THE FAA DI BRUNO CONSTRUCTION
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ABSTRACT. In the context of Cartesian differential categories [BCS 09], the structure of
the first-order chain rule gives rise to a fibration, the “bundle category”. In the present
paper we generalise this to the higher-order chain rule (originally developed in the traditional
setting by Faa di Bruno in the nineteenth century); given any Cartesian differential category
X, there is a “higher-order chain rule fibration” Faa(X) — X over it. In fact, Faa is a
comonad (over the category of Cartesian left (semi-)additive categories). Our main theorem
is that the coalgebras for this comonad are precisely the Cartesian differential categories. In
a sense, this result affirms the “correctness” of the notion of Cartesian differential categories.

Introduction

Francesco Faa di Bruno (1825-1888) was an Italian of noble birth, a soldier, a mathematician,
and a priest. In 1988 he was beatified by Pope John Paul I, apparently for his charitable work
teaching young women mathematics. As a mathematician he studied with Cauchy in Paris.
He was a tall man with a solitary disposition who spoke seldom and, when teaching class,
not always successfully. Perhaps his most significant mathematical contribution concerned
the combinatorics of the higher-order chain rules. These results were the cornerstone of
“combinatorial analysis”: a subject which never really took off. It is the combinatorics
underlying the higher-order chain rule which is of interest to us here. [OR 97, L 09]

The paper is a sequel to our work on Cartesian differential categories [BCS 09]. In that
paper we established that from any Cartesian left additive category one could construct a
“bundle” fibration in which the fibres were additive, and where the composition had the
same form as the chain rule; moreover the existence of a left additive section of this fibration
provided an operator which already satisfies many of the axioms of a differential operator.
We pointed out in that paper that all the axioms could be generated by a similar fibrational
analysis involving the higher-order chain rule. Presenting the details of that claim is the
main aim of the present paper.

After some combinatorial preliminaries, we give the definition of the Faa di Bruno cate-
gory over a Cartesian left additive category X. The most complicated aspect of the definition
is the composition, which we shall see corresponds to the higher-order chain rule. Most of
the paper is devoted to proving that the Faa di Bruno construction is in fact a comonad over
the category of left additive categories. Finally, we show that the coalgebras of this comonad
are exactly Cartesian differential categories.
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1. Some combinatorics of symmetric trees

Counting trees of various shapes and sizes is a deeply combinatoric subject. It is also an issue
which is of no small algebraic and analytic interest as these combinatoric numbers occur as
coefficients in formulae such as the higher-order chain rule. Our current preoccupation is
not so much with the bald numbers as with the structural relationships which cause these
numbers to become important. We start this appreciation by introducing the combinatorial
structures which underlie the chain rule.

1.1. SYMMETRIC TREES. A symmetric tree of height n > 0 and of width m > 0, in
variables V' = {x1,...,x,}, is defined inductively by:

e The only symmetric tree of height 0 has width 1 and is a variable y;

e A symmetric tree of height n > 1, of width m, in the variables {z;,...,z,,}, is an
expression e, (1, ..., t.) where each t; is a symmetric tree of height n—1 in the variables
Vi, where | ||_, Vi =V.

Here, the operation e is symmetric (so we are really considering equivalence classes), as
indicated in the discussion below.

Note that the inductive step involves splitting the variables into r disjoint non-empty
subsets. The combinatorics of this step are classical: Stirling numbers, of the second kind, are
precisely the number of ways of partitioning a set with n elements into r non-empty partitions
and are often written S(n,r). Thus, we may already begin to see how combinatorics enters
into our subject matter.

We may regard these trees in various ways. For what follows an important perspective
will be to regard them as algebraic expressions: in this view the operations at the nodes are
symmetric, or commutative, thus

.r<t17 s 7t7‘) = .T(t0(1)7 o 7t0(7’))

for any permutation ¢ € S,. One can also regard these expressions as trees (in the graph
theoretic sense) in which the leaves are uniquely labeled (as the root or by one of the
variables) but in which no other node or edge is labeled. Two symmetric trees are the same
if graph theoretically they are isomorphic in a way which respects the leaf labeling.

Here are two representations of the same symmetric tree:

T To T3 T4 Ts T XTr X7 Te T2 T1 T4 Ty I3
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An important way to regard a symmetric tree of height n and width m is as a chain of
surjective maps:
V=W—=V—=...=V,,1=1

in which V' is the set of variables, |V| = m (the width of the tree), |V,_1| = 1, and V;
represents the nodes at the i*'-level. This way of viewing a symmetric tree suggests a rather
compact notation, representing the nodes as equivalence classes of the variables and then
equivalence classes of these etc. Thus, a tree of height n can be represented as an element
of P*(V), where V is the (non-empty) set of variables and such that the iterated union is of
these subsets is just the set of variables. This allows us to represent the height 3 tree above
as:

{{H{zr, 2ot} ({ws}, {za, 251}, {({we, 27} }}

If one wishes to generate all the symmetric trees of a given height and width one is
presented by a combinatoric problem as one must avoid generating trees which are already
represented. In fact, as we shall see, there is a simple method for generating these trees.
Meanwhile here is a classification of the first few symmetric trees separated by height and
width:

width width width
1 2 3
hgt
L lexz 1 \x{‘/ s
hgt
2 T Ty T2 X1 X2 1:2;:’, 93(2/933 @2 Ty T2 I3 93132/933

1.2. THE DIFFERENTIAL OF SYMMETRIC TREES. The differential of a symmetric tree 7 of
height n and width r produces a bag of m trees of height n and width r 4+ 1, where m is the
number of nodes of 7. The new trees of the differential are produced by picking a node and
adding a “limb” to the new variable. The limb consists of a series of unary nodes applied to
the new variable: these unary nodes are necessary in order to retain the uniform height of
the tree.

For example the differential (introducing xs) of the tree below is a pair of trees:

T Ty T2 X1 T2
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while the differential, introducing 3, of the following tree (which is the first tree of the
derivative above) is three trees:

T1 T2 Ty T2 T3 X1 T3 T2 T Lo X3

1.2.1. PROPOSITION. Fvery symmetric tree of height h and width d can be obtained as a
member of the d®-derivative of the unary tree of the height h, denoted u,.

PrOOF. To see this it is perhaps easier to think of the process in reverse: that is of reducing
a tree by stripping out the limb of the tree whose leaf is the last introduced variable: that
is the leaf and all the unary nodes below that leaf. Notice this process retains the height of
the tree but at each step reduces the width by 1. Eventually any tree of height h can be
reduced to the unique tree, ¢;*, of the height h and width 1 (on variable z;). Reversing the
process thus generates all the trees of the required width and height.

Furthermore, this process never generates the same tree twice. If at some step the same
tree had been generated then stripping out the last limb shows that the previous step had
also had a tree represented more than once. This means one can preserve the presence of
repetition back to the starting point. As, in this case, we started with a single tree, ¢;', we
know there can be no repetitions. [

Notation: Recall that (5" is the (unique) height 2 width 1 tree with variable x1; by
7—2\/ =T = Oy, (1)

is meant the bag of trees obtained by formally deriving ¢5' r-times with respect to the given
variables V' = {x,...,z,}. By the above discussion of the combinatorics of trees we know
this is the set of all symmetric trees of height 2 and width r.

2. Faa di Bruno Bundle Categories

Given a Cartesian left additive category, X, we shall construct two categories which we shall
refer to as the Faa di Bruno (bundle) categories, BFaa(X) and a full subcategory Faa(X).
The objects of the category BFaa(X) are pairs of objects of the original category (A, X).
The objects of Faa(X) are those such pairs where X = A. We shall define the maps in
a moment, but it might be worth pausing to remark on the choices of these objects. The
more general pairs (A, X) will prove to be unsuitable when we come to our main theorem
(characterizing Cartesian differential categories as coalgebras for the comonad Faa), but
otherwise the constructions to get us there work most transparently if we keep quite separate
the two roles the object A plays (which is why we prefer to take the objects as pairs (A, A)
rather than as simply objects A). The more general construction BFaa(X) seems actually to
be more natural, and this is an indication that the construction has more general forms which
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we shall not explore here. In the meantime, at the very least it will help both writers and
readers to keep track of variables in positions where they should be additive (where we use
A) or not necessarily additive (where we shall use X). That will be apparent immediately,
as we define the maps of the categories.

The maps or arrows f: (A, X) — (B,Y) of the category consist of infinite sequences of
maps

f= (f*af1>f2>"‘):(A’X) - (B>Y)

As the notation suggests the first map in this sequence is of a slightly different nature than
the remainder. We require simply that f,: X — Y is a map in X. For » > 0 we require

fritAx ... xAxX — B
~————

T

is a symmetric form. This means that it is additive in each of the first r arguments and
symmetric in these arguments. (The reader might think of this as f.: A% /7! x X — B,
apart from the unfortunate fact that X need not have the tensor ®.) It will soon become
apparent that the intended interpretation of f,, is they will be summands in the expression
for higher order differential term. (See the remark following Proposition 2.2.3.)

The difficulty is, of course, to define a composition for these arrows, which is where the
Faa di Bruno convolution is used.

2.1. FAA DI BRUNO CONVOLUTION. The description of the composition fg of two maps in
BFaa(X) is our next objective. The easy part is the composition in the first coordinate which
is just, as expected, given by the composition in X. The description of the composition on
the remaining coordinates is more involved.

First suppose 7 is a symmetric tree of height 2 and width r on the variables V =
{x1,...,2,}. This means that 7 € 7. Furthermore, suppose f:(A4,X) — (B,Y) and
g:(B,Y) — (C, Z) in BFaa(X), then by the component of the composite at 7:

(f*g)rmAx...xAxX —C

T

is meant the map obtained by substituting all the layer one nodes of arity ¢ with f; and the
(one) node of 7 at layer two with the function g;, where j is the appropriate arity. Thus
when 7 is the following tree

Ty T2 T4 T3

then

(f *9)r = g2(f1(w3,2), f3(21, T2, T4, ), f*(x)):MxX — C.
1



We may replace the single tree 7 by any bag T' of trees in 7" in which case we simply
sum the components

(fxg9)r=> n-(f*g)-

n-teT

The Faa di Bruno convolution composition of f and g is then

(fg)r = (f * g)7—2x1 ,,,,, zr

which is well-defined as the result is clearly a symmetric form as permuting the variables of
any 7 € T, " either leaves 7 fixed or produces a new tree which still has the same height
and therefore is in 75 """, Thus we take this convolution to be the composition in the Faa

di Bruno category. We have:

2.1.1. PROPOSITION. For any Cartesian left additive category X, BFaa(X) (and so Faa(X))
as defined above are Cartesian left additive categories.

PROOF. It is quite easily checked that this composition has as identity maps 1 =
(1,70,0,...): (A, X) — (A, X). That the composition is associative follows immediately
from the fact that the composition is given by summing over all the trees of height 2 (and
appropriate width). A threefold composition is then just the sum over all trees of height 3
(and appropriate width) and so immediately associative.

The additive structure on the homsets is given pointwise:

fHag=(fufi,for ) + (991,92, ) = (fs + g L+ 91, f2 + 92, )

This composition is left additive as clearly, with respect to point-wise addition,

(fx(g+9)r=(f*g1)r+ (f*g2)r

as the underlying category is left additive and it immediately follows that this also holds for
bags of such terms.

Furthermore the category has additive products: the product of (A, X) and (B,Y) is
(Ax B, X xY), given f:(C,Z) — (A, X) and ¢:(C,Z) — (B,Y) we define (f,g) as
((fi,9:))2y- The projections are m; = (m;, mom;, 0,0,...) for ¢ = 1,2 and the diagonal A =
(A, mA,0,0,...). These are additive as the first level of the Faa di Bruno category is the
bundle fibration. n
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Clearly we may truncate BFaa(X) to any given number of levels to obtain a left additive
category, BFaa, (X), as the composition at any given level always only involves maps from
that and lower levels. As mentioned above BFaa;(X) is the more standard bundle fibration
of X [BCS 09].

Our aim now is to show that the obvious functor

(A, X) = X
(f*>flaf2>"') — f*

is also a fibration, (and similarly for Faa(X)). Toward this end first note that ¢ is clearly a
left additive functor which preserves the Cartesian structure on the nose. Now consider

(C.2)

e:BFaa(X) — X:

(fgvflvfzv'“)

(Fofr fan)

(4, X) —————(B,Y)
Z 7 X 7 Y

It is easily checked that the map sitting above f is uniquely determined. Thus we have:

2.1.2. PROPOSITION. For any Cartesian left additive category X
e:BFaa(X) — X

is a strict Cartesian left additive functor which is a fibration. Similarly, e: Faa(X) — X is a
strict Cartesian left additive functor and a fibration.

The additive maps in a fiber are precisely those of the form (1, f1,0,0,...) which above
the second component vanish. This means that the fibers are far from being additive.

The maps in the Faa di Bruno category should be thought of as higher-order symmetric
forms. When a differential is already present, as for ordinary differential equations, they will
not, in general, be realizable as the differential forms of a function. However, what is true
- and is the subject of the next section — is that a differentiable function gives rise such a
form so that these forms should be viewed as abstract differentiable functions.

2.2. FUNCTORIAL PROPERTIES OF THE FAA DI BRUNO CONSTRUCTION. It is worth
noting that the Faa di Bruno construction is functorial on the category of Cartesian left
additive categories, CLAdd, where the functors are taken to preserve addition and the product
structure on the nose:



2.2.1. LEMMA. The Faa di Bruno constructions are functors.
BFaa: CLAdd — CLAdd Faa: CLAdd — CLAdd

Proor.  That these are functors is clear provided we are assured that additivity in an
argument is preserved by Cartesian left additive functors, as in that case forms are carried
to forms. The fact that this is true relies on the fact that f: Ax X — B is additive in its first
argument in a left additive category if and only if ((mg 4+ 7m1) x 1)f = (mo x 1) f + (71 x 1) f.
This property is clearly preserved by the Cartesian left additive functors. We then define:

- BFas(X)
BFa3: CLAdd — CLAdd: Fl o lBFaé(F)
Y BFaa(Y)

where BFaa(F)(fs, f1, fa,--.) = (F(f), F(f1), F(f2),...). Faais handled the same way (just
restrict to the appropriate subcategories). [

It is also clear that ¢ = ex: BFaa(X) — X is a natural transformation (natural in X).
However, more is true: there is a functor 6 = dx: BFaa(X) — BFaa(BFaa(X)), introduced
below, natural in X, such that:

2.2.2. THEOREM. (BFaa, ¢,0) is a comonad on CLAdd, as is the restriction to Faa.

The remainder of this section is given over to proving this theorem, which we shall do
for BFaa, leaving the restriction to Faa to the reader. But first, in order to describe the
functor 9: = dx for some Cartesian left additive category X, it will be useful to develop some
conventions and fix notation. First for f € BFaa(X) we write f = (f., f1, f2,...): (4, X)
— (B,Y) where

far A" X X — B (Gue1y ey Gy @) = fr(T) - @i - oo

Notice that we have “highlighted” the additive arguments by writing them as if they were
simple multipliers. This should seem very familiar to the reader familiar with the term
calculus for Cartesian differential categories from [BCS 09]; this is intended, of course.

We then define 0: BFaa(X) — BFaa(BFaa(X)) as follows: on objects, ¢ takes (A, X) to
((A, A), (A, X)). On arrows, f +— 6(f) = (f, fI1, f21...) by setting

fRlA"x X - B (Gsty vy Qay T) > f(T) - Qg v oo G
flrl (A" x A) x (A" x X) — B
11 ... A1p | A1x
— Z Jran—s(T) - oyt - oo Qapn = Ay + oo Gy,

s<n&s<r
&rampy (o | 7)

Qry ... Qpp | Qrx

Ayl .. Qup | T



where ramp;, (| 7) is a condition defined as follows.

ais an injection {1,2,...,n} — {x,1,2,...,7} (which we shall denote n — rUsx for brevity),
with the property that the inverse image o' ({*}) of x has size r — s. v is an injection r — s
— r, whose image is disjoint from that of o (meaning no «a; can equal any ;). The effect
of this is to assign s linear arguments of the form a;;, n — s arguments of the form a,;, and
r — s arguments of the form a;, in such a way that the selected linear arguments will include
just one from each column and just one from each row (including the bottom row and the
right column, but not = z, which is not linear).

Another way to express this is to say that there is an equality of bags:
ramp; (o | ) iff Lay,...;an 71, vl =Un—s)-*,1,...,7f

This is a little complicated, so we shall look at this several ways. First let us explicitly
develop some of these terms. First consider f1%: this is just f as the ramp condition forces
all the action into the indices for the a;, and so there is no choice. We shall display this
sequence in the term logic as follows:

(z) =~ Ffl@
(=) = A

A5
A2 — f2(x) c A1y " A2k
i

Now consider f[!

(a*l I) = fi(®@) - aa

11 | Q1% — () Ayl - A1
Ayl | @ +/fi(z) - an

a1y | A1x (x) As1 * A1 - A2x
a1 | A2x =+ fo(2) - ag - an
+fa(x) - @iy - ag.

Notice how the domain is specified as a product with 2 components, then 4 components,
then 6 components, ...
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Here are the first few terms of f[2:

( (sl Qoo | T ) = fo(2) - au - ae
f3(I) * Ayl c Qy2 * A1

) =+ fo(x) - ar - ase
+fo(z) - @y - aro

f4(I) C sl As2 A1 - Q24

11 A12 | G1x
As10y2 | T

+f3() - ag1 - Gy2 - a14
a1y @12 | Qs +f3($) *Qy1 c Q22+ Q1
(21 Q22 | Ao« =+ f3(x) - arr - auo - ag.
Ay1 Ax2 | T +f3(z) * Ayl - A12 - A2«

+fo(x) - arr - agx

+f2(x) - az - arg

We may visualize this as a combinatoric process in which we start with a symmetric tree
with one node with variables at the base level 0 and either adding a completely new dotted
branch to an a at the current level or turn one of the existing solid branches into a dotted
branch while attaching it to the new variable at the current level corresponding to its original
variable:

Ayl Gy Gx2 A1 Qx2 Qx3 A1x Q11 Ax2 A3 Gkl G122 A3 A1 Gx2 (13

The next step then has two dotted branches entering each node. Here are the results of
applying this process to two of the trees produced above:

Axl  GAx2 A3 Qlx Axl  Ax2  Qx3 A1y . A2x Qx1 422 (43 A1«

(x1  G22 (%3 A1x Gx1 G2 (23 (1«

11 Gx2  Qx3 a1l Qx2 a*3_____.a2* 11 Q22 Gx3 A11 Gx2 423
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As before we then clothe these trees with the particular forms:

Gsx1 Q22 Qx3 Q1% T

to obtain the expressions for f" as described above.
The ramp condition can also be described by selecting partial isomorphisms from r to n,
and thereby selecting certain entries from the following ‘augmented’ r by n variable base:

Q11 ... Qin | A1
Qr1 - oo Qpp | Qrs
Ayp - .. Qyp ‘ i

The selection process involves choosing a partial isomorphism ¢ between the top r rows and
leftmost n columns, that is to say choosing places in the array subject to the following rules:

e At most one variable must be chosen from each of the top r rows (one cannot choose
from the bottom row);

e At most one variable may be chosen from each of the leftmost n columns (one cannot
choose from the rightmost column).

(We call this a “scatter set”.) Here is an example when n =4 and r = 5: ¢ is given by

a11 Q12 A13 A14 | G1x 12 Q13 Q14 | A1«
21 22 (23 Q24 | G2« 21 Q22 (23 Q24 | A2+
@31 432 A33 A34 | A3« 5, a31 32 33 A3+
Q41 Qg2 (43 Q44 | Q4x Q41 Qg2 43 Q4q | Q4
(51 52 (53 A54 | G54 (51| 0A52 |A53 G54 | A5x
Ayl Ax2 A3 Axq | T Ay Q42 Q43 Asd X

This selection can now can be “clothed” as above to represent the term f7:

11 412 A13 A14 | G1x
21 22 (23 Q24 | G2«
31 A32 33 A34 | (3«
Q41 Qg2 (43 Q44 | G4x
a51 G52 (53 A54 | G54
Ayl Ax2 Ay3 Ayq | T

= 7= fe(x) - ai - ase - Gus - 34 - Qo - Qs

The function fg is selected since if s coordinates are selected one needs n + r — s linear
arguments. In this case three coordinates were selected so n+r —s =445 — 3 = 6 linear
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arguments are required. The linear arguments of f are determined by putting in the selected
arguments and arguments from the bottom row and rightmost column corresponding to the
rows and columns not containing a selected argument.

In general, given a partial isomorphism o:r — n, let

oo =0 U{(z, %) |z er\mo}U{(xy) |y € n\mo}

Note that the set o, has r +n — |o| elements. Then we set f7 = f,,(z) e
m=n+r—|ol G.3) €

Then it is clear that the term f,["} is then mapped under ¢ to the sum of the clothed
scatter sets for the r by n augmented argument matrix with which we started:

=32

o€Parlso(r,n)

a; j, where
O x

2.2.3. PROPOSITION.

This perspective suggests a symmetry between f,["} and fy[f} by transposition; of course
this is only possible if the types A and X are the same.

Remark: Tt might help the reader if, at this stage, we recall that the intended interpre-
tation of £ is the differential term

drf<x> Qg Qs
d(z, age, ..\ Qny)

(al*u .o .,an*,x) : (a117 s 7a1n7a1*> e (arlu .o -aarnaar*)

We shall return to this point when we consider coalgebras later.
2.2.4. LEMMA.

(i) fﬂ"] is an additive symmetric form in its first v arquments;

(ii) (f + 9" = " + g
(iii) For any Cartesian left additive functor F, BFaa(F)(f#) = (BFaa(F)(f))";
PROOF.
(i) Recall that £ has the following form:
FI(An x A) x (A" x X) — B
arn ... a1, | Q1
— Z fran—s(Z) - Qag1 o Qapn = Qs = oo s Qo

s<n&s<r
&ramp;,(a | 7)

Qr1 ... Qpp | Gpx
a*l...a*n‘x

we must show that this term is additive in (a;1 ... a; ai) (2 > 0). However, note that
in each term there is only one occurrence of a variable from any i*"-level when i > 0.
This makes the term additive in that variable and thus the whole term is additive in
the whole level.
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(ii) This is immediate as the “differential” in this second sense clearly preserves addition.
(iii) We have:

BFaa(F)(f#) = (F(f), F(f ]>, F(f), ..

= ( (f)[a () ’F(f
= BFaa(F)(f)"

~—
N
~—

where the penultimate step uses the fact that a left-additive functor preserves all the
structure used to construct fﬂ"].

Our first objective is to show why the following is true:

2.2.5. PROPOSITION. §:BFaa(X) — BFaa(BFaa(X)) is a functor which is (as a transfor-
mation dx ) natural in X.

Of course, this is not so easy as ¢ itself involves some combinatorics and the composi-
tion in the Faa di Bruno categories is also combinatoric. In fact, just the composition in
BFaa(BFaa(X)) is a small challenge to understand. This is what we discuss next.

A map in BFaa(BFaa(X)), f: ((4,X), (A, X")) — ((B,Y), (B, Y’)) is a doubly indexed
array

f*,* fl,* f2,* f3,* f4,*
f*,l fl,l f2,1 f3,1 f4,1
f*72 f172 f2,2 f372 f472
f*73 f173 .f2,3 f373 f473
f*74 f174 .f2,4 f374 f474

where the columns are maps in BFaa(X):

fe = (f*,*af*,la .- ) (A/aX/) — (B/’Y/);x = f*(:L')
o = (foss foas- )i (A X)) x (AL X)) = (A" x A", X" x X') — (B,Y);

(a1,...,an | )= fo(x) a1 ... ay,
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so that the individual maps look like:

fex + X' =Y fi.(z)

fom o A" XX = B (aa, . | T) = fan(T) o G
aq aq

Joe o+ X' X' =Y 7 | e fus
a/n n
x x

fom @ (A" x A" x (X" x X') = B;

ayy ... Qim | 01 ay a1 A1m
= fom et

Ap1 -+ QApm | AOn A, [07%%} Anm

1 coe Qym ‘ T x Ayl Ayn,

The first difficulty is to describe what a composition in BFaa(BFaa(X)) looks like; to show
that ¢ preserves composition we shall need a very concrete description of this composition.
The composition in BFaa(BFaa(X)) has two levels: the first step is a convolution over trees
clothed from BFaa(X): but the compositions in these trees must then, in turn, be translated
out into convolutions. We shall now describe the effect of this in one step by describing

(fg)m as
(FDig =D D (f*Drxr)

€T /€Ty

To explain this we must, in turn, unravel the notation (f % g)x-. To do this we first need
to explain what the tree 7 x 7/ looks like. For this it is convenient to view a tree, 7, of height
n, as being given by a chain of surjective maps:

X:X0—>X1—>...—>Xn_2—>Xn_1:1

where X is the set of variables and X, for 0 < ¢ < n are the symmetric operations. If 7’ is
another such tree of height n

Y=YV —>...—Y, ,—Y, 1=1
then their product, 7 x 7’ is the tree:
XXY:X()X}/E)—)XlXYi-)...-)Xn_QXYn_Q—)Xn_lXYn_lz

Note that in this tree each operation h = (hy,hs) € X; x Y; has a matrix of arguments
whose two dimensions are the number of arguments of ~; and the number of arguments of
hs. Consider the two height 2 trees:

T = 02(02(a1,a3), 02(a2,a4)) and T = '2('3(al,az,a4), '1(03))



the product tree may be presented as

23
T X To = .272

3

a1
as 1
21
Q41

ay2
as 2
as 2
aq.2

15

ay 4 1.3
®1

as 4 az3

as 4 2.3
1

aq.4 Q4.3

As before we must clothe the tree to form (f*g)(r xr,) Where this time f, g € BFaa(BFaa(X)).
Recall that this means each of f and g are specified by infinite dimensional arrays and each
fij has an i+1 by j + 1 dimensional argument list (as opposed to ¢ by j dimensional shown
above). Thus we need to fill in the “fringes” which is accomplished as follows:

a1 Air2 Aaip4 | a ays | ap a1
f2,3 a31 G322 aza4|as f2,1 Q33 | as fz,* _as
Ayl Gx2 Qx4 | T Ax3 | T x
(f*g)(nxfz) =922 Q21 Q22 GA24 | Q2 A3 | G2 a2
foz | Qa1 aap agq|ag J21 Q43 | A4 Jo Qg4
Ayl Ay Qya | T ax3 | T o
f*,3 ( Ayl Ax2 Qx4 ‘ x ) f*,l ( Q.3 ‘ x ) f*,* (55)

This then explains what the composition is in BFaa(BFaa(X)).

PROOF (OF 2.2.5).

Our objective is to show that 0 preserves composition, thus that

d(f)o(g) = 0(fg). We show that each is the sum of the same set of composites; formally, the
proof is given by the following equations.
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5(1)3(g) = D> _(6(f) *6(9))mxm (1)

1,72

s <Zf") *<ng') 2)
T1,T2 oii—>rj ij o':k—>l k) s

-z X oo g
T1,T2 a’ oij:0 =755 ij

-y (S @
71,72 0o’ Oij ij

Yy (e B
71,72 o Oij ijco’

= Z Z g7 (.. f7, .0 (6)

T1,T2 0/,045,ij €0’

= > > (fxe)y (7)

on—m 7T,

= 4(f9) (8)

Equations (1 — 3), and (8) are definitional; (4 — 6) are consequences of additivity; the
combinatorial heart of the proof rests with equation (7), which amounts to the following
lemma.

2.2.6. LEMMA. There is an equivalence between the following two sets of data:

e Partitions 1, = (v, ...,ax), 72 = (b1, .., 5) and partial isomorphisms o':k — | and
045 0y — ﬁj fOT’ (Z,j) - O'/

e Partial isomorphism o:n — m and a partition T of o,

where n is the set partitioned by 1, m the set partitioned by T, and o is the union of the
Oij-

PROOF (OF 2.2.6). In this proof, we shall represent a partial isomorphism as the set of pairs
(1,7) where ¢ — j. To start with, we suppose we are given partitions 7, = (aq, ..., ), T2 =
(B1,-.., b)) and partial isomorphisms o’:k — [ and 0;;: ; — B; for (i,5) € o' We must
construct 7, a partition of o,.

Recall that for a partial isomorphism o:n — m,

o =cU{(z,*) |z €n\mo}U{(xy)|y€Em\mao}
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and that |o.| = n +m — |o|. In addition, we shall write o; = [J; 0i; and o; = {J; 0; (and
similarly for o;., 0j.).
We define a partition 7 on o, as

7= {04} jeor U {((ai \moi) X {x}) \ outier U {({¥} x (85 \ m205)) \ 05 }je

This means that pairs from the same 0;;, end up in the same partition, and pairs with
a * end up in the same partition if the “other” elements come from the same «; or ; (and
aren’t already in some 0;;,).

This completes one direction of the equivalence.

Example:

n = ((1,3),(2,5), (4,6))
7 =((1,2,4),(3),(5)) (sok=1=3)
0:3—=3={(1,3),(3,1)} (so e.g. (2,2)is not in o)

o13:1,3} — {5} = {(3,5)}
o3 {4, 6} — {1,2,4} = {(4,4), (6,1)}

Then o = J;;0i:6 — 5={(3,5),(4,4),(6,1)} and n=06,m=5,[o] =3

Furthermore we have

and so
= (((4,4),(6,1),(x,2)),((3,5), (1, %)), ((2,%), (5,%)), ((*,3)))

Before proceeding to the other direction, let’s consider what’s going on. The given
partitions and partial isomorphisms amount to this selection from a variable base:

a1 Q12 a14 a3 ais
as1 Qg2 0434 ass as,s
Q21 A22 24 2.3 25
51 Aas2 as54 Q5.3 as.5
Q41 Q42 |Q44 a43 Q4,5
- Qg2 Ag 4 ae,3 ae,5

and it’s clear that what both sets of data are defining is the following term from the sums
that define 0(f)d(g) and d(fg):

ga(x) - (f3(2) - aaa - ae1 - as2) - (fo(x) - ass - ars) - (fa(@) - oy - as5:) - (f1(x) - ays)

Now we turn to consider the other direction of the equivalence:
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Suppose we are given a partial isomorphism o:n — m and a partition 7 of o,. We must
construct partitions 7 = («v,...,ax), 7 = (B1,..., ) and partial isomorphisms o’: k — [
and o0;;: oy — B for (4, j) € o', of appropriate sizes.

Since 7 is a partition of a matrix, we easily obtain partitions 7y, 7 of the rows and
columns: define 7y = my \ {*}, and let 7 = (71,...,7,); then define 7 = (7}7v;); and
Ty = (7%)i

We can also construct partial isomorphisms from 7, by ignoring the pairs with s, and
taking the remaining pairs from each partition: let 77 = (aq,...,ax) and 5 = (B4,..., )
and then define o' = {(7,7) | (i X B;)No. # 0} and, for (4, j) € o', define 0;; = (a; X B;) N0
Note that by this construction, ¢ is the union of these partial isomorphisms, as required.

This completes the other direction of the equivalence; that these processes are inverse is
clear from their construction.

Example: Let’s take the o of the previous example, with a new 7:

0:6 —5=1{(3,5),(4,4),(6,1)}
so o0, ={(3,5),(4,4),(6,1),(1,%),(2,%), (5, %), (x,2), (x
7= (((3,9)),((4,4),(6,1)), (1,%),(2,%), (*,3)), ((5,%), (+,2)))

Then we obtain

71 =((3),(4,6),(1,2),(5)) and 7 =((5),(4,1),(3),(2))

(note k =1 =4, and n = 6, m =5 as required).

Then o’ = {(1,1),(2,2)} (since {(3,5)} is a pair from o, coming from the first partition
in 7, and the first partition in 7, and {(4,4), (6, 1)} are pairs in o, coming from the second
partition in 7; and the second partition in 72). Also o137 = {(6,1)} and 09 = {(4,4), (3,5)},
whose union is the 0:6 — 5 = {(3,5), (4,4), (6,1)} we started with.

Again, one might wonder what’s going on.

This time we have the following selection from the variable base:

([®2])
Q4.5
ag.5
15
a2 5

( as,5 ) ( as4 Q51 ) ( as3

and the common function term corresponding to this is

96(x) - (fi(x) - ass) - (f2(x) - aaa - ae1) - (fo(@) - are - a2i) - (f1(@) - a5i) - (f1(2) - auz) - (f1(2) - u2)
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Figure 1: A 3-D scatter set

It is clear that 6 preserves identities and that it is natural, as is evident from its combi-
natorial construction, completing our proof of 2.2.5. [

It is also easy to see that de = F' and dBFaa(e) = IBFaa(x)- It remains to show that the
comultiplication is associative:

PROOF (OF 2.2.2). To show it is a comonad we need to show that 6(5(f)) = BFaa(d)(d(f)).

We know that §(5(f)) is defined to be a “matrix” (§(f)!™),,, where §(f)I" = Z 5(f)7,

or—rn
in this case, the sum being a sum of “vectors”

5(f)° = fl(2) @icy @i gy ®idmo Qv ®j¢nso Qs

where the a; ; (etc.) are vectors of terms; notice that we have a 3-D variable base matrix here.
Look at the m™ coordinate of fllo=ll; f,ﬂ;’*” = Z 1. Regard the @; jy Qi gy Qg j AS
o’:(n+r—|o|)—rm

columns in a 3-D matrix. It is from these column-positions that o picks out a scatter set,
and o’ picks (from each column) a “height” (including “height 0” if it doesn’t choose one).
No two columns can have the same chosen “height” (other than 0). An illustration of such
a situation may be seen in Figure 1, where the rows and columns with Os in their entries
are removed from the sides of the cube, and where the partial isomorphisms are indicated
by shading the columns (o) and indicating their heights (¢’: note that two selected columns
have 0 height, and so are not picked by o’).

With this intuition (in which we have replaced * by 0), we can regard the situation as a
three dimensional infinite array of maps f, , ., where the domain of the map is given by a
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three dimensional matrix of variables:

(@ijr) 0...p
0...q
0...r

;
The components of f,,,, are given by choosing a “scattered” subset
0 Cs {(4,5,k)|i=0...7j=0...n,k=0...m}
where being scattered means that:
e For each (i, j,k) € o at least two of ¢, j, and k are non-0 (i.e. not *);
o If (i,5,k), (7,5, k') € o then either they are equal or i # 7', j # j' and k # k.
To each scattered subset we can associate a term f, where

(i,5,k) € S
- Vi=k=0A(i,,)¢&5)
Jo=filz)® § ik | Gk —0n(L 5 )¢S
V(i=j=0A(,_k)&59)

(where l=m+n+r—(|o|+]0c"])), and then
fr,n,m == (ai,j,k) — Z fcr

The point is that BFaa(d)(d(f)) chooses exactly the same sort of 3-D scatter set, the
term above being the natural 3-D generalization of o, albeit possibly making the choice in
a different order, and so produces the same sum, and so equals 6(5(f)).

]

We have arrived at the point now where we want to take the subfibration Faa as our main
focus. We want to show that a coalgebra for this comonad, i.e. a Cartesian left additive
category X with a functor D: X — Faa(X) such that De = 1 and DFaa(D) = D9, in fact
consists of a Cartesian left additive category X with a differential combinator D, making X
a Cartesian differential category.

First let us observe what happens on objects. Setting D(X) = (Do(X), D1(X)) and using
the first coalgebra equation gives X = ¢(D(X)) = £(Do(X),D1(X)) = D1(X) so that we
have D;(X) = X. Using the second coalgebra equation we have:

(DFaa(D))(X) = Faa(D)(D(X)) = Faa(D)(Do(X), X) = ((Do(Do(X)), Do(X))(Do(X), X))

(D6)(X) = 6(Do(X), X) = ((Do(X), Do(X)), (Do(X), X))

so that Dy(Dy(X)) = Do(X), that is Dy is an idempotent on objects. But in Faa(X), the
objects were pairs (A, A), rather than the more general (A, X). So in fact, since Dy(X) =
D1(X) = X, Dy is more than idempotent: it is the identity on objects.
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The fact that we have a functor into the Faa di Bruno category means we have a functor
into the ordinary bundle category and this immediately means that [CD.1]-[CD.5] [BCS
09] hold for the combinator

A-L B
AxXA—B
D[f] = f®
where we write D(f) = (f, fV, f®,...), the first entry being forced to be the original
function f by the unit equation for coalgebras. The second coalgebra equation, DFaa(D) =
Dé, then equates two different tables of functions:

f f(l) f(2) f(3) f(4)

Fo Toe Lol Folm Tae
Faa(D)(D(f)) = ;(a E;u)g(s) E;@)g(s) E;(s)g(s) E;(4)§(3)
f(4) (f(l))(4) (f(2))(4) (f(3))(4) (f(4))(4)
fooo o o bl
FO D(f)i D(f)g D(f)g D(f)ﬁ
_| @ o)y ppd bl o),
o(D =
P) f® D(f)éf D(f)éj D(f) D(f)éj
9 pHy ppd oY ol

If these are in fact equal, i.e. if X,D form a coalgebra, then in particular (fM)1) =
D( f)[ll], which when it is unravelled says:

< Zi il ) — (fOHM ( W ) ' < o ) = fP@) - au - an + fD(2) - an

T A1
which yields [CD.6] by setting a., =0

and [CD.7] as

We have now proven:



22

2.2.7. PROPOSITION.  FEwvery coalgebra of the Faa di Bruno comonad Faa is a Cartesian
differential category.

It is worth noticing that we have in fact proved more: the coalgebra is in the following
sense determined by the differential combinator of the Cartesian differential category: each
f™ is in fact determined by D[f] = f). For, as we have just seen,

“ ) _ (fy ( o ) . < 2*1 )

FP() - au - are + fO(2) - 0
= f(Q)(l') "Gy - Q15+ 0
= f(2)(9:) Qa1 - 1

In this manner, we can reconstruct f® from (f))®, and similarly (by induction) f+1
from (f)A),

3. Higher-Order Differentials and Chain Rules

Our objective is now to show that for any Cartesian differential category the differential
supplies a coalgebra structure map into the Faa di Bruno category:

A = (4,4
S (LSO

which is a section of the fibration e:Fad(X) — X, where the f(™ are the higher-order
derivatives defined below, based on the combinator D. The existence of this functor is the
structural generalization of Faa di Bruno’s original result on the higher differentials.

The technical details in this section require us to link the Faa di Bruno convolution
composition to the higher-order chain rules. This involves some calculations for which we
shall use the term logic [BCS 09].

In the notation of the previous section, our specific goal is to show, by induction on j,
that D(f)g»l] = (fU) | and hence that the two tables representing Faa(D)(D(f)) and 6(D(f))
are equal. (The other coalgebra equation is obvious from the definition of D(f).)

D:X — Faa(X)

3.1. HIGHER-ORDER DERIVATIVES. First we define the higher-order derivatives recursively
by:

(1)
%(p)-u = :—i(p)-u
dm™t dd(ij;l)t ()~ up oo Uy
Note that it is immediate from this definition that the n'-order derivative is additive in each
Uy, . .., U, thus the higher differentials define symmetric forms.

In order understand higher-order derivatives it is useful to start with some basic obser-
vations:
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3.1.1. LEMMA.

(i) W(O).u:g—;(s)-u, x not free in s

(ii) di (@) (5) - up = 22 (o) Ly that is ©2L (s) - uy - up = ot (s) - ug - wr, T not free

dz dz dx dx
m Uy, U
oy 4 ()
(i) L (s) - ug vty = 2L (8)  Us() * - .- Uo(n) fOr any o € S,,.

Remark: Item (ii) is actually equivalent to [Dt.7] [BCS 09], and is a more direct
translation of [CD.7].

Proor.
(i)

dt[a:;;s/y] 0)-u = :—;(s) <d(:vd—xk s)
dt dz ds
- SO (FO w00
dt

= @(s)u

(0) u) because z + s[0/z] =0+ s =s

(7i) The problem in this calculation is that in order to swap u; and uy we need to differen-
tiate with respect to variables not involved in the position of the differential. The first
part of the lemma allows us to arrange this - but we have to use it twice:

d4 (z) - uy d4 (2') - uy

dz (S) cUy = T (S) - Uo
ddt[x1+m’/x} 0) - u
da’
AL (0) e+ 5/a]
N dZL’Q ( ) 2
ddt[xl—l—:cg-l—s/x] 0)-u
_ Er— L(0) - us
dLUQ
ddt[xl—l—:cg-l—s/x] (O) Uy
dxo
= . by [Dt.7
——20)u by D7)
di (2) - u
= (d; - () w

(i4i) The result is trivially true for n = 1 and the previous result proves it for n = 2.
Assuming it true for n+ 1 we show it is true for n+ 2 by showing how we can exchange
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Upt1 and Up4o:

d(n+2)t(s).u ‘ » » B dd(”d*;)t(l.).ul.“.-un_i_l()‘u
dx 1 .- n+1 n+2 dz p n+2
dd(é)t(:c)-u U
R
dx mr
dx "
d(n+2)t
= dz (S)'Ul'---'un+2'un+1

This demonstrates that the second-order differential gives rise to a symmetric form and
whence that the n'"-order differential gives a symmetric form.

A useful fact to note is that differentiating a higher-differential with respect to one of its
linear components satisfies the generalization of [Dt.6]:

3.1.2. COROLLARY. In any Cartesian differential category

ddgt(s)~u1-...-x-...-un
dx

d™¢

5 (S) Uy vo Up e Uy

(s') - uy

Proor.  We use symmetry to move the variable into the last place at which point the
linearity of the differential can be used:

dd(n)t S Ut T uw
dz () 1 "(S')_ur
dz
(n)
dddzt(s)'Ul'---'ur—l'ur+1...-un-x /
- dx (3>'U7«
du(uluilu i)
d dt r r+1 n )
(n—1)
de dtls(ul Ur_1-ur+1...-un)
B dz (Z)'ur
d™t
T 4z () - Uy + e Upg = Upgg * e s Uy + Uy
d™t
- 4z () Uy v eeUpr Uy



25

3.2. CHAIN RULES. Let us start by explicitly calculating the second-order chain rule. We
do this by first proving a lemma which tells us how to differentiate differentials with respect
to variables not in the term. We shall then generalize this calculation to obtain the general
form of the higher order chain rule in a Cartesian differential category.

3.2.1. LEMMA. When y & t we have

() @) "
B8 gy o= S ol (6o )+ S ol (S0 )
PROOF.
dj—i (p)-u N
T(P)
4z ()b  du

W( plp'yl; ulp'/y)) - (jz(p).u’@(p/)_u,)

= S Gy (L)) + = PR - (S0

d@¢

= el (60 )+ g - ()

We may apply this to get the second-order chain rule:

@ fla(x dLE (@) -
LD ).y = T D,
442 (g(x)) - (%42 (2) - u
- dgd ) ).

- B - (2 ) ) (U2 )

x @g(x
+dJ;EC ) (9(p)) - (dT”CIx() (p) - us - uQ)

With each function [z — f(x)] in a differential category we can associate a series of
functions:

fO2)u = dJ;f:) () -y
2)
f(2)(2)'U1'U2 — d d-/;(x) (U1'U2)'
F(2) U, = 49/ () Uy Up)
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This allows us in a Cartesian differential category, given a sequence of functions
f1 fa fn
Xl —)Xg—)Xg—)...—)Xn+1
and a symmetric tree 7 of height n and width r with variables U = {uy, ..., u,} (which we
should think of as the leaves of a tree) to define the meaning of (f; *...x f,)-(2) inductively

by:

e Variables (_),u = u; become variables. (Recall ¢y" is defined in Proposition 1.2.1 as the
unique tree of height 0, width 1, and leaf or variable u;.)

e Given a chain of one or more maps we define

(fl Kook fn—l—l)om(n ..... Tm)(z>

(m) €T
= Sl R i x Ea G irx Fda(2)

For T a bag of trees we define:

(froeor fup)7(2) =D (i * far1)(2)

T€ET

Examining the second-order chain rule we see that it is:

FOE) - (V) ) - (00 - w) + V) (0P(E) )

which is precisely (f* g)72(2) relating the higher-order chain rules to these symmetric trees.
We now have the following key result:

3.2.2. PROPOSITION. [In any Cartesian differential category:

(i) The first differential of a composite of functions is given by :

dfn(..., fi(z)...)
dx

(2) u=(fix...x fa)u(z)

(i) For any bag of trees, T, of height n and width r on variables {uy, ..., u,}

d(fl*---*fn)T(I)
dx

(2) ~tupp1 = (fix... % fn)@urHT(x)(Z)
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(i) We may use the ordinary chain rule to prove the result. First note that for n = 0 the

result holds as:

d
() =u=(2)-u
Suppose now the result holds for n then:
df, (oo df, df.(...
dfn
= Wil (A D (Brx f)a(2)
= (fix.oxfax fura) LH(Z)
(7i) The differential of a variable w (2) - upp1 = 0.
The differential of (fi x...% fat1)e.(n,..7)(2) 18
d(.fl*"'*fti-gl)'r(ﬁ ~~~~~ Tr)(z) (Z) Uy
L@ (r L f(2) ) (frxe ok ) (2) e (ke x f)en (2) :
- dz Z) *Urt1
4 Sl A(2)00), (Ll filohd (5) ).
d%l(@(x) e [ (fike ok f)n (2), (W (2) - Upi1)-
d(z,zq1,...,2,) ce
(fl *ook fn)‘rr (Z) (4d(f1*...2£n)w(2) (Z) ’ ur+1)
4 fulooo fi(2) -0, ((frxeoox fa)u(2)-
d=Le8 (@) g | (fkex fdn (), | ((Frxox fado,om (2)-
d(z,zq1,...,2,) cee
(fix.ox fa)n(2) ((fu* "*fn>aur.+17—r(z>)
w (fix.xfn)r (2)-(fix. o fn)r (2
) <(>) Dl O Bnetldn® ) - (e fu)in(2)
+ T(fn(~~~f1(Z)m))'rl'c(iill*---*fn)rz(Z)'---'(f1*~~~*fn)-rr(z) (Z) . (fl . *fn>aur.+17—l (Z)
+...
= TR U F)u @) (e x fn ) (ke ) (2
o) (£ (. ..fl(z) ) (frxe ok fa)ou  m () (frke o ox fu)m(2) -
- (fl*---*fn)‘rr(z)
+...
L) (£ (i) ) (i x fan(2) o ik o, (2)

(fix..ox fn)an,r(2)
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where we have used the first result and inductively the result on trees of lesser height.
]
We have (obviously) proved the generalization of Faa di Bruno’s result:

3.2.3. COROLLARY. In any Cartesian differential category:

(n) x
AP ) ot = (g3

Furthermore

A fo(fuca (- (f(x) ) _
dz () ur g = (fix fox o fu) e (2)

This means that for any Cartesian differential category X there is a functor
D:X — Faa(X): f = (f, /U, 1?,..)
We are now in a position to show this gives a coalgebra.

3.2.4. THEOREM. A Cartesian differential category is exactly a coalgebra for the Faa di
Bruno comonad.

ProoOF. We just need to show that these are equal:

f f(l) f(2) f(3) f(4)
Fo Tt Tole Feln el
Faa(D)(D(f)) = ;@) E;u)g(z) E}c(z)g(s) E}c(s)g(s) E;@)g(s)
f(4) (f(l))(4) (f(Z))(4) (f(3))(4) (f(4))(4)
fooopHY pH? o) ol
fO o o oY D)y
s = | 12 P Dy DY D(f)
@ Dy DAY DY D)y
9 oy ppd oY ol

which in turn essentially means we need to show that D(f )E’] = (f®)W, which we shall do
by induction on j. The case j = 0 is clear: D(f)Li] = f0 = (fO)©_ So we shall suppose
that D(f )E»Z]_l = (f9)U=1 is true, and prove the corresponding equation for j.
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First
- d(@)
L dDESE (1) gy g
(f(z))(]) = dz (a*l,...,a*i,x) . (&11,...,@12',1'1)"'(ajl,...,aji,l'j)
d(ay,...,a; )
d(jfl)M(x).a ay
d(afj..,ai,x) : (al, e, G, ZL’) . (all, coey g, ZL’l) s (aj_ll, sy A1, l’j_l)
d(ay,...,a;x)
(a*l, ceey Qg ZL’) . (ajl, ey Cl,ji, Z’j)
a1 a4 aq
(1]
dD(f); 4
aj—11 ... Qj—14 | Gj—1
a a; T
= d(a1 @ x)l (a*lu .,a*i,x) : (aj17 '7aji7xj)
AR 79
a1 a4 aq
(1]
dD(f);,
j—11 .. Aj-14 | Gj—1
ai ... Qs T
- da; . (@a) - ai
+
ail . a1; a1
dD(f);,
aj—11 .- @j—14 | Gj—1
Ay .. a; X
- (0.:) - a (4
dai *7 1
a1 Q14 ai
dD(f);,
aj—11 ... Qj—14 | Qj—1
1 av | @
+ T) T
dﬂf ( ) J
where, in the sum (%), in each term the bottom row of the variable base matrix consists of
“starred” variables a,, except in one position where one has a,,, m =1,...,5 — 1, with the

4™ term having x instead of z, (the sum being over all such terms).
To facilitate the calculation of D( f)g-d, we recall a bit of notation. In particular, Propo-
sition 2.2.3 expressed 4§ in terms of partial isomorphisms (or “scatter sets”):

= > I
o€Parlso(j,i)

We regard Parlso(j —1,4) C Parlso(j, i), and for any o € Parlso(j, ), mo (respectively moo)
is the set of indices appearing in the domain (respectively codomain) of o. Note that

Parlso(j,i) = Parlso(j — 1,4) U{c’ U (j,k) | o' € Parlso(j — 1,i),k ¢ w0’}
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and
pf'= Y Dff and DL, = Y D7

o€Parlso(j,7) o’ eParlso(j—1,7)

so that

Z Dfa _ Z Dfa’ + Z Dfa’u(j,k)

o€Parlso(y,1) o’ €Parlso(j—1,3) o’ € Parlso(j — 1,1)
0<k<q
k ¢ moo’
dDf [au/ay, . . ., aw/a;]
= x) T +
Z: d$ ( ) J
o
’ —_—
Z deU [a*l/al, NN ,a*,-/a,-, N ,ZE’/ZIZ’] (a*k) i
ok dCLk

(where as usual, the hat indicates a term suppressed).

3.2.5. LEMMA. For o’ € Parlso(j — 1,1),

dDf [a, /ay, . .
dx

deU/[aﬂ/ah...,m,...,x/x] (a) - 15 = 0 if k € moo’
day, k)RR T DGR otherwise

PROOF. (of the lemma) Some notation: for ¢’ € Parlso(j — 1,1), we shall write

20l 4y gy = Df

Df" =Df+)(z) e x

® aj ® a
ré¢mo’ 7d(l,k) ead’ tk m

m ¢ moo’
Then note that:

deol [CL* /a PRI aa'*i/ai]
- d;: (z) -z

= D) cay - m - ag - G

Df°

de"/[a*l/al,...,m,...,x/x]
dak

(au) - ajr

0if k € myo’ since a; does not occur
Df+s)(z) o T, e a

[ ] a QA
= ré¢mo’ (l,w) € o’ Y ¢ mo’,m#j o ik

= Dfo'Y0k) otherwise

which proves the lemma m
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Finally, to complete the proof of Theorem 3.2.4, we just sum these terms to get the same
sum (x) for D(f)[_’] as we got for (f@)0);

J

D) = > Df

o€Parlso(j,1)

Z dD f° [a*1/a1>""a*i/ai] ( )

prm— x‘ . .
- dz v
o
! de”’[a*l/al,...,m,...,x/x]
+ D) g (@sr) - aji
k=1 o Uk
ail N ai; aq
dD()}L
aj—11 .. QAj—14 | G5j—1
Q51 Qg X
= T)-x
d:L’ ( ) J
aill N ai; ay
dD(f)L,
i Aj—11 . Gj—14¢ | Aj—1
a Qe Qg x
+ *1 d k *4 (a,*k) . ajk
k=1 O

Finally, these constructions establish the following equivalence.

3.2.6. THEOREM. The category of coalgebras for the comonad Faa is equivalent to the
category of Cartesian differential categories and Cartesian differential functors (Cartesian
left additive functors which preserve the differential combinators).

Conclusion

The Faa di Bruno construction was a complete surprise to us. It meant, in particular, that
Cartesian differential categories were as common as left additive categories. For, given any
left additive category X, Faa(X) is always a Cartesian differential category and, furthermore,
the cofree one on X. Initially our motivation was simply to give ourselves assurance that
the axiomatization of Cartesian differential categories was correct and we thought to add
something about higher-order chain rules as an appendix to [BCS 09]. However, as the
combinatorics of the higher-order chain rules began to unfold before us, it was clear that
this was something of quite independent interest. Still we did not expect to be staring at a
combinatorial comonad which governed differentiation.

Not only is this construction a rich potential source of models of differential algebras (such
as differential combinatory algebras and A-calculi) but also it is clear that this structure is
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an integral part of what it means to be differentiable. This poses questions not only for our
original setting of differential categories [BCS 06], but also for the on-going development of
notions of differentiability: for example the work (with Crutwell and Gallagher) on differen-
tial restriction categories (partial map categories) and on tangential structure for manifold
categories. It also raises a broader question of whether there are other closely related comon-
ads which determine interesting subvarieties of differential structure. For example, there is
a subcomonad given by the sequences which eventually vanish: these abstractly capture
“polynomial” differentiability. Is it possible to capture other notion of differentiability using
the same coalgebraic techniques: e.g. can differentiability given by Taylor expansion be so
described?

After distributing an earlier version of this paper, we learned of two earlier works treating
the combinatorics of Faa di Bruno algebraically (as a Hopf algebra). Although they are not
directly relevant to our approach, the reader might wish to consult them as well [EP 10, FG
05].
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