
Differential categories

R.F. BLUTE,1 J.R.B. COCKETT,2 and R.A.G. SEELY3

1 Department of Mathematics, University of Ottawa,
585 King Edward St., Ottawa, ON, K1N6N5, Canada. rblute@mathstat.uottawa.ca
2 Department of Computer Science, University of Calgary,
2500 University Drive, Calgary, AL, T2N1N4, Canada. robin@cpsc.ucalgary.ca
3 Department of Mathematics, McGill University,
805 Sherbrooke St., Montréal, PQ, H3A 2K6, Canada. rags@math.mcgill.ca

Received 3 July 2005, Revised 31 May 2006

Following work of Ehrhard and Regnier, we introduce the notion of a differential

category: an additive symmetric monoidal category with a comonad (a “coalgebra

modality”) and a differential combinator, satisfying a number of coherence conditions. In

such a category, one should imagine the morphisms in the base category as being linear

maps and the morphisms in the coKleisli category as being smooth (infinitely

differentiable). Although such categories do not necessarily arise from models of linear

logic, one should think of this as replacing the usual dichotomy of linear vs. stable maps

established for coherence spaces.

After establishing the basic axioms, we give a number of examples. The most important

example arises from a general construction, a comonad S∞ on the category of vector

spaces. This comonad and associated differential operators fully capture the usual notion

of derivatives of smooth maps. Finally, we derive additional properties of differential

categories in certain special cases, especially when the comonad is a storage modality, as

in linear logic. In particular, we introduce the notion of categorical model of the

differential calculus, and show that it captures the not-necessarily-closed fragment of

Ehrhard-Regnier differential λ-calculus.

1. Introduction

Linear logic (Girard 87) originated with Girard’s observation that the internal hom in

the category of stable domains decomposed into a linear implication and an endofunctor:

A ⇒ B = ! A −◦ B

The categorical content of this observation, viz. the interpretation of ! as a comonad

and, given appropriate coherence conditions, the fact that the coKleisli category was

cartesian closed, was subsequently described in (Seely 89). Thus, the category of stable

domains came to be viewed in a rather different light as the coKleisli category for the

Blute, Cockett, & Seely 2

comonad ! on the category of coherence spaces. Coherence spaces, of course, provided,

for Girard, the principal model underlying the development of linear logic.

More recently, in a series of papers (Ehrhard 01; Ehrhard & Regnier 05; Ehrhard

& Regnier 03; Ehrhard 04), Ehrhard and Regnier introduced the differential λ-calculus

and differential proof nets. Their work began with Ehrhard’s construction of models of

linear logic in the categories of Köthe spaces and finiteness spaces. They noted that these

models had a natural notion of differential operator and made the key observation that the

logical notion of “linear” (using arguments exactly once) coincided with the mathematical

notion of linear transformation (which is essential to the notion of derivative, as the

best linear approximation of a function). This observation is central to the decision

to situate a categorical semantics for differential structure in appropriately endowed

monoidal categories.

Our aim in this paper is to provide a categorical reconstruction of the Ehrhard-Regnier

differential structure. In order to achieve this we introduce the notion of differential

category which captures the key structural components required for a basic theory of

differentiation. As with Ehrhard-Regnier models, the objects of a differential category

should be thought of as spaces which possess a modality (a comonad);† the maps should

be thought of as linear, while the coKleisli maps for the modality should be interpreted

as being smooth.

It is important to note that differential categories are essentially a more general notion

than that introduced by Ehrhard and Regnier in two important respects. First, we draw

attention to the fact that differential categories are monoidal, rather than monoidal

closed or ∗-autonomous, additive categories. This is crucial, as it allows us to capture

various “standard models” of differentiation which are notably not closed. Second, we

draw attention to the fact that we do not require that the ! comonad be a “storage”

modality in the usual sense of linear logic (as described by (Bierman 95) for example).

Specifically we do not require the comonad to be monoidal, although we do require

that the cofree coalgebras carry the structure of a commutative comonoid: these we

call coalgebra modalities. Again this seems necessary, as the standard models which we

consider do not necessarily give rise to a full storage modality. That said, we do agree

that the special case of storage modalities has an important role in this theory.

It is natural to ask what the form of a differential combinator should be in a monoidal

category with a modality ! . A smooth map from A to B is just a linear map f : ! A
// B. To see what the type of its differential should be, consider a simple example

from multivariable calculus: f(x, y, z) = 〈x2 + xyz, z3 − xy〉. This is a smooth function

from IR3 to IR2. Its Jacobian is
„

2x + yz xz xy

−y −x 3z2

«

. Given a choice of x, y and z, i.e.

a point of IR3, we obtain a linear map from IR3 to IR2. But the assignment of the linear

map for a point is smooth. So, given a map f : A ⊆ IRn // IRm, one gets a smooth

map D(f): A // L(IRn, IRm): for a point x ∈ A, D(f) is given by the Jacobian of f

† In fact, (Ehrhard & Regnier 05) does not require a comonad, since they do not have the promotion
rule in that system. But they indicate that their system extends easily; this is not the significant
difference between the two approaches. In fact, (Ehrhard & Regnier 03) does have promotion, via the
λ calculus.

Differential categories 3

at x. In general the type of the differential should be D(f): ! A // A −◦ B. As we are

working in not-necessarily-closed categories, we simply transpose this map, and obtain a

differential combinator of the form:

f : ! A // B

D[f]: A⊗ ! A // B

So, from our perspective a differential category will be an additive symmetric monoidal

category with coalgebra modality and a differential combinator, as above, which must

satisfy various equations familiar from first year calculus.

We might also remark that this example suggests Smooth(IR3, IR2) = Lin(IR2, S(IR3)),

where S(V) = smooth functions from V to R. Consider f as above, a smooth map IR3

// IR2, which may be thought of as a pair of smooth maps IR3 // IR and hence as a

linear map IR2 // S(IR3). We shall see this again in Proposition 3.5.

In Section 2 we introduce these notions and, in particular, we note that it suffices to

differentiate the identity on ! A, as all other differentials can be obtained from this by

composition. This gives the notion of a deriving transformation, which was introduced

in (Ehrhard 01). Given the appropriate coherence conditions, we show that having a

deriving transformation is equivalent to having a differential combinator. The remainder

of Section 2 is devoted to examples. We show that the category of sets and relations and

the category of sup-lattices have very simple differential structures. For a more significant

example, we take (the opposite of) the category of vector spaces. The free commutative

algebra construction here provides us with a comonad, and when elements of that algebra

are interpreted as polynomials, the usual notion of derivative of polynomials provides a

differential combinator.

In Section 3, we extend this idea to general smooth functions by introducing a new

construction which we call S∞. This is a general construction which, given a polynomial

theory over a rig R, allows one to produce a coalgebra modality on the opposite of the

category of R-modules. If, furthermore, the polynomial theory has partial derivatives —

so it is a differential theory — then this can be translated into a differential combinator

associated with the modality. The construction shows how to associate a differential

combinator with any reasonable notion of smoothness.

In section 4, we explore certain special cases of the notion of differential category. In

particular, we consider the case where the comonad actually satisfies the additional re-

quirements of being a storage modality, i.e. a model of the exponential modality of linear

logic. In the case where the category additionally has biproducts, we define the notion of

categorical model of the differential calculus, and show that this structure characterizes

the not-necessarily-closed version of the Ehrhard-Regnier differential λ-calculus.

1.1. Acknowledgements

All three authors wish to acknowledge NSERC Canada for the support we receive for our

research. We also wish to thank the University of Ottawa (for the support the second

author received while on sabbatical there) and PIMS and John MacDonald (for the sup-

Blute, Cockett, & Seely 4

port we all received when finishing the paper at UBC). We thank the anonymous referees

for their detailed reports which contained many helpful comments and suggestions.

2. Differential categories

Throughout this paper we will be working with additive‡ symmetric monoidal cate-

gories, by which we mean that the homsets are enriched in commutative monoids so that

we may “add” maps f + g, and there is a family of zero maps, 0. Recall that there are

important examples of categories which are additive in this sense but are not enriched in

Abelian groups: sets and relations (with tensor given by cartesian product), suplattices,

and commutative monoids are all examples. To be explicit, the composition in addi-

tive categories, which we write in diagrammatic order, is “biadditive” in the sense that

h(f + g) = hf + hg, (f + g)k = fk + gk, h0 = 0 and 0k = 0. The tensor ⊗ is assumed

to be enriched so that (f + g)⊗ h = f ⊗ h + g ⊗ h and 0⊗ h = 0.

A differential category is an additive symmetric monoidal category with a coalgebra

modality and a differential combinator. Often a coalgebra modality arises as a “storage

modality” and a monoidal category with such a modality is a model of linear logic.

However, we have purposefully avoided that nomenclature here because the modalities

we consider are not restricted to commutative coalgebras, nor do they necessarily satisfy

the coherences expected of storage. Recall that, for a storage modality, the coKleisli

category is a cartesian category, which is canonically linked to the starting category by

a monoidal adjunction. This adjunction turns the tensor in the original category into a

product and produces the storage isomorphism (sometimes called the Seely isomorphism):

! (A×B) ∼= ! A⊗ ! B.

It is because the computational intuition of Girard’s “storage” modality does not have

significant resonance with the developments in this paper — although storage modalities

are an important basis for some of the examples — that we have chosen to use the

nomenclature derived from a more traditional source. When a category is additive or,

more precisely, commutative monoid enriched, the comonoid associated with the modality

is precisely what the majority of algebraists would simply call a coalgebra and it seems

natural to emphasize, in this context, these connections. We shall use the term “storage

modality” when we wish to impose the extra coherence conditions usual in categorical

models of linear logic.

The notion of a differential combinator is the new ingredient of this work and it is

described below. Before introducing this notion it is worth emphasizing to the reader the

peculiar role the modality plays in this work. Here, as in Ehrhard’s original work, the

modality is a comonad for which the coKleisli category is regarded to be a category of

differentiable functions: the maps of the parent category are the linear maps. The idea

‡ We should emphasize that our “additive categories” are commutative monoid enriched categories,
rather than Abelian group enriched; some people might prefer to call them “semi-additive”. Further-
more, we do not require biproducts as part of the structure at this stage. In particular, our definition
is not the same as the one in (Mac Lane 71).

Differential categories 5

of a differential combinator is that it should mediate the interaction between these two

settings.

2.1. Coalgebra modalities

Definition 2.1. A comonad (! , δ, ε) on an additive symmetric monoidal category, X, is

a coalgebra modality in case each object ! X comes equipped with a natural coalgebra

structure given by

∆: ! X // ! X ⊗ ! X e: ! X // >

where > is the tensor unit. This data must satisfy the following basic coherences:

1. (! X, ∆, e) is a comonoid:

! X

∆

�� KKKKKKKKKK

KKKKKKKKKK

ssssssssss

ssssssssss

! X ! X ⊗ ! X
1⊗e

oo
e⊗1

// ! X

! X
∆ //

∆

��

! X ⊗ ! X

∆⊗1

��
! X ⊗ ! X

1⊗∆
// ! X ⊗ ! X ⊗ ! X

2. δ is a morphism of these comonoids:

! X
δ //

e
!!C

CC
CC

CC
C !! X

e
||zz

zz
zz

zz

>

! X
δ //

∆

��

!! X

∆

��
! X ⊗ ! X

δ⊗δ
// !! X ⊗ !! X

Note that we have not assumed that ! is monoidal or that any of the transformations

are monoidal. This may occasionally be the case but, in general, it need not be so.

A coKleisli map ! A // B shall be viewed as an abstract differentiable map from A
// B so that the coKleisli category X! is the category of abstract differentiable maps

for the setting. Of course, for this to make sense we shall need more structure which shall

be introduced in the next subsection. Meanwhile the following are examples of coalgebra

modalities on additive categories:

Example 2.2.

1. For any cartesian category the identity monad is a coalgebra modality where the

coalgebra structure is given by the diagonal and final map on the product.

2. A storage modality (the “bang” from linear logic) on a monoidal category is a rather

special example. These are discussed further in section 4.

3. One way to obtain a coalgebra modality is to take the dual of an algebra modality.

There are a number of such examples from commutative algebra (see (Lang 02)):

(a) The free algebra T (X) =
⊕∞

r=0 X⊗r

, where ⊕ denotes the biproduct;

(b) The free symmetric algebra Sym(X) =
⊕∞

r=0 X⊗r

/Sr;

(c) The “exterior algebra” Λ(X) =
⊕∞

r=0 X⊗r

/A is the free algebra generated by the

module X subject to the relation that monomials v1v2 . . . vn = 0 whenever vi = vj

where i 6= j. This makes the algebra anti-commute in the sense that xy = −yx.

Blute, Cockett, & Seely 6

We will use this source of examples in section 3 and provide a general way of con-

structing such monads which will allow us to capture all the classical notions of

differentiation.

In addition, there are a number of other, less standard, examples which we shall briefly

describe in the course of developing the general theory.

2.2. Differential combinators

Definition 2.3. For an additive symmetric monoidal category C with a coalgebra modal-

ity ! , a (left) differential combinator DAB : C(! A, B) // C(A⊗ ! A, B) produces for

each coKleisli map f : ! A // B a (left) derivative DAB[f]: A⊗ ! A // B:

! A
f // B

A⊗ ! A
D[f]

// B

which must satisfy the coherence requirements ([D.1] to [D.4] below), the principal one

of which is the chain rule.

It should be mentioned that if the monoidal category is closed, a differential combinator

can be re-expressed as

A⊗ ! A
D[f] // B

! A
D̂[f]

// A−◦B

In other words, from the original differentiable map, one obtains a new differentiable

map into the space of linear transformations. Intuitively this associates with each point

of the domain the linear map which approximates the original map at that point.

A differential combinator must satisfy the usual property of a functorial combinator:

namely that it is additive, in other words D[0] = 0 and D[f + g] = D[f] + D[g], and it

carries commuting diagrams to commuting diagrams, so DAB is natural in A and B:

! A

!u

��

f // B

v

��
! C g

// D

A⊗ ! A

u⊗!u

��

D[f] // B

v

��
C ⊗ ! C

D[g]
// D

In addition a differential combinator must satisfy the following four identities:§

§ Recall that we use “diagrammatic notation”: fg means “first f , then g”.

Differential categories 7

[D.1] Constant maps:

D[eA] = 0

[D.2] Product rule:

D[∆(f ⊗ g)] = (1⊗∆)a−1
⊗ (D[f]⊗ g) + (1⊗∆)a−1

⊗ (c⊗ ⊗ 1)a⊗(f ⊗D[g])

where f : ! A // B, g: ! A // C, and a⊗, c⊗ are the associativity and commu-

tativity isomorphisms

[D.3] Linear maps:

D[εAf] = (1⊗ eA)uR
⊗f

where f : A // B and u⊗ is the unit isomorphism

[D.4] The chain rule:

D[δ !f g] = (1⊗∆)a−1
⊗ (D[f] ⊗ δ !f)D[g]

that is

! A
δ // !! A

!f // ! B
g // C

A⊗ ! A
1⊗∆

// A⊗ (! A⊗ ! A)
a
−1
⊗

// (A⊗ ! A)⊗ ! A
D[f]⊗(δ !f)

// B ⊗ ! B
D[g]

// C

Each of these identities should accord immediately with the intuition of a derivative as

they are quite literally simply a re-expression in categorical terminology of the standard

requirements of a derivative. Constant functions have derivative 0. The tensor of two

functions on the same arguments is morally the product of two functions (on the unit >

this is literally true) thus the second rule is just the familiar product rule from calculus.

The derivative of a map which is linear is, of course, constant. The derivative of the

composite of two functions is the derivative of the first function composed with the

derivative of the second function at the value produced by the first function: in other

words the chain rule holds.

2.3. Circuits for differential combinators

Readers of previous papers by the present authors will be familiar with our use of circuits

(or proof nets adapted to our context); a good introduction to our circuits, relevant to

their use here, is (BCST 97; BCS 96). It is no surprise that a similar technique will work

in the present situation: we may represent the differential operator using circuits, using

a “differential box”:

7→
! A ! A

B B

A ! A

B

C
CC

�
��

f f

Blute, Cockett, & Seely 8

Note that the naturality of D means (by taking u = 1) that one can move a component

in and/or out of the bottom of a differential box (and so, in a sense, the box is not really

necessary— we shall return to this point soon).

=

! A! A

B B

D D

AA ! A! A C
CC

C
CC

�
��

�
��

ff

v v

The rules can also be represented as additive circuits:

[D.1] Constant maps:

! A

>

A ! A

>

C
CC

�
��

= 0eA

[D.2] Product rule:

! A

! A ! A

! A

! A
! A

! A

! A

! A

B

B

C

C

A

AA

! A�
��

C
CC

∆ ∆∆

⊗

⊗⊗B ⊗ C

B ⊗ CB ⊗ C
B ⊗ C

= +

�
�

�
�

�
�

�
�

�
�

�
�

f ffg gg

[D.3] Linear maps:

=

A ! A

! A

B
B

A

A ! A

B

C
CC

�
��

����

�
�

�
�eε

f
f

Differential categories 9

[D.4] Chain rule:

B

B

B B

! B ! B

C

C
C

C

A A! A

! A

! A ! A

! A

! A

! A

! A

C
CC

�
��

� �
� �

=

�
�

�
�∆

f

g

ff

g

Notice that in the chain rule we use two sorts of boxes: the differential box and the

comonad box (BCS 96). This latter box embodies following inference

! A
f // B

! A
f[=δ !f

// ! B

which allows an alternate presentation of a monad originally given by (Manes 76) and

was used to describe storage modalities in (BCS 96), following the usage introduced in

(Girard 87).

So we can restate our fundamental definition:

Definition 2.4. A differential category is an additive symmetric monoidal category

with a coalgebra modality and a differential combinator.

As an example of a simple derivative calculation using circuits, let us calculate the

derivative of u2 (which the reader may not be surprised to discover is 2u ·u′). We suppose

there is a commutative multiplication A ⊗ A
• // A, so u2 means u • u. We make use

of some simple graph rewrites introduced in (BCST 97); in particular, one can join and

then split two wires with tensor nodes without altering the identity of the circuit.

⊗

�
�

�
�⊗

=

A B

A B

A⊗ B

A B

Then, using the other rewrites for a differential combinator, we obtain D(u2) =

Blute, Cockett, & Seely 10

! A

! A
! A ! A! A

! A

A

A

A A

A

A

A A

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�∆

∆

∆ ∆

u

u

u uu

u

u u

•

•

⊗

• •

B
BB

B
BB

�
��

�
��

=

= +
E
E
E
E
E
E

�
�

�
�⊗

= 2u • u′

2.4. Deriving transformations

It is convenient for the calculations we will perform to re-express the notion of a differ-

ential combinator into a more primitive form. A special case of the functorial property

of a differential combinator is the action on identity maps

! A
1!A

//

!u

��

! A

!u

��
! B

1!B

// ! B

A⊗ ! A

u⊗!u

��

D[1!A] // ! A

!u

��
B ⊗ ! B

D[1!B]
// ! B

which produces a natural transformation below the line. The map D[1!A] produced in

this manner shall be denoted dA both for simplicity and to remind us that it is natural

in A.

This map occurs in another revealing instance of functoriality for the differential com-

Differential categories 11

binator:

! A
1 //

!1

��

! A

f

��
! A

f
// B

A⊗ ! A

1⊗!1

��

dA // ! A

f

��
A⊗ ! A

D[f]
// B

Consequently the natural transformation dA actually generates the whole differential

structure. In terms of circuits this says that the boxes are “bottomless” which justifies

our circuit notation for the differential combinator, and motivates the following circuit

notation for the differential operator, with a component box representing the combina-

tor box “shrunk” to having only an identity wire inside. Usually we shall use the first

notation, which represents a differential box “pulled back” past the identity; if we wish

to emphasise the component dA, we shall use the second notation. The third is the

equivalent presentation using a differential box.

dA ==

! A

! A! A

A

A A

! A

! A ! A

! A

C
CC

C
CC

C
CC

�
��

�
��

�
��

The properties of a differential combinator may be re-expressed succinctly in terms of

this transformation.

Definition 2.5. For an additive category with a coalgebra modality, a natural transfor-

mation dX : X ⊗ ! X // ! X is a (left) deriving transformation in case it satisfies

the following conditions:

[d.1] Constant maps: dAeA = 0;

[d.2] Copying: dA∆ = (1⊗∆)a−1
⊗ (dA ⊗ 1) + (1⊗∆)a−1

⊗ (c⊗ ⊗ 1)a⊗(1⊗ dA);

[d.3] Linearity: dAεA = (1⊗ e)uR
⊗;

[d.4] Chaining: dAδ = (1⊗∆)a−1
⊗ (dA ⊗ δ)d ! A

.

In this definition, for completeness we have included all the coherence transforma-

tions: in subsequent calculation we shall omit these (without loss in generality in view of

Mac Lane’s coherence theorem), assuming that the setting is strictly monoidal. Although

we cannot drop the symmetry transformation c⊗: A⊗B // B⊗A, this does allow, for

example, [d.2] to be stated a little more succinctly as

dA∆ = (1⊗∆)(dA ⊗ 1) + (1⊗∆)(c⊗ ⊗ 1)(1⊗ dA).

Blute, Cockett, & Seely 12

Of course, the circuit representation has the advantage of handling all the coherence

issues painlessly. These rules may be presented as circuits as follows.

[d.1] Constant maps:

e

=! A

>

A ! AC
CC

�
��

0

[d.2] Copying:

=! A

A A A

! A

! A

! A ! A
! A

! A
! A

! A! AC
CC

�
��

�
��

C
CC

C
C
C
CC +E

E
E
EE

�
�

�
�

�
�

�
�

�
�

�
�

∆

∆ ∆

[d.3] Linearity:

ε

=! A

A

A A! A ! AC
CC

�
��

����

�
�

�
�e

[d.4] Chaining:

δ

δ

=! A

A

A

!! A
!! A

! A

! A !! A

! A

C
CC

�
��

�
�

�
�∆

The main observation is then:

Proposition 2.6. The following are equivalent

(i) An additive symmetric monoidal category with a deriving transformation for its coal-

gebra modality;

(ii) A differential category.

Differential categories 13

Proof. It is easy to check that a differential category satisfies all these identities. Con-

versely the interpretation of the derivative using the natural transformation is D[f] =

dAf as indicated above. When dA is natural this immediately provides a functorial combi-

nator D[f] = dAf . The fact that this combinator satisfies the requirements of a derivative

are all straightforward with the possible exception of the chain rule:

D[δ !f g] = dAδ !f g

= (1⊗∆)(dA ⊗ δ)d!A !f g

= (1⊗∆)(dAf ⊗ (δ !f))dBg

= (1⊗∆)(D[f]⊗ (δ !f))D[g].

This means that in order to check that we have a differential category we may check

[d.1]–[d.4] which are considerably easier than our starting point.

2.5. Examples of differential categories

Below are some basic examples of differential categories:

2.5.1. Sets and relations On sets and relations (where the additive enrichment is given by

unions and the tensor is given by cartesian product) the converse of the free commutative

monoid monad (commonly known as the “bag” functor) is a storage modality with respect

to the tensor provided by the product in sets. There is an obvious natural transformation

dX : X ⊗ ! X // ! X : x0, {[x1, . . . , xn]} 7→ {[x0, x1, . . . , xn]}

given by adding the extra element into the bag.

Proposition 2.7. The category of sets and relations with the bag functor and the above

differential transformation is a differential category.

Proof. (sketch) Let us check the identities:

[d.1] dX produces only non-empty bags; e is the partial function whose domain is the

empty bag, sent to the point of >. So the composite of d with e is 0.

[d.2] The copying map relates a bag to all the pairs of bags whose union it is. If one adds

an element and then takes all the decompositions it is the same as taking all the

decompositions before adding the element and then taking the union of the possi-

bilities provided by adding the element to each component of each decomposition.

[d.3] ε: ! X // X is the relation which is the converse of the map which picks out the

singleton bag corresponding to x ∈ X , so ε is the partial function whose domain

is the singletons, which are mapped to themselves. Hence the only pairs which

survive dXεX are those which were paired with the empty bag.

[d.4] The relation δ: ! X // !! X associates to a bag all bags of bags whose “union”

is the bag. If one adds an extra element to a bag when one decomposes the bag

in this manner the added element must occur in at least one component. This

Blute, Cockett, & Seely 14

means this decomposition can be obtained by doing a binary decomposition which

first extracts the component to which the element is added on the left while the

right component contains what remains and can be decomposed to give the original

decomposition when the left component (with extra element) is added.

Exactly the same reasoning can be used to show that the power set monad, which is

also a coalgebra modality for relations, has a differential combinator obtained by adding

an element to each subset.

2.5.2. Suplattices The category of suplattices, sLat, that is the category of lattices with

arbitrary joins and maps which preserve these joins, is a well-known ∗-autonomous cat-

egory (Barr 79). It contains as a subcategory the category of sets and relations. It has a

storage modality which can be described in various ways. It is the de Morgan dual of the

free ⊕-algebra functor (see (Hyland & Schalk 03)), but more explicitly it has underlying

object ! X =
⊕∞

r=0 X⊗r

/Sr and comultiplication ∆: ! X // ! X⊗ ! X , which, because

sums and product coincide in this category, is determined by maps

X⊗i+j

/Si+j
// X⊗i

/Si ⊗X⊗j

/Sj :

m
∏

i=1

xk1

i 7→
∨

ki=k′i+k′′i

m
∏

i=1

x
k′i
i ⊗ x

k′′i
i

intuitively this maps a monomial to the join of all the pairs which when multiplied give

the element. The fact that we are taking the joins over all possibilities makes the map

invariant under the symmetric group.

Clearly, ! X is also the free commutative algebra with the usual commutative multi-

plication of monomials. This actually makes ! X a bialgebra (we will develop these ideas

further below in section 4). Clearly ! X not only has a comonad structure but also the

monad structure which goes with being the free symmetric algebra. The comonad co-

multiplication is certainly a coalgebra morphism but it is not an algebra morphism and

so fails to be a bialgebra morphism.

There is an obvious map d: X ⊗ ! X // ! X which simply adds an element in by

multiplying by that element (using the symmetric algebra structure). It is now straight-

forward to prove the following (the proof is in fact essentially the same as for sets and

relations, Proposition 2.7).

Proposition 2.8. sLat with respect to the above structure is a differential category.

2.5.3. Commutative polynomials and derivatives The category of modules, ModR (over

any commutative ring R) has a free non-commutative algebra monad T = (T, η, µ). On

Mod
op
R the free non-commutative algebra functor gives a comonad for which each T (X)

has a natural coalgebra structure. There is an “obvious” differential structure on these

non-commutative polynomials which is determined by where it takes the monomials:

d(xm1

1 xm2

2 . . . xmn
n) =

∑

x = xi
m = mi

mxm−1⊗m1x
m1−1
1 . . . mi−1x

mi−1−1
i−1 mi+1x

mi+1−1
i+1 . . . mnxmn−1

n .

Differential categories 15

which, written in a more traditional form, is just

d(f) =
∑

x⊗
∂f

∂x
.

This satisfies [d.1], [d.2], [d.3] but, significantly, fails [d.4]. However, if one examines

what goes wrong, it becomes clear that the free commutative algebra monad S = (S, η, µ)

should have been used.

The Eilenberg-Moore category for the commutative algebra monad is just the category

of commutative R-algebras. While the Kleisli category is the subcategory of polynomial

algebras. This gives, for a field K, the following diagram of adjoints (where the right

adjoints are dotted):

VecK
F S

//

FS

%%KKKKKKKKKKKKKKKKKKKKK
(VecK)S = cPolyK��

��

GS

ss

(VecK)S = cAlgK

GS

^^

Here cAlgK is the category of commutative K-algebras, the Eilenberg-Moore category of

the monad S, and cPolyK is the Kleisli category of the monad S, which consists of the

polynomial algebras over K (MacLane 71). If we consider the effect of S on the opposite

category Vec
op
K then S becomes a comonad and also a coalgebra modality which has

coKleisli category cPoly
op
K . It is well known that both cPoly

op
K and cAlg

op
K are distributive

categories (Cockett 93). In particular, this coKleisli category is the category of polynomial

functions, since a map f : V // W in cPoly
op
K is a map f : W // S(V) in VecK and as

such is determined by its basis: if W = 〈w1, w2, . . .〉 then f is determined by its image on

these elements. But f(wi) =
∑

j=1,... ,m aij

∏

k=1,... ,l v
⊗skij

k where this is a finite sum and

vk are basis elements of V . Thus, our original function f may be viewed as a collection,

one for each wi, of polynomial functions in the basis of V . Composition in cAlg
op
K is by

substitution of these polynomial functions.

Our aim is now to provide a very concrete demonstration of:

Proposition 2.9. Vec
op
K with the opposite of the free commutative algebra monad is a

differential category.

Furthermore, this is the standard notion of differentiation for these polynomial func-

tions so that we have exactly captured the most basic notion of differentiation for poly-

nomial functions taught in every freshman calculus class. The proof will occupy the

remainder of this subsection.

Proof. Observe that if X is a basis for V , then Sym(V) ∼= K[X], the polynomial ring

over the field K (Lang 02). We will only verify the axioms [d2] and [d4]. We remind the

reader that we are working in the opposite of the category of vector spaces, and so the

maps are in the opposite direction. They take on the following simple form.

Blute, Cockett, & Seely 16

— ∆ becomes the ring multiplication.

— e is the inclusion of the constant polynomials.

— ε is the inclusion V // K[X] : v 7→

n
∑

i=1

rixi, where v =

n
∑

i=1

rixi, where this time the

xi are regarded as basis elements of V .

— As already remarked: d(f(x1, x2, . . . , xn)) =

n
∑

i=1

xi ⊗
∂f
∂xi

— Remembering that a basis for a polynomial ring is given by monomials, a typical basis

element for !! V is given by [w1]
k1 [w2]

k2 . . . [wm]km . Then the map δ simply erases

brackets.

We shall do an elementwise argument on basis elements. To verify [d2] we have, for

the lefthand side:

f ⊗ g
∆ // fg

dV //
n

∑

i=1

xi ⊗
∂(fg)

∂xi

=

n
∑

i=1

xi ⊗

[

∂f

∂xi

g +
∂g

∂xi

f

]

=
n

∑

i=1

xi ⊗
∂f

∂xi

g +
n

∑

i=1

xi ⊗
∂g

∂xi

f

For the right-hand side, we get

f ⊗ g
dV ⊗1+(c⊗⊗1)(1⊗dV) //

n
∑

i=1

xi ⊗
∂f

∂xi

⊗ g +

n
∑

i=1

xi ⊗
∂g

∂xi

⊗ f

1⊗∆ //
n

∑

i=1

xi ⊗
∂f

∂xi

g +

n
∑

i=1

xi ⊗
∂g

∂xi

f

As to [d4], for the left-hand side,

[w1]
k1 [w2]

k2 . . . [wm]km
δ // wk1

1 wk2

2 . . . wkm
m

dV //
n

∑

i=1

xi ⊗
∂(wk1

1 wk2

2 . . . wkm
m)

∂xi

The right-hand side yields

[w1]
k1 [w2]

k2 . . . [wm]km
d!V //

m
∑

j=1

kjwj ⊗ [w1]
k1 . . . [wj]

kj−1 . . . [wm]km

dV ⊗δ //
m

∑

j=1

n
∑

i=1

kjxi ⊗
∂wj

∂xi

⊗ wk1

1 . . . w
kj−1
j . . . wkm

m

1⊗∆ //
m

∑

j=1

n
∑

i=1

xi ⊗ wk1

1 . . . kjw
kj−1
j

∂wj

∂xi

. . . wkm
m

The result follows immediately from the product rule.

It is worth remarking that a direct proof, calculating the terms explicitly from an

Differential categories 17

explicit definition of dV :

dV : ! V // V ⊗ ! V :

{

e 7→ 0
∏m

i=1 vsi
ri

7→
∑m

j=1 vrj ⊗ sj ·
∏m

i=1 v
si−δij
ri

where δi,j is the Kronecker delta (δij = 1 when i = j and is zero otherwise) is also

possible, although the calculations are quite appalling(!).

3. The S∞ construction

One might well wonder whether there is not a better approach to understanding this

sort of differential operator on Vec
op
K . After all, this calculation provides a theory which

only covers the polynomial functions: even at high school one is expected to understand

more, for example, the trigonometric functions!

Our aim in this section is therefore to show that, no matter what one cares to take as

a (standard) basis for differentiable functions, one can construct an algebra modality on

VecK for which there is a deriving transformation on Vec
op
K which recaptures this notion

of differentiation. We call this the S∞ construction as it allows one to realize various

notions of infinite differentiability as differential combinators on Vec
op
K .

We shall break this program down into stages. First we shall give a general method

of constructing monads on a module category, ModR, from an algebraic structure on

a rig R. A rig is a commutative monoid enriched over any additive system and the

algebraic structure is what we shall call a polynomial theory. Next we will show that if this

algebraic structure supports partial derivatives then there is a corresponding (co)deriving

transformation on the module category so that the dual category with this structure

becomes a differential category.

3.1. Polynomial theories to monads

Let R be a commutative rig (that is a commutative monoid enriched over any additive

structure) then ModR is a symmetric monoidal closed category with (monoidal) unit

R. Furthermore, there is an underlying functor U : ModR
// Sets. We shall suppose

that U(R) is the initial algebra for an algebraic theory, T, which includes the theory

of commutative polynomials over R. In other words, the constants of T are exactly the

elements of R, that is r ∈ R if and only if r ∈ T(0, 1) (where T(n, m) denotes the

hom-set of the algebraic theory). The multiplication and addition are binary operations

of T, so that ·, + ∈ T(2, 1), which on constants are defined as for R and otherwise

satisfy the equations of being a commutative algebra over R. Note that T(n, 1) includes

R[x1, . . . , xn]; for instance · and + correspond to x1x2 and x1 +x2. We call such a theory

T a polynomial theory over R.

An example of such a theory, which is central to this paper, for the field IR, is the

“smooth theory” of infinitely differentiable continuous real functions (and the same can

be done for the complex numbers). The smooth theory then has T(n, 1) = C∞(IRn, IR)

with the constants being exactly the points in IR. Substitution determined by the usual

substitution of functions gives the theory its categorical structure. Clearly this introduces

Blute, Cockett, & Seely 18

many more maps between the powers of reals than are present in VecIR. We shall now

show how to construct a monad on this category to represent these enlarged function

spaces.

We shall use the following Kleisli triple form of a monad.

Proposition 3.1. (Manes 76) The following data defines a monad S: X // X: an

object function S together with assignments

(X
f // S(Y)) 7→ (S(X)

f]

// S(Y)) (X ∈ X) 7→ (X
ηX // S(X))

satisfying three equalities: η]
X = 1S(X), η f] = f , and f]g] = (fg])].

Note that these ensure that S is a functor and η and µ = 1]

S(X) are natural transforma-

tions which form a monad in the usual sense.

The object part of the monad which we shall call ST is defined as follows:

ST(V) = {h: V ∗ // R | ∃v1, . . . , vn ∈ V, α ∈ T(n, 1) so h(u) = α(u(v1), . . . , u(vn))}

where V ∗ = V −◦R where R is the monoidal unit in ModR. Note that h is really a map

between the underlying sets of V ∗ and R, and so is not generally going to be linear.

We may think of h as a “V -instantiation” of α ∈ T(n, 1). The choice of v1, . . . , vn

determines scalars so that h may be viewed as α ∈ T(n, 1) operating on these scalars.

But note that if V is finite dimensional over a field R, one can choose a basis once-and-for-

all, making unnecessary the choice of v1, . . . , vn, so h may be identified with α (although

different choices of the vi may produce different h’s, the set of h’s is invariant). So in this

case, ST(V) essentially is the theory T; for instance, if T is the “pure” theory of polynomial

functions, ST(V) (as a set) is the symmetric algebra Sym(V), since Sym(V) ∼= R[X], for

X a basis for V ((Lang 02) for example). Once we know ST(V) is a monad, this will give

the symmetric algebra monad (Proposition 3.5). When V is infinite dimensional over a

field, v1, . . . , vn determines a finite dimensional subspace on which h can be viewed in

this finite dimensional way, and so again, for the pure polynomial function theory, we get

the symmetric algebra.

To show this is well defined we must show that this set forms an R-module, in fact, a

commutative R-algebra.

Lemma 3.2. ST(V) as defined above is a commutative R-algebra.

Proof. We define h1 + h2 pointwise, where hi(u) = αi(u(vi1), . . . , u(vini)), as

(h1 + h2)(u) = α1(u(v11), . . . , u(v1n1
)) + α2(u(v21), . . . , u(v2n2

))

which may be put into the required form with a suitable use of dummy variables, using

the additivity of the theory T. We define multiplication and multiplication by scalars

similarly, so for example:

(r · h)(u) = r · α(u(v1), . . . , u(vn)).

The requirement that scalar multiplication, addition, and multiplication satisfy the equa-

tions expected of a commutative algebra now imply that this is an R-algebra.

Differential categories 19

Of course, as yet, this is just a mapping on the objects. To obtain the monad we need

to define the ()] operation and the η. Suppose f : V // ST(W); we define f]: ST(V)
// ST(W) as

[h: u 7→ α(u(v1), . . . , u(vn))] 7→ [h′: u′ 7→ α(f(v1)(u
′), . . . , f(vn)(u′))]

where f(vi) = [u′ 7→ βi(u
′(v1i), . . . , u′(vnii))], and η is evaluation:

η: V // ST(V) : v 7→ [u 7→ u(v)],

taking α to 1.

We must start by checking that both f] and η are R-module maps. For η this is almost

immediate so we shall focus on f]. We have:

r · f]([u 7→ α(u(v1), . . . , u(vn))])

= r · [u′ 7→ α(f(v1)(u
′), . . . , f(vn)(u′))]

= [u′ 7→ r · α(f(v1)(u
′), . . . , f(vn)(u′))]

= f](r · [u 7→ α(u(v1), . . . , u(vn))])

f](h1 + h2)

= f]([u 7→ α1(u(v11), . . . , u(v1n1
)) + α2(u(v21), . . . , u(v2n2

))])

= [u′ 7→ α1(f(v11)(u
′), . . . , f(v1n1

)(u′)) + α2(f(v21)(u
′), . . . , f(v2n2

)(u′))]

= f]([u 7→ α1(u(v11), . . . , u(v1n1
))]) + f]([u 7→ α2(u(v21), . . . , u(v2n2

))])

= f](h1) + f](h2)

Proposition 3.3. ST is a commutative coalgebra modality on Mod
op
R .

Proof. We first check the monad requirements and that f] is a homomorphism of

algebras. The monad requirements are given by:

(η)]([u 7→ α(u(v1), . . . , u(vn))])

= [u 7→ α(η(u)(v1), . . . , η(u)(vn))]

= [u 7→ α(u(v1), . . . , u(vn))]

f](η(v))

= f]([u 7→ u(v)])

= [u 7→ f(v)(u)]

= f(v)

Blute, Cockett, & Seely 20

g](f]([u 7→ α(u(v1), . . . , u(vn))]))

= g]([u′ 7→ α(f(v1)(u
′), . . . , f(vn)(u′))])

= g]([u′ 7→ α(β1(u
′(v11), . . . , u′(v1m1

)), . . . , βm(u′(vm1), . . . , u′(vmnm)))])

= [u′′ 7→ α(β1(g(v11)(u
′′), . . . , g(v1m1

)(u′′)), . . . , βm(g(vm1)(u
′′), . . .

. . . , g(vmnm)(u′′)))]

= [u′′ 7→ α(g]([u′ 7→ β1(u
′(v11), . . . , u′(v1m1

))](u′′)), . . .

. . . , g]([u′ 7→ βn(u′(vn1), . . . , u′(vnmn))](u′′))]

= [u′′ 7→ α(g](f(v1))(u
′′), . . . , g](f(vn))(u′′))]

= [(fg])]]([u 7→ α(u(v1), . . . , u(vn))])

The fact that f] is a an algebra homomorphism is given by checking the multiplication

and the unit is preserved. The unit is the constant map [u 7→ e] and f] applied to any

constant map returns the same constant map (but with a different domain). Thus, the

unit is preserved. For the multiplication we have:

f]([u 7→ α(u(v1), . . . , u(vn))] · [u 7→ β(u(v′1), . . . , u(v′m))])

= f]([u 7→ α(u(v1), . . . , u(vn)) · β(u(v′1), . . . , u(v′m))])

= [u′ 7→ α(f(v1)(u
′), . . . , f(vn)(u′)) · β(f(v′1)(u

′), . . . , f(v′m)(u′))]

= [u′ 7→ α(f(v1)(u
′), . . . , f(vn)(u′))] · [u′ 7→ β(f(v′1)(u

′), . . . , f(v′m)(u′))]

= f]([u 7→ α(u(v1), . . . , u(vn))]) · f]([u 7→ β(u(v′1), . . . , u(v′m))]).

At this point, notice that a modality requires only that the (co)multiplication of the

(co)monad is a homomorphism but when one combines this with naturality one ob-

tains that f] : = ST(f) µ is a homomorphism. Conversely, if each f] is a homomorphism

then (fη)] = ST(f) is a homomorphism showing that each free algebra is naturally

a (co)algebra. Also, as the multiplication of the (co)monad is given by (1)] it must

be a homomorphism. In other words, f] being a homomorphism is equivalent to the

(co)multiplication (and unit) being natural and the (co)multiplication being a homomor-

phism.

An equivalent way to state the proposition, then, is to say that (ST, ()], η) is a monad

on ModR for which each free object is naturally a commutative algebra and for which

each f] is an algebra homomorphism.

There are various well-known options for the algebraic theory T over the field of real

(or complex) numbers. For example, a fundamental example is the following.

Corollary 3.4. If T is the “pure” theory of polynomial functions, then ST(V) is the

symmetric algebra monad Sym(V).

Another example suggested above, for real vector spaces, one can take all the infinitely

differentiable functions C∞(IRn, IR). There are many important subtheories of this: for

example, one can take the subtheory of everywhere convergent power series (or of every-

where analytic functions).

Differential categories 21

Finally, we should connect these examples with our fundamental intuition that linear

maps ! A // B are smooth maps A // B:

Proposition 3.5. If T: = Poly is the “pure” theory of polynomials

Lin(IRm, ST(IRn)) ∼= Lin(IRm, Sym(IRn)) ∼= Poly(n, m)

If T: = Smooth is the smooth theory C∞(IRn, IR)

Lin(IRm, ST(IRn)) ∼= Smooth(n, m)

Proof. (Sketch) The basic idea is that this really just reduces to the case m = 1 (in both

cases), where the result is obvious.

Note: if the maps seem to be “backwards”, do not forget that we are working in the

dual categories in these examples.

3.2. From differential theory to deriving transformation

In order to ensure there is a deriving transformation one needs to require that the alge-

braic theory T has some further structure. We shall present this structure as the ability to

take partial derivatives. Such a theory will allow us to extend the proof of Proposition

2.9 to a much more general setting. It is convenient for the development of these ideas

to view the maps in T(n, 1) as terms x1, . . . , xn ` t and this allows us to suppose there

are “partial differential” combinators:

x1, . . . , xn ` t

x1, . . . , xn ` ∂xi t

we shall frequently just write ∂it for the partial derivative with respect to the ith coor-

dinate. We then require the following properties of these combinators:

[pd.1] Identity: ∂xx = 1

[pd.2] Constants: ∂xt = 0 when x 6∈ t;

[pd.3] Addition: ∂x(t1 + t2) = ∂xt1 + ∂xt2;

[pd.4] Multiplication: ∂x(t1 · t2) = (∂xt1) · t2 + t1 · (∂xt2)

[pd.5] Substitution: ∂zt[s/x] = (∂xt)[s/x] · ∂zs + (∂zt)[s/x].

A polynomial theory over a rig R with differential combinators is called a differential

theory over R. Almost all the rules should be self-explanatory except perhaps for [pd.5]

which is a combination of the chain rule and the copying rule natural for terms.

Given a differential theory T over R we may define an induced co-deriving transfor-

mation d: ST(V) // V ⊗ ST(V) in ModR by:

[u 7→ α(u(v1), ., u(vn))] 7→

n
∑

i=1

vi ⊗ [u 7→ ∂i(α)(u(v1), . . . , u(vn))]

(Note the nullary case [u 7→ r] 7→ 0.) Now it is not immediately clear that this is even

well-defined, since if α(u(v1), ., u(vn)) = β(u(v′1), ., u(v′m)) for all u, we must show that

Blute, Cockett, & Seely 22

(for all u)

n
∑

i=1

vi ⊗ [u 7→ ∂i(α)(u(v1), . . . , u(vn))] =

m
∑

j=1

v′j ⊗ [u 7→ ∂j(β)(u(v′1), . . . , u(v′m))].

We shall say V is separated by functionals† in case whenever v′ is not dependent

on v1, . . . , vn in an R-module V , then for any functional u there is for each r ∈ R a

functional ur such that u(vi) = ur(vi) but ur(v
′) = r. When we are working enriched

over Abelian groups it is necessary and sufficient to find a functional u0 with u0(vi) = 0

and u0(v
′) = 1. Given this condition to obtain the ur for u one may set ur = r · u0 + u,

conversely, one may set u0 = uu(v′)+1−u. We shall say ModR is separated by functionals

if each V ∈ ModR is separated by functionals.

Clearly this is a rather special property. It implies, in particular, that each finitely

generated algebra has a well-defined dimension which is determined by the cardinality

of the minimal spanning set. This certainly holds for all categories of vectors spaces

over fields. Thus, the reader may now essentially start thinking modules over fields. This

property is sufficient also to ensure the well-definedness of this transformation:

Lemma 3.6. If ModR is separated by functionals and T is a differential theory on R

then the co-deriving transformation is a well-defined natural transformation.

Proof. We first observe that if [u 7→ α(u(v1), . . . , u(vn))] then we may assume that the

set {v1, . . . , vn} is independent. For if v1 =
∑n

j=2 rj · vj then we can adjust α to be

α′(u(v2), . . . , u(vn)) = α

n
∑

j=2

rj · u(vj), u(v2), . . . , u(vn)

Notice that this adjustment does not change the definition of d as:

d([u 7→ α(u(v1), ., u(vn))])

=

n
∑

i=1

vi ⊗ [u 7→ ∂iα(x)[u(v)/x]]

= v1 ⊗ [u 7→ ∂1α(x)[u(v)/x]] +

n
∑

i=2

vi ⊗ [u 7→ ∂iα(x)[u(v)/x]]

=
n

∑

j=2

rj · vj ⊗ [u 7→ ∂1α(x)[u(v)/x]] +
n

∑

j=2

vj ⊗ [u 7→ ∂jα(x)[u(v)/x]]

=

n
∑

j=2

vj ⊗ ([u 7→ (∂1α(x)rj + ∂jα(x)[
∑

rjxj/x1])[u(vj)/xj]

=

n
∑

j=2

vj ⊗ [u 7→ ∂jα
′(x)[u(vj)/xj]]

† By “functionals” we mean “linear functionals”.

Differential categories 23

Thus we may assume that in both α and β the elements v1, . . . , vn and v′1, . . . , v′m
are independent as otherwise we can do a replacement. Furthermore, doing the same

reasoning we may replace the arguments of β by an expression in v1, . . . , vn whenever they

are dependent on these elements. This gives a minimal independent set which possibly

has some extra points not in v1, . . . , vn. However, using the separation property we now

know that β cannot depend on these points! Thus, β can be completely expressed in

term of the points v1, . . . , vn and this shows the map is well defined.

We also need to show that dV is a map of R-modules: however, this is immediate from

the properties of the partial derivatives. Finally we need to establish naturality. For this

we have:

d(ST(f)([u 7→ α(u(v1), . . . , u(vn))]))

= d([u 7→ α(u(f(v1)), . . . , u(f(vn)))])

=

n
∑

i=1

f(vi)⊗ [u 7→ ∂iα(u(f(v1)), . . . , u(f(vn)))]

= [f ⊗ ST(f)]
n

∑

i=1

vi ⊗ [u 7→ ∂iα(u(v1), . . . , u(vn))]

= [f ⊗ ST(f)](d([u 7→ α(u(v1), . . . , u(vn))])).

Proposition 3.7. If T is a differential theory over R, and ModR is separated by func-

tionals, then Mod
op
R becomes a differential category with respect to the algebra modality

(ST, ()], η) on ModR and the induced co-deriving transformation.

Proof. It remains to establish the properties of a differential combinator. The argument

is the same as that used in Proposition 2.9 where we implicitly used familiar properties

of partial derivatives. Here we do an explicit calculation to mimic that calculation based

on the axiomatic structure of a differential theory. The point of course is that the S∞
construction provides the formal support required to make this argument. One should

think of ST(Rn) as smooth real-valued functions. The various contortions in the definition

occur for two reasons. First, one has to make this covariant; second, it has to be defined on

infinite-dimensional spaces. Once that is sorted out, then the simpler proof goes through

verbatim. In retrospect, the point of introducing polynomial theories and differential

theories is to present a general abstract framework in which the proof can be carried out.

[d.1] For scalars we have d(e(r)) = d([u 7→ r]) = 0.

Blute, Cockett, & Seely 24

[d.2] The copying rule gives:

[d∆]([u 7→ α(u(v1), . . . , u(vn))], [u 7→ β(u(v′1), . . . , u(v′m))])

= d([u 7→ α(u(v1), . . . , u(vn)) · β(u(v′1), . . . , u(v′m))]))

=
n

∑

i=1

vi ⊗ [u 7→ ∂u(vi)α(u(v1), . . . , u(vn)) · β(u(v′1), . . . , u(v′m))]

+

m
∑

j=1

v′j ⊗ [u 7→ α(u(v1), . . . , u(vn)) · ∂u(v′j)α(u(v′1), . . . , u(v′m))]

= [1⊗∆(d⊗ 1) + (1⊗∆)(1⊗ c⊗ 1)(1⊗ d)]

([u 7→ α(u(v1), . . . , u(vn))], [u 7→ β(u(v′1), . . . , u(v′m))])

[d.3] Linearity is: d(η(x)) = d([u 7→ u(x)]) = x⊗ 1
[d.4] Chaining requires the following calculation:

d(1]([u 7→ α(u([v 7→ β1(v(x11), . . . , v(x1m1))]), . . . , u([v 7→ βn(v(xn1), . . . , v(xnmn))]))]))

= d([v 7→ α(β1(v(x11), . . . , v(x1m1)), . . . , βn(v(xn1), . . . , v(xnmn))])

=

n
X

i=1

mi
X

j=1

xij ⊗ [v 7→ ∂ijα(β1(v(x11), . . . , v(x1m1)), . . . , βn(v(xn1), . . . , v(xnmn))]

=

n
X

i=1

mi
X

j=1

xij ⊗ [v 7→ ∂j(βi)(v(xi1), . . . , v(ximi))

· ∂i(α)(β1(v(x11), . . . , v(x1m1)), . . . , βn(v(xn1), . . . , v(xnmn)))]

= (1⊗∆)(
n

X

i=1

mi
X

j=1

xij ⊗ [v 7→ ∂j(βi)(v(xi1), . . . , v(ximi))]

⊗ [u 7→ ∂i(α)(β1(u(x11), . . . , u(x1m1)), . . . , βn(u(xn1), . . . , u(xnmn)))])

= (1⊗∆)((d⊗ 1])(
n

X

i=1

[v 7→ β1(v(x11), . . . , v(x1m1))]

⊗ [u 7→ ∂i(α)(u([v 7→ β1(v(x11), . . . , v(x1m1))]), . . .

. . . , u([v 7→ βn(v(xn1), . . . , v(xnmn))]))])))

= (1⊗∆)((d⊗ 1])(d([u 7→ α(u([v 7→ β1(v(x11), . . . , v(x1m1))]),

. . . , u([v 7→ βn(v(xn1), . . . , v(xnmn))]))])))

At this stage we have shown how to incorporate notions of differentiability into a

category of vector spaces. Applying these results to other settings does require that one

can prove that all objects are separable by functionals. There is a further subtle aspect to

these settings which must be remembered: the finite dimensional support of the elements

of ST(V) builds in a certain finite dimensionality to the notion of differentiability.

4. Differential storage categories

A storage modality on a symmetric monoidal category is a comonad which is symmetric

monoidal and has each cofree object symmetrical monoidally naturally a commutative

Differential categories 25

comonoid so that the comultiplication and elimination map are also morphisms of the

coalgebras of the comonad. These rather technical conditions give, in case the category

also has products, what we shall call a storage category. In this case the category has

the storage (or Seely) isomorphisms and it is this fact that we wish to exploit below.

The storage isomorphisms are natural isomorphisms s×: ! A⊗ ! B // ! (A×B) which

also, importantly, hold in the nullary case s1:> // ! 1.

Regarding terminology: storage categories are exactly the same as Bierman’s notion of

a “linear category” (Bierman 95). We have chosen not to follow his terminology here as

the notion of a linear map (in the context of maps between vector spaces) has a different

connotation in the theory of differentiation. This paper involves a number of modali-

ties and we have chosen nomenclature which corresponds to the appropriate modality

involved: a “storage category” has a storage modality. These have appeared frequently

in the literature, especially when the category is closed, often with different names. We

called them “bang”s in (BCS 96). Recently they have been called “linear exponential

monads” in (Hyland & Schalk 03).

4.1. Basics on storage categories

Definition 4.1. A storage modality on a symmetric monoidal category is a comonad

(! , δ, ε) which is symmetric monoidal and has each cofree object naturally a commutative

comonoid (! A, ∆, e). In addition the comonoid structure must be a morphism for the

coalgebras for the comonad.

Recall that a coalgebra (A, ν) for the comonad is an object together with a map ν: A
// ! A such that νε = 1 and νδ = ν ! ν. This means that given coalgebras (A, ν) and

(A′, ν′), the tensor product of these is formed as (A⊗A′, (ν⊗ν′)m⊗). For any symmetric

monoidal comonad this makes the (Eilenberg-Moore) category of coalgebras a symmetric

monoidal category.

We first recall (see (Schalk 04)) that:

Proposition 4.2. A symmetric monoidal category has a storage modality if and only if

the induced symmetric tensor on the category of coalgebras for the comonad is a product.

In particular this means that we have coalgebra morphisms ∆: (! A, δ) // (! A ⊗

! A, (δ ⊗ δ)m⊗) which must be an associative multiplication with counit e: (! A, δ) //

(>, m>). These give rise to the rather technical requirements above.

This is a useful result as the symmetric algebra monad on ModR is always symmetric

comonoidal and has the induced tensor a coproduct on its algebras. Therefore we have:

Corollary 4.3. For any commutative rig, R, the opposite of its category of modules,

Mod
op
R , has a storage modality given by the symmetric algebra monad on ModR.

A primary example of this (besides the ever present symmetric algebra functor on

vector spaces) is the storage modality on suplattices described earlier. The duality twist

required to get this example is explained by this observation.

Blute, Cockett, & Seely 26

Definition 4.4. A storage category is a symmetric monoidal category possessing

products and a storage modality.

When products are present a crucial observation is the following, due to (Bierman 95):

Proposition 4.5. A storage category possesses the storage isomorphisms:

s×: ! A⊗ ! B // ! (A×B) s1:> // ! 1

and, furthermore,

! X
! (∆×)

%%KKKKKKKKK

∆

yyssssssssss

! X ⊗ ! X s×
// ! (X ×X)

! X
e

}}{{
{{

{{
{{ ! (〈〉)

""DD
DD

DD
DD

> s1

// ! 1

commute.

The storage isomorphisms are not arbitrary maps; they are given in a canonical way

by the structure of the setting.

s× = ! X ⊗ ! X
δ⊗δ // !! X ⊗ !! X

m⊗ // ! (! X ⊗ ! X)
! (〈ε⊗e,e⊗ε〉) // ! (X ×X)

s1 = >
m> // !>

! (〈〉) // ! 1

where the inverses are:

s−1
× = ! (X ×X)

∆ // ! (X ×X)⊗ ! (X ×X)
!π0⊗ !π1 // ! X ⊗ ! X

s−1
1 = ! 1

e // >

The Kleisli category of a storage modality is the subcategory of cofree coalgebras in

the Eilenberg-Moore category. From Proposition 4.2 we know that the Eilenberg-Moore

category has products given by the tensor. In general the tensor of two cofree objects is

not itself a cofree object, but the storage isomorphism ensures it is equivalent to a cofree

object. This gives:

Corollary 4.6. The coKleisli category X! of the modality of a storage category X, viewed

as a subcategory of the Eilenberg-Moore category, is closed under the induced tensor of

the latter. Moreover, if X has products, they give products in X! as well.

We record the following observation:

Proposition 4.7. For any storage category X the adjunction between X and the coKleisli

category X! is a monoidal adjunction.

The monoidal structure of X! is the product. Recall that in a monoidal adjunction

the left adjoint is necessarily iso-monoidal (i.e. strong). In this case the left adjoint is

the underlying category and the iso-monoidal transformation is given by the storage

Differential categories 27

isomorphism. The monoidal map for the right adjoint amounts to a coKleisli map X×Y
m // X ⊗ Y which in X is the composite map

! (X × Y)
s−1

// ! (X)⊗ ! (Y)
ε⊗ε // X ⊗ Y

4.2. Bialgebra modalities

Our next step toward considering differential categories with storage is to consider the

effect of requiring a storage category to be additive. It is well known that in any additive

category if there are either products or coproducts they must coincide and be biproducts.

One way to describe biproducts is as natural commutative bialgebra structure on a

symmetric tensor.

Recall (e.g. (Kassel 95)) that an object A in a symmetric monoidal category is a

(commutative) bialgebra in case it has both a (cocommutative) comonoid (A, ∆, e) and

a (commutative) monoid (A,∇, ι) structure such that all the triangles and the pentagon

in

A⊗A
e⊗e //

∇
""FF

FF
FF

FF
F >

A

e

??�������

A
e // >

>

ι

__@@@@@@@

~~~~~~~

~~~~~~~

A
∆ // A⊗A

>

ι

__??????? ι⊗ι

<<xxxxxxxxx

A⊗A

∆⊗∆

��

∇ // A

∆

��
A⊗4

1⊗c⊗⊗1 ##GGGGGGGG
A⊗A

A⊗4

∇⊗∇

;;wwwwwwwww

commute.

Definition 4.8. A bialgebra modality is a comonad (! , δ, ε) so that each ! A is in

fact naturally a bialgebra, (! A,∇, ι, ∆, e), so that δ is a homomorphism of coalgebra

structures, (but not necessarily of the algebra structures), and ε satisfies the following

equations ιε = 0 and ∇ε = ε⊗ e + e⊗ ε.

The following is immediate:

Proposition 4.9. In any additive storage category each cofree object is naturally a

commutative bialgebra where the canonical bialgebra structure on the biproduct is given

by transporting the bialgebra structure onto the tensor using the storage isomorphism.

Furthermore the storage modality is in fact a bialgebra modality.

(Sketch of proof:) As stated, ∇: ! A ⊗ ! A // ! A and ι:> // ! A are defined by

Blute, Cockett, & Seely 28

the following commutative diagrams (note that + is × and 0 is 1):

! X ⊗ ! X

∇ %%KKKKKKKKKK

s× // ! (X + X)

!(∇+)yysssssssss

! X

>

ι
!!CC

CC
CC

CC

s1 // ! 0

!0||zz
zz

zz
zz

! X

To see the ε equations, note that they essentially lift from the biproduct structure via

the storage isomorphisms.

! 0

ε

��

!0 // ! A

ε

��
0 ι

// A

! A⊗ ! A
〈1⊗e,e⊗1〉

xxppppppppppp

s× //

∇

**UUUUUUUUUUUUUUUUUUUUU
! (A + A)

ε

yyrrrrrrrrrr

!(∇+)

��
! A + ! A

ε+ε //

∇+

��

A + A

∇+

��

! A

ε

xxqqqqqqqqqqq

! A ε
// A

And notice that ∇+ = π1 + π2, so ε(π1 + π2) = επ1 + επ2 = ! π1ε + ! π2ε, so we get

∇ε = ε⊗ e + e⊗ ε.

4.3. Differential storage categories and the differential calculus

If an additive storage category has a differential combinator it is natural to expect it to

interact with the multiplication ∇: ! A⊗ ! A // ! A in a well-defined manner.

[∇–rule] (d⊗ 1)∇ = (1⊗∇)d:

A⊗ ! A⊗ ! A

dA⊗1

��

1⊗∇ // A⊗ ! A

dA

��
! A⊗ ! A

∇
// ! A

∇

∇

! A
! A

A ! A

! A ! A

! A

! A

! A

A

C
C
CC

�
�
��

�
�
�

C
C
C

=

Definition 4.10. A differential storage category is an additive storage category

with a deriving transformation such that the ∇-rule is satisfied.

We observe that in this setting, whenever we have a deriving transformation we obtain

a natural transformation

η: A // ! A = A
1⊗ι // A⊗ ! A

dA // ! A.

Differential categories 29

Thomas Ehrhard and Laurent Regnier (Ehrhard & Regnier 05) have introduced a syn-

tax they refer to as “differential interaction nets”. Their formalism makes it explicit that

! X has a bialgebra structure and presents differentiation as a map X −◦ ! X , indeed,

as the η map above. They also have rewriting rules similar to the equations on circuits

presented here, apart from those involving “promotion”, which their system did not in-

clude. That additional structure on ! had been considered in (Ehrhard 01). However,

their formalism demands the presence of considerably more structure which includes the

requirement of being monoidal closed (actually ∗-autonomous). Our basic example of

polynomial functions is not even closed. To better compare the two approaches, we shall

now reformulate the ideas of Ehrhard and Regnier into a first-order setting; we shall call

the resulting notion a “categorical model of the differential calculus”.

Definition 4.11. A categorical model of the differential calculus is an additive cat-

egory with biproducts with a bialgebra modality consisting of a comonad (! , δ, ε) such

that each object ! X has a natural bialgebra structure (! X,∇X , ιX , ∆X , eX), and a

natural map ηX : X // ! X satisfying the following coherences:

[dC.1] ηe = 0
[dC.2] η∆ = η ⊗ ι + ι⊗ η
[dC.3] ηε = 1

[dC.4] (η ⊗ 1)∇δ = (η ⊗∆)((∇η) ⊗ δ)∇.

We may present these as circuit equations by:

[dC.1]

η

e

=! A

>

0

A

[dC.2]

∆

η ηη

=! A

! A ! A
! A! A

A AA

! A! A

�
�
��

E
E
EE

+ι ι

Blute, Cockett, & Seely 30

[dC.3]

η

ε

! A

A

AA

=

[dC.4]

η η

∇ ∇ δ

∇

δ η

! A ! A ! A ! A

! A ! A

!! A

!! A
!! A

!! A

A A! A ! A

=

�
�

�
�∆

An additive storage category could provide a variety of models for the differential

calculus: each corresponds to specifying a deriving transformation satisfying the ∇-rule.

We first observe a more general result that a model of the differential calculus always

gives rise to deriving transformation (whether it is on a storage modality or not):

Theorem 4.12. A model of the differential calculus is equivalent to a differential cat-

egory with biproducts whose coalgebra modality is a bialgebra modality satisfying the

∇-rule.

Corollary 4.13. Models of the differential calculus on additive storage categories cor-

respond precisely to differential storage categories, that is, to deriving transformations

on these categories satisfying the ∇-rule.

Proof. (of Theorem 4.12.) Given a model of the differential calculus, we obtain a dif-

ferential category by defining dX by dX = (ηX ⊗1)∇. There are four equations to verify:

[d.1] The rule for constant maps is verified by

dAeA = (η ⊗ 1)∇e = (η ⊗ 1)(e⊗ e) = (0⊗ e) = 0.

As a circuit calculation this is

Differential categories 31

∇ η

η

= =! A ! A ! A

! A

B
B B

A
! A A

A

! A
! A

C
CC

C
CC

�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

���� ���� ����

�����
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

e e e

e�
�
�
�
��

= 0

[d.2] The product rule for the deriving transformation is given by

dA∆ = (η ⊗ 1)∇∆

= (η ⊗ 1)(∆⊗∆)(1⊗ c⊗ ⊗ 1)(∇⊗∇)

= ((η ⊗ ι) + (ι⊗ η))⊗∆)(1⊗ c⊗ ⊗ 1)(∇⊗∇)

= (η ⊗ ι⊗∆)(1⊗ c⊗ ⊗ 1)(∇⊗∇) + (ι⊗ η ⊗∆)(1⊗ c⊗ ⊗ 1)(∇⊗∇)

= (η ⊗∆)(1⊗ 1⊗ ι⊗ 1)(∇⊗∇) + (η ⊗∆)(ι⊗ c⊗ ⊗ 1)(∇⊗∇)

= (η ⊗∆)(∇⊗ 1) + (1⊗∆)(c⊗ ⊗ 1)(1⊗ ((η ⊗ 1)∇))

= (1⊗∆)(dA ⊗ 1) + (∆⊗ 1)(c⊗ ⊗ 1)(1⊗ dA).

In circuits this is

∇

∇ ∇

η η

= =! A
! A

! A ! A

A

A A

! A
! A ! A

! A ! A

! A

! A
! A ! A

C
CC

�
��

�
��

�
��

�
��

C
CC

C
CC

�
�

�
� �

�
�
�

�
�

�
�

�
�

�
�

∆
∆

∆ ∆

BB

∇∇ ∇∇

ιη
ηι

=
+

! A! A

! A
! A

AA

! A! A ! A! A

�
�

�
�

�
�

�
� ∆∆

∇ ∇

η
η

= +
! A

! A! A AA

! A ! A! A! A

�
�

�
��

�
�
�

∆

∆

��

Blute, Cockett, & Seely 32

∆∆

=

A A

! A
! A

! A
! A

! A! AC
C
C
CC +E

E
E
EE

[d.3] Linearity is given by the following calculation:

dAεA = (η ⊗ 1)∇ε

= (η ⊗ 1)(e⊗ ε + ε⊗ e)

= (η ⊗ 1)(e⊗ ε) + (η ⊗ 1)(ε⊗ e)

= (0⊗ ε) + ((ηε) ⊗ e)

= 1⊗ e

Using circuits this is

∇

η η

η

ε
ε ε ε

= =
! A

! A

! A

A
A A A

A

A A A

! A

! A ! A ! A

C
CC

�
��

E
E

�
�
�
�
�

��������
+

�
�

�
�

�
�

�
�e e

η

ε

= =

A

A

A

! A

! A

����

�
�

�
�e

����

+
�
�

�
�e0

[d.4] Chaining is immediate from [dC.4].

The associativity of ∇ provides the ∇-rule for the deriving transformation.

To prove the converse, we need to show that given a differential category with a

bialgebra modality satisfying the ∇-rule, we can define η as (1 ⊗ ι) dA to give us a

model of the differential calculus. Again, there are four equations to verify. These are

straightforward; we shall present the proofs for the two cases that are not entirely trivial

via circuit calculations.

[dC.1] is obvious, since de = 0.

Differential categories 33

[dC.2]

∆

=! A

A

A A

! A ! A

! A ! A! A ! A

C
C
CC

C
C
CC

�
�
��

C
C
CC

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ι

ι ιι ι�
�� �

��
�
��+

=

A A

! A ! A
! A ! A

C
C
CC

C
C
CC

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
ι ιι ι

�
��

�
��+

[dC.3] is obvious, since ιe = 1.

[dC.4] We reduce each side of the equation to the same circuit (in fact, the circuit

corresponding to D(δ)); note the use of the ∇-rule (several times):

δ

δ
∇

δ

=== ! A
! A

A
A

A

!! A

! A

!! A

!! A

! A

! A

! A !! A

! A

C
C
CC

C
C
CC

�
�
�

�

�

�

�∆�
�

LHS

ι

Blute, Cockett, & Seely 34

∇
∇

∇

∇

δ

δ

==

! A

A A

!! A
!! A

! A ! A

! A

! A

!! A

!! A

C
C
CC

�

�

�

�

�

�

�

�
∆ ∆�

�

�
�

RHS

B
BB

B
BB

ι

ι

ι

ι

δ=

A

!! A

! A !! A

! A

�

�

�

�∆

Finally, the deriving transformation induced by the differential calculus produced from

such a deriving transformation is just the original deriving transformation. Conversely the

η induced by the deriving transformation must reduce to η when the deriving transforma-

tion was induced by the differential calculus. For this we have the following calculations:

(η ⊗ 1)∇ = (((1⊗ ι)d) ⊗ 1)∇

= (1⊗ ι⊗ 1)(1⊗∇)d

= d

(1⊗ ι)d = (1⊗ ι)(η ⊗ 1)∇

= (η ⊗ ι)∇

= η.

Differential categories 35

5. Concluding remarks

One of the goals of this work has been to establish a categorical framework for differ-

entiable structures following the approach suggested by Ehrhard. While his approach to

this matter has been our basic inspiration, we should also draw the reader’s attention

to the fact that these matters have been the subject of research for quite some time.

Without trying to be historically complete, we should mention the early work on the

subject by Charles Ehresmann, in particular (Ehresmann 59). This and other related pa-

pers are collected in (Ehresmann 83). Ehresmann considered several categories of smooth

structures, and stressed the importance of internal categories therein. He also considered

extensions to the category of manifolds which would have more limits and colimits.

We are currently working on a sequel to this paper whose aim is to abstractly character-

ize those categories which arise as coKleisli categories of differential categories (BCS06).

Using these ideas we believe it is possible to reproduce Ehresmann’s context from ours

and we intend this to be the subject of a further sequel to this work.

Various approaches to building cartesian closed categories of smooth structures have

also been suggested and it would also be interesting to know to what extent these con-

structions are applicable to our general notion of differentiation. In particular, both

the convenient vector spaces of (Frolicher & Krieg 88) and the diffeological spaces of

(Iglesias-Zemmour 06), whose references give further historical information, seem worth

investigating in this regard.

There is also a considerable body of work concerning the development of differential

structures in monoidal categories, especially braided monoidal categories, in particular

(Woronowicz 89; Majid 93; Bespalov 97)‡. A basic goal of this work is to develop an

abstract version of de Rham cohomology by finding differential graded algebras in these

categories. It would be interesting to understand how this work is related to the present

work.

References

Barr M. ∗-Autonomous Categories. Lecture Notes in Mathematics 752, Springer-Verlag, Berlin,

Heidelberg, New York, 1979.

Y. Bespalov, B. Drabant. Differential Calculus in Braided Abelian Categories. (Preprint available

on xxx.lanl.gov, q-alg/9703036).

G. Bierman What is a categorical model of intuitionistic linear logic? Proceedings of the Second

International Conference on Typed Lambda Calculus and Applications. In Volume 902 of

Lecture Notes in Computer Science, Springer Verlag. Edinburgh, Scotland, April 1995. Pages

73-93.

R.F. Blute, J.R.B. Cockett, R.A.G. Seely ! and ? : Storage as tensorial strength. Mathematical

Structures in Computer Science 6 (1996), 313–351.

R.F. Blute, J.R.B. Cockett, R.A.G. Seely, T. Trimble Natural deduction and coherence for weakly

distributive categories. Journal of Pure and Applied Algebra 113 (1996) 229–296.

‡ A search of the archives at xxx.lanl.gov will turn up many other references.

Blute, Cockett, & Seely 36

R.F. Blute, J.R.B. Cockett, R.A.G. Seely Cartesian differential categories, (in preparation,

2006).

J.R.B. Cockett Introduction to distributive categories. Mathematical Structures in Computer

Science 3 (1993) 277–308.

C. Ehresmann, Catégories topologiques et catégories différentiables. Coll. Géom. Diff. Globale

Bruxelles, CBRM (1959), 137–150.

C. Ehresmann: Oeuvres complètes et commentées. Ed. A.C. Ehresmann, Supplements to Cahiers

de Topologie et Géométrie Différentielle, 1980–1983.

T. Ehrhard. On Köthe sequence spaces and linear logic. Mathematical Structures in Computer

Science 12 (2001), 579-623.

T. Ehrhard, L. Regnier Differential interaction nets Workshop on Logic, Language, Informa-

tion and Computation (WoLLIC), invited paper. Electronic Notes in Theoretical Computer

Science, vol. 123, March 2005, Elsevier.

T. Ehrhard, L. Regnier The differential λ-calculus. Theoretical Computer Science 309(1-3)

(2003) 1-41.

T. Ehrhard Finiteness spaces. Mathematical Structures in Computer Science, 2004.

A. Frolicher, A. Kriegl Linear Spaces and Differentiation Theory, Wiley Publishing, 1988.

J.-Y. Girard, Linear Logic Theoretical Computer Science 50 (1987) 1–102.

M. Hyland, A. Schalk Glueing and Orthogonality for Models of Linear Logic, Theoretical Com-

puter Science 294 (2003) 183-231.

P. Iglesias-Zemmour, Introduction to Diffeology, 2006 . Online textbook, available at http://

www.umpa.ens-lyon.fr/∼iglesias.

Christian Kassel Quantum Groups. Graduate Texts in Mathematics, vol. 155, Springer-Verlag,

New York, 1995

S. Lang Algebra. Graduate Texts in Mathematics, Springer-Verlag, Berlin, Heidelberg, New

York, 2002.

S. Majid. Free Braided Differential Calculus, Braided Binomial Theorem and the Braided Expo-

nential Map. J.Math.Phys. 34 (1993) 4843–4856.

E. G. Manes. Algebraic Theories. Graduate Texts in Mathematics 26. Springer Verlag, 1976.

S. Mac Lane Categories for the Working Mathematician. Graduate Texts in Mathematics, Sprin-

ger-Verlag, Berlin, Heidelberg, New York, 1971.

A. Schalk What is a categorical model of linear logic? Course notes, 2004.

R.A.G. Seely Linear logic, ∗-autonomous categories and cofree coalgebras, in J. Gray and A.

Scedrov (eds.), Categories in Computer Science and Logic, Contemporary Mathematics 92

(Am. Math. Soc. 1989).

S.L. Woronowicz. Differential calculus on compact matrix pseudogroups (quantum groups).

Comm. Math. Phys. 122 (1989) 125–170.

