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Abstract

Differential categories were introduced to provide a minimal categorical doctrine for dif-
ferential linear logic. Here we revisit the formalism and, in particular, examine the two
different approaches to defining differentiation which were introduced. The basic approach
used a deriving transformation, while a more refined approach, in the presence of a bialgebra
modality, used a codereliction. The latter approach is particularly relevant to linear logic
settings, where the coalgebra modality is monoidal and the Seely isomorphisms give rise to
a bialgebra modality. Here, we prove that these apparently distinct notions of differentiation,
in the presence of a monoidal coalgebra modality, are completely equivalent. Thus, for linear
logic settings, there is only one notion of differentiation. This paper also presents a number
of separating examples for coalgebra modalities including examples which are and are not
monoidal, as well as examples which do and do not support differential structure. Of particular
interest is the observation that—somewhat counter-intuitively—differential algebras never
induce a differential category although they provide a monoidal coalgebra modality. On the
other hand, Rota—Baxter algebras—which are usually associated with integration—provide
an example of a differential category which has a non-monoidal coalgebra modality.
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1 Introduction

Differential linear logic [8,9] introduced a syntactic proof-theoretic approach to differential
calculus and, subsequently, differential categories [3] were developed to provide a cate-
gorical counterpart for these ideas. In this categorical approach, two methods for defining
the differentiation were introduced based on, respectively, a deriving transformation and a
codereliction (Definition 9). In Fiore [10] proposed an axiomatization for a deriving transfor-
mation, which he called a “creation operator”, satisfying additional “strength laws”. These
laws were very natural to impose in the presence of a monoidal coalgebra modality and finite
biproducts. However, this introduced an apparently stronger notion of differentiation and left
open the question of whether a creation operator was a distinct notion of differentiation. An
initial purpose of this paper is to provide a proof that, in the presence of a monoidal coalgebra
modality, all these methods of defining differentiation are in fact, equivalent. Thus, there is
only one notion of differentiation in linear logic.

In Fiore[10], made another interesting observation, namely, that it is much more conve-
nient to work in a setting with finite biproducts. Furthermore, as one can always complete an
additive category to have finite biproducts, Fiore argued that one may as well work in a setting
with finite biproducts. Of course, the notion of differentiation in additive categories is tightly
coupled to having a coalgebra modality. Thus, when one completes a differential category to
have biproducts, one needs to show that this modality can also be extended to the biproduct
completion. It is standard that one can extend a monoidal coalgebra modality to the biproduct
completion using the Seely isomorphisms [18] and Fiore’s work was focused on this case.
However, when the coalgebra modality is not monoidal, there is no reason why the coalgebra
modality should extend to the biproduct completion. In fact, the deriving transformations of
[3] had not assumed that the coalgebra modality was monoidal. Thus, if one is to entertain
these more basic coalgebra modalities, one must be cautious about assuming the presence
of biproducts. A significant aspect of this paper is to point out that there are many natural
examples of differential categories in which the coalgebra modality is not monoidal, thus
exclusively concentrating on monoidal modalities misses an important part of the geography
of differentiation (see the Venn diagram in Sect. 9).

This paper revisits the “original” definition of a differential category found in [3]. This
relies on the idea of a coalgebra modality and a deriving transformation. Familiarity with
linear logic may tempt one to think that this is the “exponential” modality of linear logic but it
is not. It is a strictly more general notion as the modality is not assumed monoidal. There are
many familiar and important examples of differential categories based on a monoidal coalge-
bra modality—such as (the opposite of) the free symmetric algebra monad on vector spaces.
However, examples of differential categories based on a modality which is not monoidal
are less familiar. Two compelling examples are smooth functions via the free C*°-ring over
vector spaces (as mentioned in [3]) and the free Rota—Baxter algebra over modules (see [20]),
which we prove in Proposition 14 provides a differential category.

Here we refer to additive categories with a monoidal coalgebra modality as “additive linear
categories”. The biproduct completion of an additive linear category is then an “additive
monoidal storage category”. An additive monoidal storage category (which has biproducts)
is always an additive linear category (which need not have biproducts) and both always have
a monoidal bialgebra modality. Here, to facilitate the proofs, it is convenient to work with
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Differential Categories Revisited

a further intermediate notion we called an “additive bialgebra modality”: this is a bialgebra
modality which has an additional coherence requirement between the additive and bialgebra
structure. It is with respect to additive bialgebra modalities that we prove that deriving
transformations and coderelictions are equivalent.

Coderelictions always give deriving transformations, and it was shown, in [3] that a deriv-
ing transformation for a bialgebra modality is equivalent to a codereliction if and only if the
deriving transformation satisfies the V-rule. This latter rule was originally thought to be a
completely independent requirement. The key new observation is that, for an additive bialge-
bra modality with a deriving transformation, the V-rule is in fact implied. More specifically,
while a deriving transformation is assumed to satisfy five rules [d.1] to [d.5] (which include
the product rule and the linear rule), for an additive bialgebra modality we prove that, in the
presence of the other rules, the V-rule is equivalent to the product rule. Furthermore, when
an additive symmetric monoidal category has a monoidal coalgebra modality it is straight-
forward to show that the modality is an additive bialgebra modality. Thus for additive linear
categories: deriving transformations and coderelictions are equivalent.

Clearly, additive bialgebra modalities and monoidal coalgebra modalities are closely
related. In particular, additive bialgebra modalities can always be extended to the biprod-
uct completion and, furthermore, this biproduct completion has Seely isomorphisms. Thus,
additive bialgebra modalities correspond to monoidal storage categories [5] (also called new
Seely categories [1,16]) having the Seely isomorphisms. However, it is well-known (as the
name suggests) that monoidal storage categories have a monoidal coalgebra modality! Thus,
additive bialgebra modalities are, in fact, monoidal coalgebra modalities. This argument pro-
vides an abstract proof of the equivalence of the two notions which relies on results dispersed
across a number of papers. In order to bring the result into focus for this paper we provide
a direct proof (see Appendices “A” and “C”). We make no claim that the resulting proof is
more elegant or shorter: it simply has the merit of collecting a complete demonstration of
this equivalence under one roof.

This allows us to complete the first purpose of the paper by observing that, in an addi-
tive linear category, coderelictions and deriving transformations always satisfy the “strength
laws”. Putting all this together one concludes that deriving transformations and creation
operators are, in additive linear categories, completely equivalent.

The final section of the paper, Sect. 9, provides separating examples for the categorical
structures we have introduced. Of particular interest is the example of the free differential
algebra modality on a module category, which we treat in some detail. It is of particular
interest as—contrary perhaps to expectations—it is (the dual) of an example of an additive
bialgebra modality which does not admit a deriving transformation. Furthermore, it does
not admit a deriving transformation in the strongest possible sense: assuming that there is a
deriving transformation forces the ring to be trivial. As far as we know these observations
are new. Another interesting example is the free Rota—Baxter algebra modality on a module
category: as mentioned above, it is an example of a bialgebra modality which is not additive
yet admits a deriving transformation. Again as far as we know this has not been presented in
full detail before.

Conventions and the Graphical Calculus  We shall use diagrammatic order for composition:
the composite map fg is the map which first does f then g. Furthermore, to simplify work-
ing in symmetric monoidal categories, we will allow ourselves to work in strict symmetric
monoidal categories and so will generally suppress the associator and unitor isomorphisms.
For a symmetric monoidal category, we will use ® for the tensor product, K for the unit, and
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R.F.Blute et al.

0:A®B — B® A for the symmetry isomorphism. Throughout this paper we shall make
extensive use of the graphical calculus [13] for symmetric monoidal categories as this makes
proofs easier to follow. Note that our diagrams are to be read down the page—from top to
bottom—and we shall often omit labeling wires with objects. We refer the reader to [19] for
an introduction to the graphical calculus in monoidal categories and its variations, and to
[3] for the graphical calculus of a differential category. We will be working with coalgebra
modalities which in particular involves an endofunctor !, and so as in [3] we will use functor
boxes when dealing with string diagrams involving the endofunctor. Ameremap f : A — B
will be encased in a circle while !(f) : !A — !B will be encased in a box:

A 1A
f= I(f) =
B 'B

2 Coalgebra Modalities

In this section we review coalgebra modalities and monoidal coalgebra modalities (we will
discuss the Seely isomorphisms in Sect. 7). Examples can be found in Sect. 9. First, if only to
introduce notation and provide a simple graphical calculus example, recall that a comonad
on a category X is a triple (!, 8, ) consisting of an endofunctor ! : X — X and two natural
transformations § : !A — !!A and ¢ : !A — A such that the following diagrams commute:

ey

Coalgebra modalities are comonads such that every cofree !-coalgebra comes equipped
with a natural cocommutative comonoid structure.

Definition 1 A coalgebra modality [3] on a symmetric monoidal category is a quintuple
(1,6, ¢, A, e) consisting of a comonad (!, §, ¢) and two natural transformations A : A —
!1A®'!Aande : 'A — K such that (!A, A, e) is a cocommutative comonoid, that is, the
following diagrams commute:
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Differential Categories Revisited

1A IA® A 1A
A\L \LA®1 / \LA\
IAQ® A 4>1®A IAQRIAR!A 1A %@1 IAQ®!'A 4>1® 1A
(4 e

2)
IA—2 S 1A 1A

\ l"
A
IAR!A
and § preserves the comultiplication, that is, the following diagram commutes:

A

IA—1AQ A

5l lsm 3

1A NA®!A

In the graphical calculus, the coalgebra modality identities are drawn as:

A AR AR kb

Note that we do not assume that the functor ! of a coalgebra modality is a monoidal
functor—this will come soon. And also note that requiring that A and e be natural transfor-
mations is equivalent to asking that foreachmap f : A — B, !(f) : !A — !B is acomonoid
morphism. This can be used to show that § is in fact also a comonoid morphism.

Lemma 1 For any coalgebra modality (1,6, €, A, e), § also preserves the counit e, that is,
the following diagram commutes:

K

Therefore, § is a comonoid morphism.

Proof By the naturality of e and the comonad identities, we obtain that:

m}
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We now turn our attention to the case when the coalgebra modality is monoidal. Recall
that a symmetric monoidal endofunctor [15] on a symmetric monoidal category X is a triple
(!, mg, m) consisting of an enfunctor ! : X — X, anatural transformationmg, : !A®!B —
!(A® B),and amap mg : K — !K such that the following diagrams commute:

1
M@ B®IC % (A2 B)®!C A 2" A®IK
1®m®l lm@j m,(®1i \ lmgj
A8 IB®C) = A®B®C) K® 1A 1A

5)
IAQ!B—2 S 1BR!A

!(A®B)ﬁ!(B®A)
(o

In the graphical calculus, mg and m g are drawn respectively as follows:

And so the symmetric monoidal endofunctor identities are drawn as follows:

iy

A symmetric monoidal comonad [1] on a symmetric monoidal category is a quintuple
(,8,e, mg, mg) consisting of a comonad (!, §, ¢) and a symmetric monoidal endofunc-
tor (!, mg, mg) and such that § and ¢ are monoidal natural transformations, that is, the
following diagrams commute:

mg mg
IAQIB———= > 1(A® B) K—% K
8®8l mKl \LS
NA® !B s \K——— s IIK
I(mg)
m®l
7
mA®my——77—+KA®m ”
(mg
IAQB—"° ___1A®B) K— "  _k
£Q¢e \LS \ if
AQ®B 1K
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Differential Categories Revisited

which drawn in the graphical calculus gives:

7.7 Wllgoe

The symmetric monoidal comonad coherences are precisely what is required so that the co-
Eilenberg-Moore category be a symmetric monoidal category such that the forgetful functor
preserves the symmetric monoidal structure strictly.

(5]

Definition 2 A monoidal coalgebra modality [5] on a symmetric monoidal category is
a septuple (1,6, e, mg, mg, A, e) consisting of a coalgebra modality (!, 4, ¢, A, e) and a
symmetric monoidal comonad (!, m, mg, §, €), and such that A and e are monoidal trans-
formations (or equivalently mg and mg are comonoid morphisms), that is, the following
diagrams commute:

me me
A® B '(A® B) IA® !B -2 1(A® B)
A®A\L e®ei le
AR AR 'BR !B A K®K K
l®a®ll
AR BRIAQR'!'B—1(A®B)®!(AR® B) ©)
mg®me
K—" sk K—"% ok
| N
K®K —'KQ® 'K K
mg@mpg

and also that A and e are !-coalgebra morphisms, that is, the following diagrams commute:

1A 8 A A—2 A
Al l!m) eJ/ l!(a) (10)

A linear category! [1,5] is a symmetric monoidal category with a monoidal coalgebra
modality.

I Note that here we do not require linear categories to be closed, following [5].
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In the graphical calculus, that A and e are both monoidal transformations and !-colagebra
morphisms is expressed as follows:

Lt 91 1o

®
® !
ALY b
& 7

As explained in [17], the monoidal coalgebra modality coherences are precisely what is
required so that tensor product of the base category becomes a product in the co-Eilenberg-
Moore category. And in the presence of finite products, monoidal coalgebra modalities can
be equivalently be described using the Seely isomorphisms—which we discuss in Sect. 7.

3 Additive Bialgebra Modalities

In this section we introduce the notion of an additive bialgebra modality. In the presence of
additive structure, additive bialgebra modalities are in bijective correspondence to monoidal
coalgebra modalities (Theorem 1). In particular, in Sect.6, we will show that for additive
bialgebra modalities, deriving transformations and coderiction maps are equivalent. The
majority of the proofs of this section, due to their length, can be found in the appendix.

We begin by recalling additive structure by starting with the notion of an additive cate-
gory. Here we mean “additive” in the sense of being commutative monoid enriched: we do
not assume negatives nor do we assume biproducts (this differs from the usage in [15] for
example). This allows many important examples such as the category of sets and relations
or the category of modules for a commutative rig.>

Definition 3 An additive category [3] is a commutative monoid enriched category, that is, a
category in which each hom-set is a commutative monoid with an addition operation + and
a zero 0, and such that composition preserves the additive structure, that is:

k(f +g)h=kfh+kgh kOh = 0

An additive symmetric monoidal category [3] is a symmetric monoidal category which is
also an additive category in which the tensor product is compatible with the additive structure
in the sense that:

kR@(f+eRh=kQfQh+kQRgRh kQ0®h=0

2 Rigs are also known as a semirings: they are rings without negatives.
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In [3], it was observed that if a coalgebra modality came equipped with a natural bialgebra
structure and a codereliction then one could obtain a deriving transformation (more on this
in Sect.5).

Definition 4 A bialgebra modality [3] on an additive symmetric monoidal category is a
septuple (!, 8, &, A, e, V, u) consisting of a coalgebra modality (!, §, &, A, e), a natural trans-
formation V : !A®!A — !A, and a natural transformation # : K — !A such that (!A, V, u)
is a commutative monoid, that is, the dual diagrams of (2) commute, and (1A, V, u, A, e) is
a bialgebra, that is, the following diagrams commute:

K—"“ A IA® A 494 IAQIAQIA®IA
\ le ll@a@l
K v AR A®IA® A
lv@v
| | | (]3)
A - IA® A
IAQIA—Y 1A K— " 14
S J{e M J/A
K IA® A

and ¢ is compatible with V in the sense that the following diagram commutes:

IAQIA— Y 1A

lg (14)
eQe+eRE

A

In the graphical calculus, the extra bialgebra modality identities are drawn as follows:

Y

an
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By the naturality of V, A, u and e we note that for every map f, !(f) is both a monoid
and comonoid morphism. In the original definition of a bialgebra modality in [3] it was also
required that ue = 0; however this is provable:

Lemma 2 For a bialgebra modality (!, 8, e, A, e, V, u), the following diagram commutes:

K—% 14

xl o

A

Proof By the naturality of u and ¢, and the additive structure we have the following:

® ®
M.,
Nat. of u Nat of &

© ©

[m}

Additive bialgebra modalities are bialgebra modalities such that the additive structure of
the category and the natural bialgebra structure of the bialgebra modality are compatible via
bialgebra convolution.

Definition 5 An additive bialgebra modality on an additive symmetric monoidal category
is a bialgebra modality (!, §, €, A, e, V, u) which is compatible with the additive structure in
the sense that the following diagrams commute (for any parallel maps f and g):

1A 1(f+8) 'B 1(0)

1A 'B
R N
K

I1AQ!/A———!B®!B
® 1(N)®!(g) ©

In the graphical calculus, the additive bialgebra modality identities are drawn as follows:

b
- (19)

We now explain the relation between additive bialgebra modalities and monoidal coalgebra
modalities.

Definition 6 An additive linear category is a linear category which is also an additive
symmetric monoidal category.

@ Springer



Differential Categories Revisited

The monoidal coalgebra modality of an additive linear category induces an additive bial-
gebra modality where V and u are respectively:

Ve 41422 agia 2% 114 @ 14) 2D 1y

|
W= K"k Q14

Proposition 1 The monoidal coalgebra modality of an additive linear category is an additive
bialgebra modality with V and u defined as above.

Proof See Appendix “A”. O

The monoidal coalgebra modality structure and the bialgebra modality structure are com-
patible in the following sense:

Proposition 2 [10, Theorem 3.1] In an additive linear category, u and V are -coalgbera
morphisms, that is, the following diagram commutes:

A4 —2 _nagua—"% 10a®14) K —"K 1k
Vl l!(V) ul l!(u)
1A - A A ———=11A

and also the following diagrams commute:

MA@ BB 149 a0Bo1B2"® 149 B 1A® B
\Lm®®m®
1oV A®B)®!(A® B)
V\L
IA® !B - (A® B)
A% _\AgIB
i l%
K———!(A® B)
Proof See Appendix “B” O

In the graphical calculus, the equalities of the above proposition are drawn as follows:
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7 é @2y

Conversly an additive bialgebra modality induces a monoidal coalgebra modality. The
monoidal structure mg and m g are defined respectively as follows:

(1 ! 1
ARIB — 2 agip —12EED i AR1BY®I(1AR!B)
v
1(IA®!B)
meg = §
N1A®!B)
1(A)

! - By =—1(1( ! (! !
1(A® B) o0 'A®!B) eooslea) (MI(IAQ!'B)®!(!AR®!B))

K— " SIK

mg = ls

(K) < UK

Proposition 3 Every additive bialgebra modality is a monoidal coalgebra modality.
Proof See Appendix “C”. O

These constructions, between additive bialgebra modalities and monoidal coalgebra
modalities, are in fact inverses of each other.

Theorem 1 For an additive symmetric monoidal category, monoidal coalgebra modalities
correspond bijectively to additive bialgebra modalities. Therefore, the following are equiv-
alent:

(1) An additive linear category;
(i) An additive symmetric monoidal category with an additive bialgebra modality.

Proof See Appendix “D”. O

4 Differential Categories

In this section we review (tensor) differential categories, which are are structures over additive
symmetric monoidal categories with a coalgebra modality. In particular we revisit the axioms
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of a deriving transformation for coalgebra modalities and bialgebra modalities. For a full
detailed introduction to differential categories, we refer the reader to [3,5].

Definition 7 A differential category is an additive symmetric monoidal category with a
coalgebra modality (!, 8, €, A, e) which comes equipped with a deriving transformation
[3], that is, a natural transformation d : !A ® A — !A such that the following diagrams
commute:

[d.1] Constant Rule:

[d.2] Leibniz Rule (or Product Rule):

IA® A i\
A®ll lA
IAQIAR A IAQ!A

(I®d)+(1®0)(d®1)

[d.3] Linear Rule:

[d.4] Chain Rule:

1A®A 1A

IAQIARA ———IIAQIA——1lA
s®d d

[d.5] Interchange Rule:

ARARA— 27  _A@ARA—C . A®A

o1 |

AR A 3 1A

In the graphical calculus, the deriving transformation d is represented as:

d:= %5
|
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and so the deriving transformation axioms [d.1]-[d.5] are drawn as follows:

2N
\—Q

Pl R
The coKleisli maps of the coalgebra modality of a differential category are important:
these maps are of the form f : !A — B are considered as smooth maps. Amongst these
are the linear maps ¢g : !A — B where g : A — B. The differential of a smooth map
f:!A — Bisthe map D[f] : /A ® A — B defined by precomposing with the deriving
transformation, D[ f] = d f. The first axiom [d.1] states that the derivative of a constant map
is zero. The second axiom [d.2] is the Leibniz rule or the product rule for differentiation.
The third axiom [d.3] says that the derivative of a linear map is constant. The fourth axiom
[d.4] is the chain rule. The last axiom [d.5] is the interchange law, which naively states that
differentiating with respect to x then y is the same as differentiation with respect to y then
x. It should be noted that [d.5] was not originally a requirement in [3] but was later added to
the definition to ensure that the coKleisli category of a differential category was a Cartesian
differential category [4].
Our first revision of differential categories is that the constant rule [d.1] is in fact derivable:

0

Lemma 3 For a coalgebra modality (!, 8, €, A, e) on additive symmetric monoidal category,
any natural transformation d : 'A @ A — A satisfies the constant rule [d.1].

Proof By naturality of e and d, and the additive structure, we have the following equalities:
AV
é) Nat of e Nat of d »
S

m}

Corollary 1 For a coalgebra modality (!, 6, ¢, A, e) on additive symmetric monoidal cate-
gory, the following are equivalent for a natural transformationd : !1A ® A — A:

(i) dis a deriving transformation;
(ii) d satisfies the product rule [d.2], the linear rule [d.3], the chain rule [d.4], and the
interchange rule [d.5].

Let us now consider the relation between deriving transformations and bialgebra modali-
ties. This is captured by the V-rule [3]:

Definition 8 For a bialgebra modality (!, 38, ¢, A, e, V,u), a natural transformation
d:!A® A — !Ais said to satisfy the V-rule if the following diagram commutes:
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[d.V] V-Rule:

ARIA®A— 2 _1AgA /
1®dJ{ ld - T
IA®IA - 1A |

We observe that the V-rule implies the interchange rule:

Lemma4 For a bialgebra modality (1,6, ¢, A, e, V,u), for any natural transformation
d:!'A® A — A which satisfies the V-rule, [d.V ], the following diagram commutes:

ARA—2C agiad—"2 _1agia

b\

1A |

d

Proof Using [d.V] and the monoid unit identity, we obtain the following:

VAN

N -
| (15) \/ [d.V]

[m}

Lemma5 For a bialgebra modality (!,6,¢, A, e, V,u), any natural transformation
d:!'A® A — A which satisfies the V-rule, [d. V], also satisfies the interchange rule, [d.5].

Proof Using Lemma 4, and both associativity and commutativity of the multiplication, we
have the following equality:

m}
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Corollary 2 For a bialgebra modality (!, 8, ¢, A, e, V, u), the following are equivalent for a
natural transformationd : 1A @ A — A:

(i) dis a deriving transformation which satisfies the V-rule [d.V];
(ii) d satisfies the product rule [d.2], the linear rule [d.3], the chain rule [d.4], and the
V-rule [d.V].

5 Coderelictions

For a bialgebra modality there is a natural alternative way to introduce differentiation:

Definition 9 A codereliction [3] for a bialgebra modality (!, 3, €, A, e, V, u) is a natural
transformation n : A — !A, such that the following diagrams commute:

[dC.1] Constant Rule:

[dC.2] Product Rule:

A— T A

NQu+uQ1m lA
A®!A

[dC.3] Linear Rule:

A
[dC.4] Chain Rule:
1®n
IARA— > 1AQIA———> 1A
A®r;l
IAQRIAR!A )
1®Vl
IAQIA———NAQIIA—— 1A
5®n \Y%
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In the graphical calculus, the codereliction axioms are drawn as follows:

BT Y

As for the constant rule for the deriving transformation, the constant rule [dC.1] for a
codereliction can be derived:

Lemma 6 Fora bialgebramodality (!, 8, ¢, A, e, V, u), any natural transformationn : A —
1A satisfies the constant rule [dC.1].

Proof By naturality of e and 5, and the additive structure, we have the following equalities:

) ©

= = = 0
Nat of e n Nat of n a
© ©

[m}

Corollary 3 For a bialgebra modality (!, 6, ¢, A, e, V, u), the following are equivalent for a
natural transformation n : A — A:

(i) n is a codereliction;
(ii) n satisfies the product rule [dC.2), the linear rule [dC.3], and the chain rule [dC.4].

In [10] an alternative axiom for the chain rule [dC.4] is used:

[dC.4'] Alternative Chain Rule:

A 1A 0 @ ()
u®nl \L‘S o - 0 0
@A —————> AR A ———> 114 )

n

In a monoidal storage category—the setting assumed in [10]—[dC.4] and [dC.4'] are equiv-
alent. However in the setting of a mere bialgebra modality, it is clear that [dC.4] implies
[dC.4]: the reverse implication, however, does not appear to hold. Thus, at this stage we
prove the implication in one direction:

Lemma 7 Forabialgebramodality (!, 8, ¢, A, e, V, u), any natural transformationn : A —
!A which satisfies the chain rule [dC.4] also satisfies the alternative chain rule [dC.4'].
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Proof The bialgebra structure gives the following chain of equalities:

O,
o @& o ®
™ () ()
= © = 0 v = O) = 0 0
O [dC.4] (16) @ (15)
®) ©) (m ONO.
) ) )

All deriving transformations which satisfy the V-rule [d.V] induce a codereliction defined

as:
n:=AL®1>!A®A*d>!A n = 3/

Conversely, every codereliction induces a deriving transformation which satisfies the V-rule:

[m}

1 O)
di= 4@ A - 1A 14—V =14 d=\_,

Using the same proof in [3]—which was for monoidal storage categories—it is easily seen
that:

Theorem 2 [3, Theorem 4.12] For an additive symmetric monoidal category with a bial-
gebra modality, deriving transformations which satisfy the V-rule [d.V] are in bijective
correspondence to coderelictions byd — n:= (u @ 1)dand n — d := (1 @ n)V.

6 Differentiation for Additive Bialgebra Modalities

In this section we prove that for additive bialgebra modalities, there is only one notion of
differentiation.

First we examine coderelictions for additive bialgebra modalities. When a natural transfor-
mation 7 is a section of ¢, that s, n satisfies [dC.3], we can define four natural transformations:
Ppp=eQe:!ARQ'!B— A pp=e®¢:!A®!'B— B
ih=n®u:A—>!1AQ!B ii=u®n:B—>1AQ!'B
Notice that since 7 satisfies the constant rule [dC.1] and the linear rule [dC.3], then from the

properties of a bialgebra modality, we have:

. 0 ifj#k
iip, = 22
Pk {1 it =k (22)

which is reminiscent of the identities satisfied by the projection and injection maps of a
biproduct. These maps will be key to the proof of Lemma 4 below. For an additive bialgebra
modality, since !(0) = eu, this means that we have the following:
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eu ifj#k

23
1 ifj=k 3)

i) =

This allows the derivation of the following useful identity:

Lemma 8 For an additive bialgebra modality (!, 8, ¢, A, e, V, u) and a natural transforma-
tionn : A — A which satisfies the linear rule [dC.3], the following diagram commutes:

1(F, 1(j
IA@IB— V%W 1A 1B)® ! (A®B)

\ v
\ o] [i]
1(IA® !B
(!A®!B) @
\‘i\ A 9
N 1IA®!B)®! (A ® !B) nl  [p]
K 1(po)®!(P1)
1AQ® !B

Proof By the bialgebra identities, naturality of A and V, and the p; and i j identities, we have
the following equality:

Nat of

O
For an additive bialgebra modality, the linear rule [dC.3] implies the product rule [dC.2]:

Proposition 4 For an additive bialgebra modality (!, 8, €, A, e, V, u), any natural transfor-
mation n : A — A which satisfies the linear rule [dC.3], also satisfies the product rule
[dC.2].

Proof Notice that by naturality of 1, we have that:

n(f+g=0U+gn=fn+gn=nl(f)+ng (24)

Then using the i; and py identities, we obtain the following:

Q) )
[io] [i/]
i _ +
Nat of A @ @
(7]

()
©,© .
o| e [
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io 411 i+

Q4 9 Nat of A

» @
@)
P

Corollary 4 For an additive bialgebra modality (!, 8, ¢, A, e, V, u), the following are equiv-
alent for a natural transformation n : A — A:

[m}

(i) n is a codereliction;
(ii) n satisfies the linear rule [dC.3] and the chain rule [dC.4].

In [10], for a monoidal coalgebra modality, Fiore introduced another axiom relating 7 to
the monoidal structure:

[dC.m] Monoidal Rule:

MoB— " . A®IB 0 {J
e
A®B = 1(A®B)

However, it turns out that coderelictions for the additive bialgebra modalities always
satisfy the monoidal rule [dC.m]:

Proposition 5 For the induced additive bialgabra modality of an additive linear category:
all coderelictions satisfy the monoidal rule [dC.m].

Proof By Lemma 8 and the fact that A is a !-coalgebra morphism, we first obtain the follow-
ing:

(25)
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Expressing mg as above, then by the linear rule [dC.3], chain rule [dC.4], the naturality of
u and V, and Proposition 2, we have the following equality:

()
() ()
G [ g4 SN
O,
O, 9
- o) = (A) = (4 = (&) Nat of (3
(25) Nat of [dC.4] (15) A

7] [p1] ]| &7 [p1]
® © ® ® ® o o © ®

Nat of

25
Vand n 25

@)
© ©
@y T weas
O,

() +[dC.3]

)

Conversly, the alternative chain rule [dC.4'] and the monoidal rule [dC.m] imply the chain
rule [dC.4].

Lemma9 For the induced additive bialgebra modality of an additive linear category, any
natural transformation n : A — A which satisfies the alternative chain rule [dC.4'] and
the monoidal rule [dC.m] also satisfies the chain rule [dC.4].
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Proof Using Proposition 2, the alternative chain rule [dC.4'], and the bialgebra modality
identities we have:

®
™
@ =
(20)
®

O,
®
e e
[dC.4] @n
%

Y
~

Corollary 5 For the induced additive bialgebra modality of an additive linear category, the
following are equivalent for a natural transformationn : A — A:

[m}

(i) n is a codereliction;
(ii) n satisfies the linear rule [dC.3] and the chain rule [dC.4];
(iii) n satisfies the linear rule [dC.3], the alternative chain rule [dC.4'] and the monoidal
rule [dC.m].

Part (iii) of the above corollary is the definition of Fiore’s creation map [10]. This shows
that, for additive bialgebra modalities or equivalently monoidal coalgebra modalities, the
original definition of a codereliction is equivalent to Fiore’s creation map.

Turning our attention to deriving transformations for additive bialgebra modalities, we
begin by noticing that satisfying the Leibniz rule is equivalent to satisfying the V-rule:

Proposition 6 For an additive bialgebra modality (!, 6,¢, A, e, V,u), the following are
equivalent for a natural transformation d : 'A ® A — A which satisfies the linear rule

[d.3]:

(1) d satisfies the product rule [d.2];
(ii) d satisfies the V-rule [d.V].
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Proof

[d.V] = [d.2]: Tt is easy to see that since d satisfies [d.3] that (¥ ® 1)d : A — !A satisfies
[dC.3], the linear rule for coderelictions. However, by Lemma 4, this implies that (1 ® 1)d
satisfies [dC.2], the product rule for coderelictions. Since d satisfies [d.V], then Lemma 4
holds. And so we have:

[d.2] = [d.V]: By the properties of i; and p;, Lemma 8, the additive bialgebra modality
identities, and the additive structure, we have that:

m}
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Corollary 6 For an additive bialgebra modality (!, 8, e, A, e, V, u), the following are equiv-
alent for a natural transformationd : '1A ® A — A:

(i) dis a deriving transformation;
(ii) d satisfies the product rule [d.2), the linear rule [d.3], and the chain rule [d.4];
(iii) d satisfies the linear rule [d.3], the chain rule [d.4], and the V-rule [d.V].

Therefore, we obtain the following theorem:

Theorem 3 For an additive bialgebra modality, every deriving transformation satisfies the
V-rule [d.V] and thus is induced equivalently by a codereliction.

We turn our attention to the relation between the monoidal structure and the differential
structure, that is, we explore deriving transformations of additive linear categories. The
compatibility between a deriving transformation and the monoidal structure is described by
the monoidal rule [10]—this is the strength rule which was the subject of Fiore’s addendum:

[d.m] Monoidal Rule:

1®d

AR 'B® B 'A® !B
A®1®1\L
IAQ!A®'B®B me

1®0®1\L

I1AQ'BR!A®B 'AR'BRA®B

meg®e®1 d
which is drawn in the graphical calculus as:

L

Fiore’s creation operator [10] was defined to satisfy the linear rule [d.3], the chain rule
[d.4], the V-rule [d.V], and the monoidal rule [d.m]—in his addendum, he pointed out the
latter was redundant. It turns out that when a natural transformation satisfies both the linear
rule [d.3] and the chain rule [d.4], then the monoidal rule is equivalent to both the V-rule
and the Leibniz rule:

!(A® B)

Proposition 7 For the induced additive bialgebra modality of an additive linear category,
the following are equivalent for a natural transformation d : 'A ® A — A which satisfies
the linear rule [d.3] and the chain rule [d.4]:

(i) d satisfies the Leibniz rule [d.2];
(ii) d satisfies the V-rule [d.V];
(iii) d satisfies the monoidal rule [d.m]
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Proof Since this is an extension of Proposition 6, it suffices to show that the V-rule [d.V]
and the monoidal rule [d.m] are equivalent.

[d.V] = [d.m]: It is easy to see that since d satisfies the linear rule [d.3] and the chain
rule [d4], (u ® 1)d : A — A satisfies the codereliction linear rule [dC.3] and chain rule
[dC.4], and therefore by Corollary 5 is a codereliction and which by Proposition 5 satisfies
the codereliction monoidal rule [dC.m]. Therefore, by Lemma 4 (since d satisfies [d.V]) and
one of the identities of Proposition 2, we have:

[d.m] = [d.V]: Using the coalgebra modality identities, that V is a !-coalgebra morphism,
the monoidal rule [d.m], the chain rule [d.4], the bialgebra modality compatibility between
V and ¢, the linear rule [d.3], and the constant rule [d.1], we have that:
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m}

Corollary 7 For the induced additive bialgebra modality of an additive linear category, the
following are equivalent for a natural transformationd : 1A ® A — A:

(i) dis a deriving transformation;

(ii) d satisfies the product rule [d.2], the linear rule [d.3], and the chain rule [d.4];
(iii) d satisfies the linear rule [d.3], the chain rule [d.4], and the V-rule [d.V];
(iv) d satisfies the linear rule [d.3], the chain rule [d.4], and the monoidal rule [d.m].

Finally, this gives the following theorem:

Theorem 4 For the monoidal coalgebra modality of an additive linear category, all deriving
transformations satisfy the monoidal rule [d.m] and are induced by a codereliction (for the
induced additive bialgebra modality).

7 Seely Isomorphisms and the Biproduct Completion

In this section we discuss additive bialgebra modalities in the presence of biproducts, which
are equivalently described by the Seely isomorphisms and additive monoidal storage cate-
gories.

Definition 10 In a symmetric monoidal category with finite products x and terminal object
T, a coalgebra modality has Seely isomorphisms [1,5,18] if the map x1 : !'T — K and natural
transformation yx : (A x B) — !A ® !B defined respectively as:

! !
(T —“>~ K (A x B) =2~ 1(A x B)® (A x B) — %) _ 14 g1p

are isomorphisms, so I(T) = K and !(A x B) = !A ® !B. A monoidal storage category

[5] is a symmetric monoidal category with finite products and a coalgebra modality which

has Seely isomorphisms.

It is worth pointing out that monoidal storage categories were called new Seely categories
in [1,16]. As explained in [5], every coalgebra modality which has Seely isomorphisms is a

monoidal coalgebra modality, where mg is defined as

-1 ! !
IA® !B~ 1(Ax B)—> > 1(Ax B)— > 104® 1B) —“*> (A& B)

@ Springer



Differential Categories Revisited

and mg is defined as

S om0 k)

XT

K (M)

Conversly, in the presence of finite products, every monoidal coalgebra modality has Seely
isomorphisms [1] where the inverse of x is

MA@ 1B —2_ 1A@ B "2 11A®B) — 2ED 4« B)
while the inverse of xt is
1
K% k) —Y o m

wheret : K — Tis the unique map to the terminal object. Therefore we obtain the following:

Theorem 5 [5, Theorem 3.1.6] Every monoidal storage category is a linear category and
conversely, every linear category with finite products is a monoidal storage category.

We now turn our attention to monoidal storage categories with additive structure:

Definition 11 An additive monoidal storage category is a monoidal storage category which
is also an additive symmetric monoidal category.

Notice, this implies that additive monoidal storage categories have finite biproducts x
and a zero object 0. As noted in [3], the coalgebra modality of an additive monoidal storage
category is an additive bialgebra modality where the multiplication and unit are defined
respectively as:

X! (V) X 1(0)

IAQ A (A x A) —= 1(A) K 10 1A

where V is the codiagonal map of the biproduct. Conversly, every additive bialgebra modal-
ity satisfies the Seely isomorphisms where x ~! and X0 ! are defined respectively as:
1(t0)®!(t1) v u
IAQ ! B——— > (A X B)® /(A x B) —— (A X B) K ——10
where ¢y and (1 are the injection maps of the biproduct. It is easy to check that this indeed
gives the Seely isomorphisms, and therefore we have that:

Theorem 6 The following are equivalent:

(i) An additive monoidal storage category;
(i) An additive linear category with finite biproducts;
(iii) An additive symmetric monoidal category with finite biproducts and an additive bialge-
bra modality.

Every additive symmetric monoidal category with an additive bialgebra modality induces
an additive monoidal storage category via the biproduct completion. We first recall the
biproduct completion for an additive category [15]. Let X be an additive category. Define
the biproduct completion of X, B[X], as the category whose objects are list of objects of
X: (Ay, ..., Ay), including the empty list (), and whose maps are matrices of maps of X,
including the empty matrix:

[fi,j]
(A1, ..oy Ay) —= (B, ..., B)
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where f; ; : A; — Bj. The composition in B[X] is the standard matrix multiplication:

Lfijlgsl = 1) fingr,)]
while the identity is the standard identity matrix:

[8i.5]
(A, oo Ap) ——= (A1, ..., Ap)

where §; ; = 0ifi # j,and §; ; = 1. Itis easy to see that B[X] does in fact have biproducts:
Lemma 10 B[X] is a well-defined category with finite biproducts.

If X is an additive symmetric monoidal category, then so is B[X]. The monoidal unit is
the same as in X, the tensor product of objects is:

(Al,...,An)®(Bl,...,Bm):(A]®B],...,A1®Bm,...,An®Bn)

while the tensor product of maps is the Kronecker product of matrices.
Lemma 11 If X is an additive symmetric monoidal category, then so is B[X].

If X admits an additive bialgebra modality, then B[X] is an additive monoidal storage
category where the Seely isomorphisms are strict, i.e., equalities, and in particular it is an
additive linear category. We give the additive bialgebra modality of B[X], and leave it to the
reader to check that it is in fact an additive bialgebra modality. The functor ! : B[X] — B[X]is
defined onobjectsas !(Ag, ..., Ay) = !41®---®!A,andonamap [ f; ;]: (Ar,..., Ay) —
(B1, ..., By), ([ fi,j]) is represented in the graphical calculus as:

The bialgebra structure is given by the standard tensor product of bialgebras, the comonad
comultiplication !(Aq, ..., Ay) — I(Ay, ..., A,) is represented in the graphical calculus
as:
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1A} A; 1An

® b ®
| R e A e |

A B
080 [0- 58] [5-F %‘

(A1 ®---®!4,)

while the comonad counit 'A; ® --- ® !4, — (Ay, ..., A,) is given by the following
matrix:

[64, ®e® - ®e, -+, e® - ®ex ®...Q€, -, eQe@ - Qéey,]

Proposition 8 If X has an additive bialgebra modality, then B[X] is an additive monoidal
storage category.

Note that, as discussed in the introduction, Proposition 8 together with Theorem 5 provides
a rather indirect verification of Theorem 1.

If the additive bialgebra modality of X comes equipped with a codereliction n then the
additive bialgebra modality of B[X] comes equipped with a codereliction defined as follows:

A, QU ---Qu
U - @NA, - Qu | :(A1,...,A4,) — 141 Q- ® A,

UQU---Qna,

Proposition 9 If X is a differential category with an additive bialgebra modality, then B[X]
is a differential category which is an additive monoidal storage category.

8 Constructing Non-additive Bialgebra Modalities

In this section we give a construction of non-additive bialgebra modalities induced by an
additive algebra modalities. Given an additive bialgebra modality (!, 8, €, A, e, V, u) on an
additive symmetric monoidal category X, for each object B consider the functor !8 : X — X
defined on objects as A = !B ® !A,andonamap f : A — Cas !B(f) = 1@ !(f) :
!B®!A — !B ® !C. Consider the natural transformations 8% : 18(A) — 18(18(A)) and
e8 :18(A) > A defined as follows:

1®
58 = 1Bo1A 2L 1B Bo1A 2% 1B 1B@ 1A "2 1B (1B®!A)

= 1BoA—® A
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which drawn in the graphical calculus gives:

(4
8B = ® © eB =
@]

Lemma12 (18,588, ¢8) is a comonad.

Proof We must show the following three identities:
1.8888 = §B1B (SB ): Here we use that § is a monoidal transformation, the naturality of m g,

the co-associativity of A, the associativity of mg, the co-associativity of the comonad, and
that A is a !-coalgebra morphism:

Nat of mg

(A) = +(6)
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2. 88¢B = 1: Here we use the counit law of the comultiplication, that ¢ is a monoidal
transformation, and the triangle identities of the comonad:

(@)
® ® ® ®
(g>(1>
© ®

3.8B81B (83 ) = 1: Here we use the naturality of m, that e is a monoidal transformation, the
comonad triangle identities, the unit law of mg, and the counit law for the comultiplication:

)
©
@) 0 @)
+(12) +(6)

The bialgebra structure of !5 A is given by the standard tensor product of bialgebras, that
is, the comultiplication A% and multiplication VZ are defined respectively as:

[m}

AP = 1B@1A 2®2 BeBo1A0IA 2L Bg A B® A

V.= BRIARIBRIA LU B IBRIA®IA 2% 1Bg A

while the counit ¢ and the unit u? are:

= 1BoA——® g uB = Kk —"® _1B®A

which drawn in the graphical calculus is:

oA e
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Proposition 10 (1B, 88 ¢B AB B VB yByisqa bialgebra modality.

Proof We first show that 88 preserves the comultiplication, which follows from the fact that
8, A, and m are all comonoid morphisms:

Next we show the compatibility relation between ¢ and the multiplication. Here we use the
compatibility between the counit and the multiplication, and the compatibility between ¢ and

the multiplication:
" @ - CL !) !) i) !) CL
+

(16) +(17)
© ©®

m}

In general, this bialgebra modality is not additive (unless !(B) = K). In particular, for the
zero map we have that:

BO)=10100=10e)(1Qu) # (eQe)(uu) =eBub

Every codereliction 1 on the additive bialgebra modality induces a codereliction 5% :
A — 1B (A) defined as follows:

A—" ___1B®A n? = ?

Proposition 11 nB is a codereliction for (1B, 5B, eB, AB B VB yB)

Proof We must show [dC.2], [dC.3], and [dC.4]:
[dC.2]: Here we use the bialgebra identity between the unit and the comultiplication, and
that 7 satisfies the product rule [dC.2]:
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[dC.3]: Here we use the bialgebra identity between the unit and counit, and that n satisfies

the linear rule [dC.3]:
@ -
o (16) + [dC.3]

[dC.4]: Here we use coassociativity of the comultiplication, one of the identities of Propo-
sition 2, that § preserves the comultiplication, and that 7 satisfies the chain rule [dC.4] and
the monoidal rule [dC.m]:

The induced deriving transformation d2:

BRIA®A— 2 . ipai4a

which should be thought of as the partial derivative with respect to A.

9 Separating Examples
Here we present an overview of separating examples between the various structures defined

throughout this paper. To help understand what the examples illustrate we present a Venn
diagram which classifies the examples we shall give below.
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Coalgebra Modality

@

Differential Category

®

Bialgebra Modality

® ®

Monoidal Coalgebra Modality
Additive Bialgebra Modality
(Thm 1)

®

A well-known example of a differential category (whose coalgebra modality also happens
to be monoidal) comes from the free symmetric algebra construction which actually gives a
co-differential category. We briefly recall this example (see [3] for more details):

Example 1 Let R be a commutative ring. For an R-module M, define Sym(M), called the
free symmetric algebra over M, as follows (see Section 8, Chapter XVI in [14] for more
details):

o0
Sym(M) = @) Sym" (M) = R® M & Sym*(M) & - --
n=0

where Sym” (M) is simply the quotient of M®" by the tensor symmetry equalities:
a1®...®ai®...®an:aa(l)®...®ao(i)®...®ao,(n)

Sym(M) is a commutative algebra where the multiplication V : Sym(M) ® Sym(M) —
Sym(M) is the concatenation of words V(v ® -+ - Q U, w1 @ - Q W) = V1 @ -+ ®
v, ® w; ® -+ - ® wy, which we then extend by linearity, and the unit u : R — Sym(M) is
the injection map of R into Sym(M). Furthermore, Sym(M) is the free commutative algebra
over M, that is, we obtain an adjunction:

Sym
—_

MODgr _ L = CALGg
U

The unit n : M — Sym(M) is the injection map of M into Sym(M) and for an algebra A,
the counit € : Sym(A) — A is defined on pure tensors as €(a] ® --- @ a,) = ajy ...ap,
which we then extend by linearity. The induced monad (Sym, u, ) is an algebra modality
(the dual of a coalgebra modality) the multiplication of the monad is an algebra morphism
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(as it’s a map in the category of algebras). Furthermore, this algebra modality satisfies the
Seely isomorphism [14], that is:

Sym(M @ N) = Sym(M) ® Sym(N) Sym(0) = R

which implies that the free symmetric algebra adjunction induces an additive linear category
(or equivalently an additive Seely category) structure on MODy. Furthermore, it comes
equipped with a deriving transformation, making MOD%’ into a co-differential category. The
deriving transformation d : Sym(M) — Sym(M)® M on pure tensors is defined as follows:

n
d(al®"'®an):Z(al®"'®ai71®ai+1®"'®an)®ai
i=1

which we then extend by linearity (if this map looks backwards, recall that MODy is a
co-differential category).

It is important to note that this differential category structure on MOD';QP can be generalized
to the category of modules over any ring R. In fact, this example can be generalized further.
Indeed, the free symmetric algebra construction on appropriate additive symmetric monoidal
categories induces a differential category structure, such as on the category of sets and
relations (see [3] for more details).

Example 2 Convenient vector spaces provides another example (given by R. Blute, T. Ehrhard
and C. Tasson) of a co-differential category with a monoidal algebra modality [6].

Interestingly, the free differential algebra construction—which one might suppose would
give rise rather naturally to a modality with a differential—gives an example of an additive
bialgebra modality which does not admit a deriving transformation:

Example 3 Let R be a commutative ring. A (commutative) differential algebra (of weight
0) over R (see [12]) is a pair (A, D) consisting of a commutative R-algebra A and a linear
map D : A — A such that D satisfies the Leibniz rule:

D(ab) = D(a)b +aD(b) Va,be A

where the multiplication of the R-algebra A has been written as juxtaposition. A map of
differential algebras f : (A,D) — (C,D’) is an R-algebra morphism f : A — C such
that fD' =Df.

The forgetful functor from the category of differential algebras over R, CDAg to modules
over R has a left adjoint:

DIFF
MODgr _ L ~ CDAg
U

which induces an algebra modality, Diff, on the category of modules: we shall now give an
explicit description of this modality and, furthermore, show that it is an additive bialgebra
modality which does not admit a deriving transformation.

Let M be an R-module, then the free commutative differential R-algebra Diff(M) is
defined as follows:

Diff(M) = Sym(EP M)
n=0
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oo
where the unit and multiplication are just that of the symmetric algebra,u : R — Sym(p M)
n=0

o o0 o
and V : Sym(@ M) @ Sym(€p M) — Sym( @ M). The differential is obtained by “shift-

n=0 n=0
ing” the infinite sum (on which the symmetric algebras is built) up one

¢ = Ln_;,_]no @M%@M

n=0

and defining the map D : Diff(M) — Diff(M) as:

1®¢

00 d 00 00
Sym(P M) ——Sym(p M) ® b M
n=0 n=0 n=0

Sym(@}OM)(X) G}OMHSym(EBOM)

where d is the deriving transformation of the free symmetric algebra modality and d° :=
(1®n)V (where 7 is the unit of the free symmetric algebra monad). By the associativity and
unit laws of the multiplication, we note the following identities d° satisfies:

u® Hd° =7
(Ve d = (1e1d)V

We then have:

VD = Vd(1 ® ¢)d°
=1ed(Ve(1®¢p)d +[deDNI®s) (Ve ) ®¢)d°
=111V Nd+deN1®s (1 R0V d®
=(1d1e1e)(1e1d)V+de1®¢e H(d° e )V
=(1®DV+ DV
showing that it is a differential on the algebra.

To show it is a monad set the unit to be the natural transformation o : M — Diff(M)
defined as

10 oo o0
a=M Ph M Sym(ép M)
n=0 n=0

where 7 is the unit of the free symmetric algebra monad, and define the multiplication as the
natural transformation v : Diff(Diff(M)) — Diff(M) to be

_Sm) x 2 X
Sym(@(Sym(GB M))) ———— Sym(Sym(p M)) ——— Sym(P M)
n=0 n=0
where 1 is the multiplication of the free symmetric algebra monad and ¢ := (D")72, :

oo
P A — A is the map with 3y = DX where A is a differential algebra: notice that ¥ is

n=0
natural for differential algebra maps. We then have:

@ Springer



Differential Categories Revisited

Lemma 13 (Diff, v, @) is a monad on MODg.

Proof We must verify the three monad identities:

Diff(v)v = vv: Here we use that v is natural with respect to differential algebra morphisms,
that v is a differential algebra morphism, the monad associativity of 1, and the naturality
of u:

Diff(v)v = Sym(P v)v = Sym(ED v)Sym(¥)u = Sym((P v)¥)u

n=0 n=0 n=0
= Sym(yv)u = Sym(¥)Sym(v)u = Sym(yy)Sym(Sym () )
= Sym(y)SymSym(¥))up = Sym(y)uSym(y)p = vv
av = 1: Here we use the naturality of 7, the definition of ¥, and the monad triangle identity
of u and n:
av = nSymy)u = wynu = 1.

Diff(e)v = 1: Here we have:

Diff(a)v = Sym(@P a)v = Sym(E o) Sym)

n=0 n=0

= Sym((@ )y = Ssymmp = 1
n=0

oo

where the equality (€D @)y = n is used in the penultimate step which we must now
n=0

establish. Notice, using the linear rule [d.3], the following identity holds:

MD=nd1Q¢)d°=U D1 R#)d° =¢ux 1)d® =¢n

This allows us to observe that

o0
K (@ a) ¥ = auy = aDF = 1unD* = 1yp*n = un
n=0

o
so that (€D @)y = n as desired.

n=0

Proposition 12 (Diff, v, «, V, u, A, €) is an additive bialgebra modality.

Proof First observe that v is an algebra morphism as both Sym() and p are algebra mor-
phisms.

To establish that the modality is an additive bialgebra modality we exhibit the Seely
isomorphisms. Since Sym has Seely isomorphisms it follows that:

Diff(0) = Sym(EP 0) = Sym(0) = R
n=0

Sym (@(M ® N)) = sym@P M & P N) = symP M) @ sym P N)

n=0 n=0 n=0 n=0 n=0
O
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We now set about proving that this modality does not admit a deriving transformation.
This is accomplished by proving that if there is a deriving transformation, then the ring R
over which the modules are taken must be trivial: that is in R we must have 1 = 0. More
precisely we prove that 1 ygu = —0 : M @ M — M ® M, however, by substituting R + R
for M this gives the matrix equality

1 0 0 O -1 0 0 0
01 00 _[O 0 -1 0
001 0)]710 -1 0 0
0 0 0 1 0 0 0o -1
but this then immediately gives.
0 1000 0
0 0100 0
O=(0100) - =(0100) 0010 1
0 0001 0
-10 0 O 0
0 0-10 0
=(0100) 0 -10 0 =t
0 0 0 —1 0

Theorem 7 For any category of modules over a non-trivial commutative ring the free differ-
ential algebra modality, Diff, does not admit a deriving transformation.

Proof Suppose then that there is a natural transformation b : Diff(M) — Diff(M) ® M which

is a deriving transformation. Then for each R-module M, the Leibniz rule implies that b is a
o0
Sym(€D M)-derivation, and therefore by the universality of the deriving transformation of
n=0
o0
Sym (see [2,7] for more details), there exists a unique Sym(€p M)-module homomorphism
n=0
f* making

Sym(G?OM) Sym(@)M)®EB)

\ Iz
Y

00
Sym(ep M) M
n=0

commute. However, as f7 is a morphism between free modules it is determined by a map

fEPM—sym@ M) @M where =18 f)(VRI).
n=0 n=0

Now both d and b are determined by derelictions, respectiv/e:lya\ =d(e®l) andb = b(e®1),
as they are on additive algebra modalities. Thus, setting f = f(e ® 1) we have:

b=be®)=dffe®@)=d1l® HIVR(e®1) =de® fle®1) =df(e®1) =df.
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Butthen f* = 1® fasd(1® f) = A1 ® (d f)) = A(1 ® b) = b. Thus we have now
shown that

Sym( M) d Sym( M) © M

\ l®f
\

o0
Sym(p M) @ M
n=0

commutes. Furthermore, fis a natural transformation as if g : M — N then, using that
d is natural and b is assumed to be a natural, both <é ) fand fg provide the unique
mediating maps between d and Diff(g)b. "

Consider the map m : é A, — A defined as w1 = (&,1), that is, the unique map

n=0
which makes the following diagram commute for each injection map:

tk

o0
@D A«
n=0

k1 \L”‘

Al

where 611 = 1 and 8,1 = O for k # 1. Because b satisfies the chain rule, vb = b(v ®
b)(V ® 1), the following equality of natural transformations, obtained by sandwiching the
chain rule between the same maps, must also hold:

(@ ®@a)Vunvb((emr) @ 1) = (@ ® ) Vinb(v @ b)(V ® (e @ 1) (1 ® 1)

However, we will show that this forces 1 = -0 : M @ M — M ® M which forces
the module category to be trivial. Preliminary to this we note the following useful
identities:

a =N
aD = toﬂE=t0¢Aﬂ =un
tof =tndf =ab=1
MMVd=ndnN1@dDH(VeaD+ne@nNde H(1o)(Vel)
=mRURANIVRIDN+URI’INI®a) (VR
=n1®1+0(n®1)
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Now explicitly calculating out the first map above we have:

(¢ ®@ a)Vinvb(er; ® 1)

= (¢ @ @) VunSym(y)ud(em ® f)

= (@ ®@a)Vuynud(en ® f)

= (¢ ®@a)VDd(emr; ® f)

= (¢ ®@aD)V+ (D ® a)V))d(emr; ® f)

= (on @ UMV + (1n @ n)V)d(em ® f)

=(®u+uQun®nVd(emn & f)

=wu+u®wlm®l) +om)em ® f)

=@®u+tu®u(me® f)+o@m® f))

= (o @) ® f) + (L1 ® 1) (M @ )
+0o(t1 ® )@ ® f) +0(o®u)m ® f)

=0+1®14+0+0

=1Q1+0o

while for the second map:

(@ R@a)Viinb(v@b) (VR 1)(emr; ® 1)
= (@ ®)Vind(v ® fb)(V @ 1)(em ® 1)
=@®)Vyu® )W fb) (Ve )(em ® 1)
= (@®a)Viv® b)YV ® D(er @ 1)
= (@®@)Viu® fb) (Ve D(em @ 1)
=(@®a)Vi fb((u®1)V® er ®1)
= (x ®oz)thfb(£7T1 ®1)

= (@ Q@ a)Vi (@ b(em ® 1)) r

n=0
= (@ ®a)Vb(em; ® Dy f

= (1o ® t0)(n ® MVd(em1 ® Hu f
=N 1l+sm®)em & fHuf

= (Lo ® ) (11 ® Hirf +0®w)(m @ Huf

=0+0=0
Therefore, if b satisfies the chain rule, this would imply that 1y gy = —o for every R-
module M which only happens when R is the trivial ring as discussed above. Therefore, Diff
does not have a deriving transformation when the ring is non-trivial. O

By way of contrast, Rota—Baxter algebras—an algebraic abstraction of integration—
whose algebra modality is not additive, always give a differential category:

Example 4 Let R be acommutative ring. A (commutative) Rota—Baxter algebra (of weight
0) [11] over R is a pair (A, P) consisting of a commutative R-algebra A and an R-linear map
P : A — A such that P satisfies the Rota—Baxter equation, that is, the following equality
holds:

P(a)P(b) = P(aP(b)) +P(P(a)b) Vab, e A
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The map P is called a Rota—Baxter operator (we refer the reader to [11] for more details on
Rota—Baxter algebras). It turns out that there is a left adjoint to the forgetful functor between
the category of Rota—Baxter algebras, CRBAg, and the category of commutative algebras
over R, CALGg. We quickly review the construction of the free Rota—Baxter algebra over
an algebra (for more details see chapter 3 of [11]): let M be an R-module and consider the
shuffle algebra, Sh(M), over M which is defined as follows: Sh(M) = R& M & (M ®
MOSMIMOIM) D - =D,y M®" where M®" = R and where the multiplication
L, called the shuffle product [11], is defined inductively on pure tensors w = a @ w’ and
v =>bQ® v as follows:

wWwov=a® w wv)+bs® (wwv)

which we then extend by linearity (notice that the unit for the shuffle product is 1z). Denote
the multiplication and unit maps of the shuffle algebra by ¥ : Sh(M) ® Sh(M) — Sh(M)
and v : R — Sh(M) respectively. The free commutative Rota—Baxter over a commutative
R-algebra A, RB(A), is then the tensor product of shuffle algebra and A itself: RB(A) =
Sh(A) ® A. The Rota—Baxter operator P : RB(A) — RB(A) is defined on pure tensors as
follows:

(w-b)® 1y ifweR
wb= ]
(w®b)® 14 otherwise

which we then extend by linearity. The induced functor RB : CALGg — CRBAp is the left
adjoint to the forgetful functor U : CRBAgr — CALGg:

RB
_—

CALGgr _ L ~ CRBAg
U

(for more details on this adjunction and monad see [20]) where for an algebra A, the unit
of the adjunction is definedas v ® 1 : A — Sh(A) ® A, while for a Rota—Baxter algebra
(B, Q), the counit w : Sh(B) ® B — B is defined on pure tensors as

wp((b1 ® -+~ ®by) ®b) =Q(...QQMLND) ... by)b

which we then extend by linearity. To obtain an algebra modality on MODg, we compose
the free Rota—Baxter algebra adjunction and the free symmetric algebra adjunction:

Sym RB
MODg 1 7 CALGg L 7 CRBAR
U U

The monad induced by the resulting adjunction between MOD g and CRBAR, is clearly an alge-
bra modality by construction again. After some simplifications, the unit and multiplication
of the monad are represented in string diagrams respectively as:

pd agb
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While the unit and multiplication of the algebra structure are represented in string diagrams

respectively as:
T

However this algebra modality, RB(Sym(M)), does not have the Seely isomorphism as Sh is
not a strong monoidal functor (i.e. Sh(A ® B) 2 Sh(A) ® Sh(B)):
RB(Sym(M & N)) = RB(Sym(M) & Sym(N))

= Sh(Sym(M) ® Sym(N)) ® Sym(M) ® Sym(N)

% Sh(Sym(M)) ® Sh(Sym(N)) ® Sym(M) ® Sym(N)

= Sh(Sym(M)) ® Sym(M) & Sh(Sym(N)) ® Sym(N)

= RB(Sym(M)) ® RB(Sym(N))
Therefore, this algebra modality is not a bialgebra modality or a comonoidal algebra modality.
We should mention that while it is true that the shuffle algebra is a bialgebra, its comultipli-
cation is not cocommutative [11]. However, we may still use the free Rota—Baxter adjunction

to obtain a differential category structure on MODpg. The deriving transformation is defined
as

Sh(Sym(M)) ® Sym(M) — 2% - Sh(Sym(M)) @ Sym(M) @ M ‘ /_\

where recall that d is the deriving transformation of Sym (if this looks upside-down, recall
that we are working in a co-differential category). It may seem trivial that this is a deriving
transformation, but in fact proving the chain rule is quite non-trivial! We will need the
following lemma to prove the chain rule:

Lemma 14 Let R be a commutative ring.

(i) For every commutative R-algebra A, (1 @ Q) = (0w Q@ 1 ® 1)

»

where § is the multiplication on RB(A).
(ii) For every R-module M, o(1d) = (1 1 @ d)(0w ® 1)

75\ \
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Proof (i): Let A be acommutative R-algebra. It suffices to prove this equality on pure tensors.
Consider the following pure tensor of Sh(Sh(A) ® A) ® Sh(A) ® A:

([A1®a1]l® - ®[A ®an]) ® A®a € Sh(Sh(A) ® A) ® Sh(A) ® A

where A, A1 ... A, € Sh(A) anda,a; ..., a, € A. By definition of w4, we obtain that:

ws([A1®a1]l® - ®[A, ®a,]) ® AQa)
=P(P(...P(P(A; ® a1)0(A2 ® a2)) - - - O(A; ® an))) (A ® a)
= (P(...P(P(A1 ® a1)0(A2 ® a2)) - - - O(Ap ® an))) ® NO(A ® a)
=P(..PPAI®a)0(A2®@a2) - 0(A;, ®a,) WA ®a

Notice that a is unaffected by w. Now let B ® b € Sh(A) ® A. Then we have the following
equality by associativity of the shuffle product:

wA(([A1 ®a1]® -+ ®[An ®an]) ® (A®a)O(B ®D)))

wA(([A1 ®a1]® - Q[Ay ®an]) ® (AW B) ® (ab)))

= (P(...P(P(A1 ®a1)0(A2 ® @2)) - - - O(A ® an)) LW (A LWL B)) ® (ab)
= ((P(...P(P(A1 ® a1)0(A2 ® a2)) - - - O(An ® ap)) L A) LLI B) ® (ab)
= ((P(...P(P(A] ® a1)0(A2 ® a2)) - - - O(An ® ap)) L A) ® a)O(B @ b)
=oa([A1®ai1l® - ®[Ay ®an]) ® AR a)O(B ® D)

(ii): Let M be an R-module. It suffices to prove this equality on pure tensors. Consider the
following pure tensor:

(Wi ®wi]®---®[W, ® w,]) ® Wo ® wg € Sh(Sh(Sym(M)) ® Sym(M))
QSh(Sym(M)) ® Sym(M)

where W, Wy,... W, € Sh(Sym(M)) and w, w;...,w, € Sym(M). By definition of
wsym(M), We obtain that:

ow((Wi@uw]l® - @[W, @w,) W @ w)
=PP(..PPW; @ w)O(W2 ® w2)) - - - O(Wy, @ wy)))O(W ® w)
= (P(..PP(W1 @ w)O(W2 ® w2)) - - - O(Wy, ® wp))) @ DNO(W @ w)
= PL..PPW; @w)OW2 @ w2)) - -- O(W, ® wy)) LU W) @ w

Notice that w is unaffected by w. Let w = m| ® - - - ® my, m; € M, then we have that:

k
dy(w) =) (M@ mi1 @mit1 @ my) @m;
i=1
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Then we obtain the following equality:

(1 ® dan)(@symn (W1 @ w1l ®@ -+ @ [W, ® w,]) @ W ® w))
=1 ®@dy)((PC--PP(W; @ wDO(W2 @ w2)) -+ - O(W,, ® wy)) LU W) @ w)
= (P(...PP(W @ w)O(W2 @ w2)) - - O(Wy, ® wy)) Ll W) @ dps (w)
= P(..PCPW1 @ w)O(W2 @ w2)) --- O(W,, ® wy)) LU W)

k
® (Z(ml ®---mi_1 @mjy ®"'mk)®mi>

k
= Z(P(- PP @w)O(W2 @ w2)) - O(Wy ® wy)) LLUW)

Q@M - -mi—1 @Mmiy] @ ---my) @ m;
k
=Y (@symny ® D (W1 @ wi]1® -+~ @ [Wy ® wy]) @ W
i=1

l
Q@M :--mi—1 @miy] Q- -my)) @ m;
= (Wsymm) @ D (W1 Q@ w1]®@ --- @ [W, @ wy]) @ W

k
® (Z(ml Q- --mi—1 @Mjt] ®"'mk)®mi>>

i=1
= (wsym) @ D(W1 @ w1] ®@ - Q@ [W, @ wy]) @ W ® dyr (w))

Proposition 13 For the free Rota—Baxter monad, 1 ® d is a deriving transformation.

Proof By construction 1 ®d is a natural transformation. We need to show [d.2] to [d.5] (recall
that [d.1] is redundant). The linear rule [d.3], the Leibniz rule [d.2] and the interchange rule
[d 5] are straightforward but the chain rule [d.4] requires some work:

]: Here we use the Leibniz rule [d.2]:

R

[d.3]: Here we use the linear rule [d.3]:

b
ek
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[d.4]: Here we use the counit law, Lemma 14, the chain rule [d.4], the monoidal rule [d.m], that
€ is an algebra morphism and the triangle identities of the free symmetric algebra adjunction:

eisa
alg. morph.

[d.5]: Here we use the interchange rule [d.5]:

A 1A

To obtain examples of non-additive bialgebra modalities, we need simply apply the con-
struction for Sect. 8 to our examples of additive bialgebra modalities.

[m}

Example 5 The free symmetric algebra modality induces a non-additive bialgebra modality
on MODg which has a deriving transformation.

Example 6 The free differential algebra modality induces a non-additive bialgebra modality
on MODp which does not have a deriving transformation (since if it did, DIFF would have
one).

Finally to obtain a coalgebra modality which is not a bialgebra modality and does not
have a deriving transformation, we look towards differential Rota—Baxter algebras.
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Example 7 Let R be acommutative ring. A (commutative) differential Rota—Baxter algebra
(of weight 0) [12] over R is a triple (A, D, P) consisting of a differential algebra (A, D) and a
Rota—Baxter algebra (A, P) such that PD = 14. It turns out that the free Rota—Baxter algebra
over a differential algebra is also its free differential Rota—Baxter algebra, and therefore
inducing the following adjunction between the category of differential algebras, CDAg, and
the category of differential Rota—Baxter algebras, CDRBAg:

RB
—_—

CDAr _ L ~ CDRBAg
U

The full construction can be found in [12]. Once again, to obtain an algebra modality we
compose this adjunction with the free differential algebra adjunction:

DIFF RB
MODr _ L ~ CDAr _ L ~ CDRBAg
U U

This algebra modality is not comonoidal for the same reasons as the free Rota—Baxter algebra,
and is not a differential category failing the chain rule like the free differential algebra.

10 Conclusion

There is a tendency to assume that the only important coalgebra modalities are those which
arise through linear logic: that is those which are monoidal coalgebra modalities (or equiv-
alently additive coalgebra modalities—in the sense of this paper). Certainly, it is true that
it is the monoidal coalgebra modalities that have filled the lion’s share of the literature. Of
course, this does not mean that their relatives, the mere coalgebra modalities, are not worthy
of scientific attention—indeed, we believe that they have been wrongly overlooked. Thus, one
objective of this paper is to reemphasize the importance of these mere coalgebra modalities
and to provide a stock of examples.

Of course, it would have been very much simpler if all these observations had been made
in [3]—the original paper. Unfortunately, they were not. Marcelo Fiore’s paper [10] made
us realize that there was much more to say. In particular, the relation between deriving
transformations and coderelictions had not been fully developed. Here we have revisited this
relation and, in addition, filled in some of the gaps left in the original paper. That there will
be yet more to say we are sure!

Significantly, it is not that the notion of differentiation varies but rather, as the setting varies,
significantly different presentations of the differential become possible. Philosophically this
is certainly how things should be ... and apparently it is how they are!
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A Proof of Proposition 1

In this appendix we provide the complete proof that the monoidal coalgebra modality of an
additive linear category is an additive bialgebra modality. Recall the definitions of V and u
in their string diagram representations:

(™ (26)
= OO+ 0O QF _ [0

Lemma 15 V and u are natural transformations.

Proof By construction, V is a natural transformation since it is the composition of natural
transformation. The unit u# on the other hand is not automatically a natural transformation
by construction, since mg is a map and not a natural transformations. Let f : A — B, and
since 1(0)!(f) = !(0), we obtain the following equality:

A

m}

For space and simplification, we define ¢ = e ® ¢ + ¢ ® e, and so V can also be drawn

RIS Kg

Lemma 16 ¢ satisfies the following equalities:

e

Proof For the first equality we have that:
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IR

[®]
& (1) +(8) 0
(@)

Lobo ] bbb b b

@+

SIPRPIRITIWRIYIAN:

For left identity of the second equality we have that:

IR INIR
- © O *? an

eande

And similarly for the right identity. Lastly, for the third identity we have that:
() =© O« = !) + (g = (g + (g = @

Lemma 17 For each object A, (A, V, u) is a commutative monoid.

Proof This follows mostly from Lemma 16.
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1. Associativity:

Nat of §

Nat of mg © Lem 16

1y
v

2. Unit Laws: (We only show one of them, since calculation for the other is similar)

® ® ®
[o] ® ©® M ® ™ ®
® © [®] Bl E] <%
® (] ®
: _ @ | © B B
© ' (Sa:lda:n ® Na;m (; 0] L 7| (T)
@ ¢ @ @ N T
| | i |
3. Commutativity:
® ©®
(8]

m}
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Lemma 18 For each object A, (1A, V,u, A, e) is a bialgebra.

Proof We need to check the four bialgebra compatibility relations:

1. Multiplication and comultiplication compatibility:

® ©
El
V- .
(@) ) Nat A

2. Multiplication and counit compatibility:

3. Comultiplication and unit compatibility:

4. Counit and unit compatibility:

m}

Proposition 14 The monoidal coalgebra modality of an additive linear category is an additive
bialgebra modality.

Proof We first prove that we have a bialgebra modality by proving the compatibility of & and

Finally, we show that the bialgebra modality is in fact additive by proving the compatibility
with the additive structure:
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1. 1(0) = eu:
é) ® ®
& e o P ;o
Tlem T ® o

(P [0] [o] [o]

2.U(f+8=A0) ®(gHV:
@ @
N:of N:e © @ + QO - =|fre
5 andmg +(12) ® 0 @ O |
O
B Proof of Proposition 2
We use the same notation introduced in Appendix “A”.
Lemma 19 V and u are !-coalgebra morphisms.
Proof We first show that V is a !-coalgebra morphism:
® ©
5]
B ® ©
® [®]
o | e - ‘ \o/
[

Next we show that u is also a !-coalgebra morphism:

) O
© @
[5] Nat 8 (x)

m}
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Lemma 20 The following equalities hold:

Proof We first prove the equality on the left:

&
(3
(@] (®]

(s

i
|

(8) Natm

L1 |

e

TERE L
b Eo@o &

LY I P O DA
gl L
jLentn
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For the equality on the right, we have that:

C Proof of Proposition 3

In this appendix we prove the converse of Appendix “A”: that an additive bialgebra modality
is a monoidal coalgebra modality. Recall the definitions of mg and m k in their string diagram

representations:
RN

Sl
-
ol [

(28)

!

—®
{~]

polleg
T %

By construction we have that mg is natural.
Lemma 21 mg is a natural transformation.
For multiple parts of the following proofs, we will need the following useful identities:

Lemma 22 The following equality holds:
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Proof By the additive bialgebra modality identities, we have that:

}{
x
©)
>
——
L —
(020}
®__.
—-®
mOSO)
—
(O3]
_C
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Proof We only prove the equality on the left and the proof for the equality on the right is
similar.

54
S5 b
U 9lle ]
. | @H@ |
\ @H@ \
\ \ iﬁé
1 @ 9 &l -]
vo o U 9lle 1]

Lemma 24 The following equalities holds:

i
7 [

H

N
g&%

—o [ o
— O
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Proof The proofs are similar to the proof of Lemma 23, so we leave these as an

exercise. O

Lemma 25 (!, mg, mg) is a symmetric monoidal functor.

Proof We must prove the associativity, unit, and symmetry coherences.
1. Associativity: Consider the following series of equalities:
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10

é)”"éi éxé

~<\
HEE

[0 58] (59 &[0 o] |lp 6] (69 o [00 9]

The last circuit is symmetric by associativity of the bialgebra, therefore reversing the sequence
of equalities by symmetry gives the right associativity of mg. This proves the associativity
coherence for m.
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2. Unit: We only prove the left unit identity, as the proof for the right unit identity is similar:

IRIE

o

+@)

19 +(1)
0
® ®

P B
CIRY| |EIED
Q ‘ Q Q

)
|
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3. Symmetry:

Lemma 26 (!, 4, ¢, mg, mg) is a symmetric monoidal comonad.

Proof We need to show that § and ¢ are monoidal natural transformation.
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1. Compatibility between § and mg:
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3. Compatibility between ¢ and mg:
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4. Compatibility between ¢ and mg:
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Proposition 15 Every additive bialgebra modality is a monoidal coalgebra modality.

Proof We begin by proving that A and & are monoidal transformations.
1. Compatibility between A and mg

2. Compatibility between A and mg:

A % B

3. Compatibility between e and mg:
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4. Compatibility between e and m g :
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Now we prove that A is a !-coalgebra morphism:
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D Proof of Theorem 1
Starting from a monoidal coalgebra modality, we first check that we re-obtain mg:
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Next we check that we get back mg:
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Finally we prove that we re-obtain u:
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