))·(f1⋆...⋆fn)τ1 (z)· ... ·xr

dxr
(z) · (f1 ⋆ . . . ⋆ fn)∂ur+1τr

(z)

= d(r+1)fn+1(x)
dx

((f1 ⋆ . . . ⋆ fn)ιn(z)) · (f1 ⋆ . . . ⋆ fn)τ1(z) · . . . · (f1 ⋆ . . . ⋆ fn)τr(z)

+d(r)fn+1(x)
dx

(fn(. . . f1(z) . . .)) · (f1 ⋆ . . . ⋆ fn)∂ur+1τ1
(z) · (f1 ⋆ . . . ⋆ fn)τ2(z) · . . .

. . . · (f1 ⋆ . . . ⋆ fn)τr(z)
+ . . .

+d
(r)fn+1(x)

dx
(fn(. . . f1(z) . . .)) · (f1 ⋆ . . . ⋆ fn)τ1(z) · . . . · (f1 ⋆ . . . ⋆ fn)∂ur+1τr

(z)

= (f1 ⋆ . . . ⋆ fn)∂ur τ (z)



28

where we have used the first result and inductively the result on trees of lesser height.

We have (obviously) proved the generalization of Faà di Bruno’s result:

3.2.3. Corollary. In any Cartesian differential category:

d(n)g(f(x))

dx
(z) · u1 · . . . · un = (f ⋆ g)

T
{u1,...,un}
2

(z)

Furthermore

d(m)fn(fn−1(. . . (f(x)) · · · ))

dx
(z) · u1 · · ·um = (f1 ⋆ f2 ⋆ · · · ⋆ fn)τmn (z)

This means that for any Cartesian differential category X there is a functor

D:X −→ Faà(X); f 7→ (f, f (1), f (2), . . .)

We are now in a position to show this gives a coalgebra.

3.2.4. Theorem. A Cartesian differential category is exactly a coalgebra for the Faà di
Bruno comonad.

Proof. We just need to show that these are equal:

Faà(D)(D(f)) =











f f (1) f (2) f (3) f (4) . . .
f (1) (f (1))(1) (f (2))(1) (f (3))(1) (f (4))(1) . . .
f (2) (f (1))(2) (f (2))(2) (f (3))(2) (f (4))(2) . . .
f (3) (f (1))(3) (f (2))(3) (f (3))(3) (f (4))(3) . . .
f (4) (f (1))(4) (f (2))(4) (f (3))(4) (f (4))(4) . . .
. . .











δ(D(f)) =












f D(f)
[1]
∗ D(f)

[2]
∗ D(f)

[3]
∗ D(f)

[4]
∗ . . .

f (1) D(f)
[1]
1 D(f)

[2]
1 D(f)

[3]
1 D(f)

[4]
1 . . .

f (2) D(f)
[1]
2 D(f)

[2]
2 D(f)

[3]
2 D(f)

[4]
2 . . .

f (3) D(f)
[1]
3 D(f)

[2]
3 D(f)

[3]
3 D(f)

[4]
3 . . .

f (4) D(f)
[1]
4 D(f)

[2]
4 D(f)

[3]
4 D(f)

[4]
4 . . .

. . .












which in turn essentially means we need to show that D(f)
[i]
j = (f (i))(j), which we shall do

by induction on j. The case j = 0 is clear: D(f)
[i]
∗ = f (i) = (f (i))(0). So we shall suppose

that D(f)
[i]
j−1 = (f (i))(j−1) is true, and prove the corresponding equation for j.



29

First

(f (i))(j) =
d(j)

d
(i)f(z)
dz

(x) · a1 · · · ai
d(a1, . . . , ai, x)

(a∗1, . . . , a∗i, x) · (a11, . . . , a1i, x1) · · · (aj1, . . . , aji, xj)

=
d
d
(j−1) d

(i)f(z)
dz

(x)·a1···ai
d(a1,...,ai,x)

(a1, . . . , ai, x) · (a11, . . . , a1i, x1) · · · (aj−1 1, . . . , aj−1 i, xj−1)

d(a1, . . . , ai, x)

(a∗1, . . . , a∗i, x) · (aj1, . . . , aji, xj)

=

dD(f)
[i]
j−1








a11 . . . a1i a1

...
...

...
...

aj−1 1 . . . aj−1 i aj−1

a1 . . . ai x








d(a1, . . . , ai, x)
(a∗1, . . . , a∗i, x) · (aj1, . . . , aji, xj)

=

dD(f)
[i]
j−1








a11 . . . a1i a1

...
...

...
...

aj−1 1 . . . aj−1 i aj−1

a1 . . . a∗i x








da1
(a∗1) · aj1

+ . . .

. . .+

dD(f)
[i]
j−1








a11 . . . a1i a1

...
...

...
...

aj−1 1 . . . aj−1 i aj−1

a∗1 . . . ai x








dai
(a∗i) · aji (⋆)

+

dD(f)
[i]
j−1








a11 . . . a1i a1

...
...

...
...

aj−1 1 . . . aj−1 i aj−1

a∗1 . . . a∗i x








dx
(x) · xj

where, in the sum (⋆), in each term the bottom row of the variable base matrix consists of
“starred” variables a∗k except in one position where one has am, m = 1, . . . , j − 1, with the
jth term having x instead of x, (the sum being over all such terms).

To facilitate the calculation of D(f)
[i]
j , we recall a bit of notation. In particular, Propo-

sition 2.2.3 expressed δ in terms of partial isomorphisms (or “scatter sets”):

f
[i]
j =

∑

σ∈ParIso(j,i)

fσ

We regard ParIso(j−1, i) ⊆ ParIso(j, i), and for any σ ∈ ParIso(j, i), π1σ (respectively π2σ)
is the set of indices appearing in the domain (respectively codomain) of σ. Note that

ParIso(j, i) = ParIso(j − 1, i) ∪ {σ′ ∪ (j, k) | σ′ ∈ ParIso(j − 1, i), k /∈ π2σ
′}



30

and
Df

[i]
j =

∑

σ∈ParIso(j,i)

Dfσ and Df
[i]
j−1 =

∑

σ′∈ParIso(j−1,i)

Dfσ′

so that
∑

σ∈ParIso(j,i)

Dfσ =
∑

σ′∈ParIso(j−1,i)

Dfσ′

+
∑

σ′ ∈ ParIso(j − 1, i)
0 ≤ k ≤ i
k /∈ π2σ′

Dfσ′∪(j,k)

=
∑

σ′

dDfσ′
[a∗1/a1, . . . , a∗i/ai]

dx
(x) · xj +

∑

σ′,k

dDfσ′
[a∗1/a1, . . . , â∗i/ai, . . . , x/x]

dak
(a∗k) · ajk

(where as usual, the hat indicates a term suppressed).

3.2.5. Lemma. For σ′ ∈ ParIso(j − 1, i),

dDfσ′
[a∗1/a1, . . . , a∗i/ai]

dx
(x) · xj = Dfσ′

dDfσ′
[a∗1/a1, . . . , â∗i/ai, . . . , x/x]

dak
(a∗k) · ajk =

{
0 if k ∈ π2σ

′

Dfσ′∪(j,k) otherwise

Proof. (of the lemma) Some notation: for σ′ ∈ ParIso(j − 1, i), we shall write

Dfσ′

= Df (i+s)(x) •
r /∈ π1σ′

xr •
(l, k) ∈ σ′

alk •
m /∈ π2σ′

am

Then note that:

dDfσ′
[a∗1/a1, . . . , a∗i/ai]

dx
(x) · xj

= Df (i+s+1)(x) · xj · xr · alk · a∗m

= Dfσ′

dDfσ′
[a∗1/a1, . . . , â∗i/ai, . . . , x/x]

dak
(a∗k) · ajk

=







0 if k ∈ π2σ
′ since ak does not occur

Df (i+s)(x) •
r /∈ π1σ′

xr •
(l, w) ∈ σ′

alw •
m /∈ π2σ′,m 6= j

a∗m · ajk

= Dfσ′∪(j,k) otherwise

which proves the lemma



31

Finally, to complete the proof of Theorem 3.2.4, we just sum these terms to get the same
sum (⋆) for D(f)

[i]
j as we got for (f (i))(j):

D(f)
[i]
j =

∑

σ∈ParIso(j,i)

Dfσ

=
∑

σ′

dDfσ′
[a∗1/a1, . . . , a∗i/ai]

dx
(x) · xj

+

i∑

k=1

∑

σ′

dDfσ′
[a∗1/a1, . . . , â∗i/ai, . . . , x/x]

dak
(a∗k) · ajk

=

dD(f)
[i]
j−1








a11 . . . a1i a1

...
...

...
...

aj−1 1 . . . aj−1 i aj−1

a∗1 . . . a∗i x








dx
(x) · xj

+
i∑

k=1

dD(f)
[i]
j−1








a11 . . . a1i a1

...
...

...
...

aj−1 1 . . . aj−1 i aj−1

a∗1 . . . ak . . . a∗i x








dak
(a∗k) · ajk

Finally, these constructions establish the following equivalence.

3.2.6. Theorem. The category of coalgebras for the comonad Faà is equivalent to the
category of Cartesian differential categories and Cartesian differential functors (Cartesian
left additive functors which preserve the differential combinators).

Conclusion

The Faà di Bruno construction was a complete surprise to us. It meant, in particular, that
Cartesian differential categories were as common as left additive categories. For, given any
left additive category X, Faà(X) is always a Cartesian differential category and, furthermore,
the cofree one on X. Initially our motivation was simply to give ourselves assurance that
the axiomatization of Cartesian differential categories was correct and we thought to add
something about higher-order chain rules as an appendix to [BCS 09]. However, as the
combinatorics of the higher-order chain rules began to unfold before us, it was clear that
this was something of quite independent interest. Still we did not expect to be staring at a
combinatorial comonad which governed differentiation.

Not only is this construction a rich potential source of models of differential algebras (such
as differential combinatory algebras and λ-calculi) but also it is clear that this structure is



32

an integral part of what it means to be differentiable. This poses questions not only for our
original setting of differential categories [BCS 06], but also for the on-going development of
notions of differentiability: for example the work (with Crutwell and Gallagher) on differen-
tial restriction categories (partial map categories) and on tangential structure for manifold
categories. It also raises a broader question of whether there are other closely related comon-
ads which determine interesting subvarieties of differential structure. For example, there is
a subcomonad given by the sequences which eventually vanish: these abstractly capture
“polynomial” differentiability. Is it possible to capture other notion of differentiability using
the same coalgebraic techniques: e.g. can differentiability given by Taylor expansion be so
described?

After distributing an earlier version of this paper, we learned of two earlier works treating
the combinatorics of Faà di Bruno algebraically (as a Hopf algebra). Although they are not
directly relevant to our approach, the reader might wish to consult them as well [EP 10, FG
05].

References

[BCS 06] R.F. Blute, J.R.B. Cockett, R.A.G. Seely. “Differential Categories”. Mathematical
Structures in Computer Science 16 (2006), 1049–1083.

[BCS 09] R.F. Blute, J.R.B. Cockett, R.A.G. Seely. “Cartesian differential categories”. The-
ory and Applications of Categories 22 (2009), 622–672.

[CCG 10] G. Crutwell, J.R.B. Cockett, and J. Gallagher. “Differential restriction categories”.
(in preparation)

[EP 10] K. Ebrahimi-Fard and F. Patras. “Exponential Renormalization”. Annales Henri
Poincare 11 (2010) 943–971.

[FG 05] H. Figueroa, J.M. Gracia-Bondia. “Combinatorial Hopf algebras in quantum field
theory I”. Reviews in Mathematical Physics 17 (2005), 881–976.

[OR 97] J.J. O’Connor, E.F. Robinson. “Francesco Faà di Bruno”. MacTutor History of
Mathematics (1997), School of Mathematics and Statistics, University of St An-
drews, Scotland. http://www-history.mcs.st-andrews.ac.uk/Biographies/Faa_

di_Bruno.html

[L 09] Paul Linehan. “Francesco Faà di Bruno”. The Catholic Encyclopedia 5. New York:
Robert Appleton Company, 1909. http://www.newadvent.org/cathen/05740a.htm


