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Francesco Faà di Bruno (1825-1888) was an Italian of noble

birth, a soldier, a mathematician, and a priest. In 1988 he was

beatified by Pope John Paul II for his charitable work teach-

ing young women mathematics. As a mathematician he studied

with Cauchy in Paris. He was a tall man with a solitary dispo-

sition who spoke seldom and, when teaching class, not always

successfully. Perhaps his most significant mathematical contribu-

tion concerned the combinatorics of the higher-order chain rules.

These results were the cornerstone of “combinatorial analysis”:

a subject which never really took off. It is the combinatorics

underlying the higher-order chain rule which is of interest to us

here.
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Outline

• Cartesian differential categories

• The bundle fibration

• Faà di Bruno categories

• The comonad

• The coalgebras

Theorem Cartesian differential categories are exactly standard

coalgebras of the Faà di Bruno comonad.
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Key structure:

X
f

−−→ Y : x 7→ f(x)

X × X
D(f)

−−−−−→ Y : 〈a, s〉 7→ df
dx (s) · a

(linear in a but not in s)

Example:

If f : 〈x, y, z〉 7→ 〈x2 + xyz, z3 − xy〉

then:
d〈x2+xyz,z3−xy〉

d〈x,y,z〉 =

(
2x + yz xz xy

−y −x 3z2

)

and
d〈x2+xyz,z3−xy〉

d〈x,y,z〉 (〈r, s, t〉) =

(
2r + st rt rs

−s −r 3t2

)

and
d〈x2+xyz,z3−xy〉

d〈x,y,z〉 (〈r, s, t〉) · 〈a, b, c〉 =

〈(2r + st)a + rtb + rsc,−sa − rb + 3t2c〉
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Cartesian Differential Categories

1. Category X, Cartesian left additive: hom-sets are commu-

tative monoids & f(g + h) = (fg) + (fh), f0 = 0.

( h is additive if also (f + g)h = (fh) + (gh) and 0h = 0. )

‘Well-behaved’ products: π0, π1, ∆ additive

f , g additive ⇒ f × g additive.

2. Differential operator D:

X
f

−−→ Y
X × X −−−−→

D[f ]
Y

(Ref: [Blute-Cockett-Seely] TAC 2009)

Eg (of “left additive”): the category of commutative monoids & set maps

is left additive; the additive maps are homomorphisms.
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Satisfying:

[CD.1] D[f + g] = D[f ] + D[g] and D[0] = 0

[CD.2] 〈h + k, v〉D[f ] = 〈h, v〉D[f ] + 〈k, v〉D[f ] and 〈0, v〉D×[f ] = 0

[CD.3] D[1] = π0, D[π0] = π0π0 and D[π1] = π0π1

[CD.4] D[〈f, g〉] = 〈D[f ], D[g]〉

[CD.5] D[fg] = 〈D[f ], π1f〉D[g]

[CD.6] 〈〈g,0〉, 〈h, k〉〉D[D[f ]] = 〈g, k〉D[f ]

[CD.7] 〈〈0, h〉, 〈g, k〉〉D[D[f ]] = 〈〈0, g〉, 〈h, k〉〉D[D[f ]]
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[Dt.1]
d(f1 + f2)

dp
(s) · a =

df1

dp
(s) · a +

df2

dp
(s) · a and

d0

dp
(s) · a = 0;

[Dt.2]
df

dp
(s) · (a1 + a2) =

df

dp
(s) · a1 +

df

dp
(s) · a2 and

df

dp
(s) · 0 = 0;

[Dt.3]
dx

dx
(s) · a = a,

df

d(p, p′)
(s, s′) · (a,0) =

df [s′/p′]

dp
(s) · a

and
df

d(p, p′)
(s, s′) · (0, a′) =

df [s/p]

dp′
(s′) · a′;

[Dt.4]
d(f1, f2)

dp
(s) · a =

(
df1

dp
(s) · a,

df1

dp
(s) · a

)
;

[Dt.5]
dg[f/p′]

dp
(s) ·a =

dg

dp′
(f [s/p]) ·

(
df

dp
(s) · a

)
(no variable of p may occur in f);

[Dt.6]
ddf

dp
(s) · p′

dp′
(r) · a =

df

dp
(s) · a.

[Dt.7]
d df

dp1
(s1) · a1

dp2

(s2) · a2 =
d df

dp2
(s2) · a2

dp1

(s1) · a1

7

The Chain Rule

D[fg] = 〈D[f ], π1f〉D[g]

dg[f/x′]
dx (s) · a = dg

dx′
(f [s/x]) ·

(
df
dx(s) · a

)

(fg)(1)(s) · a = g(1)(f) · (f(1)(s) · a)

a

•

•
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The Bundle Fibration over X

Objects: (A, X) (pairs of objects of X)

Morphisms: (f∗, f1): (A, X) −→ (B, Y ): f∗:X −→ Y in X;

f1:A × X −→ B in X, additive in its first argument.

Composition: (f∗, f1)(g∗, g1) = (f∗g∗, 〈f1, π1f∗〉g1)

(Think f1 = D(f∗))

Additive structure: defined “component-wise”

(A, X) 7→ X; (f∗, f1) 7→ f∗ is a fibration

If X is Cartesian left additive, so are the fibres, and so is the

total category
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2nd Order Chain Rule

d(2)g(f(x))
dx (s) · a1 · a2

= dg
dx (f(s)) ·

(
d(2)f

dx (s) · a1 · a2

)

+ d(2)g
dx (f(s)) ·

(
df
dx (s) · a1

)
·
(

df
dx (s) · a2

)

i.e.

(fg)(2)(s) · a1 · a2

= g(1)(f(s)) · (f(2)(s) · a1 · a2))

+ g(2)(f(s)) · (f(1)(s) · a1) · (f
(1)(s) · a2)

a1 a2

•

999999

������

•
+

a1 a2

• •

•

???????

�������
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The differential of a symmetric tree

a1

•
•

�
∂a2

//

a1 a2

• •
•

a1 a2

•
•

a1 a2

• •
•

uuuuuuuu

�
∂a3

//

a1 a2 a3 a1 a3 a2

• • • • •

•

FFFFFFFF •

FFFFFFFF

xxxxxxxx

a1 a2 a3

• •

•

???????

�������

a1 a2

•
}}}}}}

•

�
∂a3

//

a1 a2 a3

•
~~~~~~~ •

•

FFFFFFFF

a1 a2 a3

•

@@@@@@@

•
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Faà(X), the Fàa di Bruno Fibration over X

Objects: (A, X) (pairs of objects of X)

Morphisms: f = (f∗, f1, f2, . . . ): (A, X) −→ (B, X), where:

f∗:X −→ Y in X;

for r > 0: fr:A × . . . × A︸ ︷︷ ︸
r

×X −→ B a “symmetric form” (i.e.

additive and symmetric in the first r arguments

(think fr:A⊗r
/r! × X −→ B, even though X need not have ⊗)

Composition? This is where the higher order chain rules come

in . . .
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Faà di Bruno convolution

τ : a symmetric tree of height 2, width r, on variables {a1, . . . , ar};

(A, X)
f

−−→ (B, Y )
g

−−→ (C, Z) in Faà(X).

Then (f ? g)τ :A × . . . × A︸ ︷︷ ︸
r

×X −→ C is defined thus (for example):

for τ the tree on the left, interpret it as the tree on the right:

a1 a2 a4 a3

•
EEEEEE

yyyyyy •
•

KKKKKKKK

ssssssss

a1 a2 a4 a3 x

ONMLHIJKf3

999999

������ ONMLHIJKf1 ONMLHIJKf∗

GFED@ABCg2

9999999

�������

(f?g)τ = g2(f∗(x), f1(a3, x), f3(a1, a2, a4, x)):A×A×A×A×X −→ C.

NB: (f?g)τ is additive in each argument except the last whenever

the components of f and g have this property.
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ι
a1
2 is the (unique) height 2 width 1 tree (with variable a1)

T
a1,... ,ar
2 = ∂a2,... ,ar(ι

a1
2 ),

i.e. the bag of trees obtained by “deriving” ι
a1
2 r-times with

respect to the given variables. (This is the set of all symmetric

trees of height 2 and width r.)

The Faà di Bruno convolution (composition in Faà(X)) of f and

g is given by setting (fg)∗ = f∗g∗, and for r > 0

(fg)r = (f ? g)
T

{a1,... ,ar}
2

=
∑

n · τ ∈ T a1,... ,ar

2

n · (f ? g)τ

(This is well-defined: permuting the variables of any τ ∈ T
a1,... ,ar
2

either leaves τ fixed or produces a new tree in T
a1,... ,ar
2 .)

Proposition For any Cartesian left additive category X, Faà(X)

is a Cartesian left additive category.
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Faà:CLAdd −→ CLAdd is a functor:

X 7→ Faà(X) ; (f∗, f1, . . . ) 7→ (F (f∗), F (f1), . . . )

ε: Faà(X) −→ X: (A, X) 7→ X, (f∗, f1, . . . ) 7→ f is a fibration.

(and a natural transformation)

There is a functor (indeed, a natural transformation)

δ: Faà(X) −→ Faà(Faà(X)) so that (Faà, ε, δ) is a comonad on

CLAdd.

On objects, δ: (A, X) 7→ ((A, A), A, X)

On morphisms, things are a bit “complicated”. Some notation:

we write f = (f∗, f1, f2, . . . ): (A, X) −→ (B, Y ) as follows

f∗:X −→ Y : x 7→ f∗(x)

fn:An × X −→ B : (a∗1, . . . , a∗n, x) 7→ fn(x) · a∗1 · . . . · a∗n
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We then define δ: Faà(X) −→ Faà(Faà(X)) as follows:

on objects, δ takes (A, X) to ((A, A), A, X).

On arrows, f 7→ δ(f) = (f, f [1], f [2], . . . ) by setting

f
[n]
∗ :An × X −→ B: (a∗1, . . . , a∗n, x) 7→ fn(x) · a∗1 · . . . · a∗n

f
[n]
r : (An × A)r × (An × X) −→ B:



a11 . . . a1n a1∗
... ...
ar1 . . . arn ar∗

a∗1 . . . a∗n x


 7→

∑

s ≤ n& s ≤ r
& ramps

r,n(α | γ)

fr+n−s(x)·aα11·. . .·aαnn·aγ1∗·. . .·aγr−s ∗

where the “ramp” condition amounts to choosing (for each

s ≤ min(r, n)) s elements from (aij)i≤r,j≤n, at most one from

each row and column, (this amounts to choosing a partial iso-

morphism) and constructing the function term as follows (for

example,):
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If σ is the following partial iso (here n = 4, r = 5, and s = 3):




a11 a12 a13 a14 a1∗
a21 a22 a23 a24 a2∗
a31 a32 a33 a34 a3∗
a41 a42 a43 a44 a4∗
a51 a52 a53 a54 a5∗
a∗1 a∗2 a∗3 a∗4 x




;




a11 a12 a13 a14 a1∗

a21 a22 a23 a24 a2∗
a31 a32 a33 a34 a3∗

a41 a42 a43 a44 a4∗
a51 a52 a53 a54 a5∗

a∗1 a∗2 a∗3 a∗4 x




Then construct

fσ = f6(x) · a11 · a52 · a∗3 · a34 · a2∗ · a4∗

f6 since we need n+ r−s = 6 linear arguments. The linear argu-

ments of f are determined by putting in the selected arguments

and arguments from the bottom row and rightmost column cor-

responding to the rows and columns not containing a selected

argument. Then we set f
[n]
r to be the sum of all such expressions:

f
[n]
r =

∑

σ∈ParIso(r,n)

fσ
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Remark: The intended interpretation of f
[n]
r is the rth higher

order differential term

drf(x)·a1· ··· ·an
d(x,a1,... ,an)

(x, a1, . . . , an)·(a1, a11, . . . , a1n)· · · · ·(ar, ar1, . . . , arn)

Properties: f
[n]
r is additive, symmetric in its first r arguments.

(f + g)
[n]
r = f

[n]
r + g

[n]
r

If F is Cartesian left additive, Faà(F )(f [n]) = (Faà(F )(f))[n]

δ: Faà(X) −→ Faà(Faà(X)) is a functor, and is natural (as a nat-

ural transformation).

(Faà, ε, δ) is a comonad on CLAdd.
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An example of the proofs:

Let’s show that δ(f)δ(g) = δ(fg):

For the most part (as seen in the sequence of equations on

the next slide) this involves expanding the definitions, followed

by several applications of additivity; only the last step requires

comment, as it involves a combinatorial argument.
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δ(f)δ(g) =
∑

τ1,τ2

(δ(f) ? δ(g))τ1×τ2

=
∑

τ1,τ2





 ∑

σ:i−→j

fσ




ij

?


 ∑

σ′:k−→l

gσ′




kl




τ1×τ2

=
∑

τ1,τ2


∑

σ′

gσ′







∑

σij:αi−→βj

fσij




ij

=
∑

τ1,τ2

∑

σ′

gσ′


∑

σij

fσij




ij

=
∑

τ1,τ2

∑

σ′

gσ′


∑

σij

fσij




ij∈σ′

=
∑

τ1,τ2

∑

σ′,σij,ij∈σ′

gσ(. . . , fσij , . . . )

=
∑

σ:n−→m

∑

τ∈Tn+m−|σ|

(f ? g)σ
τ = δ(fg)
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The key combinatorial lemma is the equivalence of the following

data:

• Partitions τ1 = (α1, . . . , αk), τ2 = (β1, . . . , βl) and partial iso-

morphisms σ′: k −→ l and σij:αi −→ βj for (i, j) ∈ σ′

• Partial isomorphism σ:n −→ m and partition of n + m − |σ|.

where n is the set partitioned by τ1, m the set partitioned by τ2,

and σ is the union of the σij.

We sketch the proof, with an example as illustration.
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We shall frequently identify an integer n with the set of integers

from 1 to n, unless otherwise stated. We shall represent a partial

isomorphim as the set of pairs (i, j) where i 7→ j.

Suppose we are given partitions τ1 = (α1, . . . , αk), τ2 = (β1, . . . , βl)

and partial isomorphisms σ′: k −→ l and σij:αi −→ βj for (i, j) ∈ σ′

Consider the following example:

τ1 = ((1,3), (2,5), (4,6))

τ2 = ((1,2,4), (3), (5)) (so k = l = 3)

σ′: 3 −→ 3 = {(1,3), (3,1)} (so e.g. (2,2) is not in σ)

σ13: {1,3} −→ {5} = {(3,5)}

σ31: {4,6} −→ {1,2,4} = {(4,4), (6,1)}

Then σ =
⋃

ij σij: 6 −→ 5 = {(3,5), (4,4), (6,1)} and

n = 6, m = 5, |σ| = 3

It remains to construct τ , a partition of an 8-element set.
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Some notation: for a partial iso σ:n −→ m, let

σ̃ = σ ∪ {(x, ∗) | x ∈ n \ π1σ} ∪ {(∗, y) | y ∈ m \ π2σ}

Note that the set σ̃ has n + m − |σ| elements.

For our example, this gives

σ̃ = {(3,5), (4,4), (6,1), (1, ∗), (2, ∗), (5, ∗), (∗,2), (∗,3)}

σ̃13 = {(3,5), (1, ∗)}

σ̃31 = {(4,4), (6,1), (∗,2)}

More notation: write σi = ∪jσij and σj = ∪iσij

(and similarly for σ̃i, σ̃j).
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We define a partition τ on σ̃ as τ =

{σ̃ij}(i,j)∈σ′ ∪ {((αi\π1σi)×{∗})\σ̃i}i∈k ∪ {({∗}×(βj\π2σj))\σ̃j}j∈l

This means that pairs from the same σ̃ij end up in the same

partition, and pairs with a ∗ end up in the same partition if

the “other” elements come from the same αi or βj (and aren’t

already in some σ̃ij).

In our example, this gives the 4-fold partition of S

τ = (((4, 4), (6,1), (∗,2)), ((3,5), (1, ∗)), ((2, ∗), (5, ∗)), ((∗,3)))

(This completes one direction of the equivalence)
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What’s going on?

The given partitions and partial isos amount to this selection

from a variable base:




(
a1,1 a1,2 a1,4
a3,1 a3,2 a3,4

) (
a1,3
a3,3

) (
a1,5
a3,5

)

(
a2,1 a2,2 a2,4
a5,1 a5,2 a5,4

) (
a2,3
a5,3

) (
a2,5
a5,5

)




a4,1 a4,2 a4,4

a6,1 a6,2 a6,4




(
a4,3
a6,3

) (
a4,5
a6,5

)




and it’s clear that what both sets of data are defining is the

following term from the sums that define δ(f)δ(g) and δ(fg):

g4(x) · (f3(x) · a44 · a61 · a∗2) · (f2(x) · a35 · a1∗) · (f2(x) · a2∗ · a5∗) ·

(f1(x) · a∗3)
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The other direction:

Suppose we are given a partial isomorphism σ:n −→ m and a

partition τ of n + m − |σ|.

We must construct partitions τ1 = (α1, . . . , αk), τ2 = (β1, . . . , βl)

and partial isomorphisms σ′: k −→ l and σij:αi −→ βj for (i, j) ∈ σ′,

of appropriate sizes.

Since τ and σ̃ have the same size, we can re-notate τ , so that it

is a partition of σ̃.

Example: If σ: 6 −→ 5 = {(3,5), (4,4), (6,1)}, and

τ = ((1), (2,3), (4,5,8), (6,7)), then

σ̃ = {(6,1), (∗,2), (∗,3), (4,4), (3,5), (1, ∗), (2, ∗), (5, ∗)} and

τ = (((6, 1)), ((∗,2), (∗,3)), ((4,4), (3,5), (5, ∗)), ((1, ∗), (2, ∗)))

(There are many ways we can do this, but they only differ by permutation,

and both sets and partitions are invariant under permutation.)
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From the re-notated version of τ , it is easy to regard τ as a

partition of a matrix, and so obtain partitions τ1, τ2 of the rows

and columns:

τ1 = (π′
1γi)i and τ2 = (π′

2γi)i

where π′
iγ = πiγ \ {∗}, and the re-notated τ = (γ1, . . . , γp).

In our example, this gives

τ1 = ((6), (4,3,5), (1,2)) and τ2 = ((1), (2,3), (4,5))

(note k = l = 3, and n = 6, m = 5 as required)
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We can also construct partial isos from τ , by ignoring the pairs

with ∗s, and taking the remaining pairs from each partition:

Let τ1 = (α1, . . . , αk) and τ2 = (β1, . . . , βl)

Then set σ′ = {(i, j) | (αi × βj) ∩ σ 6= ∅}

and for (i, j) ∈ σ′, set σij = (αi × βj) ∩ σ.

Note that by this construction, σ is the union of these partial

isos, as required.
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In our example, we get σ′ = {(1,1), (2,3)} (since {(6,1)} is a

pair from σ coming from the first partition in τ1 and the first

partition in τ2, and {(4,4), (3,5)} are pairs in σ coming from the

second partition in τ1 and the third partition in τ2).

So σ11 = {(6,1)} and σ23 = {(4,4), (3,5)}, whose union is the

σ: 6 −→ 5 = {(3,5), (4,4), (6,1)} we started with.

And this completes the construction. (That these processes are

inverse we leave as homework!)
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What’s going on?

This time we have the following selection from the variable base:




(
a6,1

) (
a6,2 a6,3

) (
a6,4 a6,5

)




a4,1
a3,1
a5,1







a4,2 a4,3
a3,2 a3,3
a5,2 a5,3







a4,4 a4,5

a3,4 a3,5

a5,4 a5,5




(
a1,1
a2,1

) (
a1,2 a1,3
a2,2 a2,3

) (
a1,4 a1,5
a2,3 a2,5

)




and the common function term corresponding to this is

g4(x) · (f1(x) · a61) · (f2(x) · a∗2 · a∗3) · (f3(x) · a44 · a35 · a5∗)·

(f2(x) · a1∗ · a2∗)
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Coalgebras

Suppose X, D:X −→ Faà(X) is a coalgebra (so εD = 1, DFaà(D) =

Dδ). Since the bundle fibration is included in the Faà di Bruno

fibration, we know (BCS, TAC2009) D induces a differential

structure satisfying [CD.1]–[CD.5]. But [CD.6], [CD.7] . . . ?

On objects: Let D(X) = (D0(X), D1(X)); then

X = ε(D(X)) = ε(D0(X), D1(X)) = D1(X) so D1(X) = X.

Also

(DFaà(D))(X) = Faà(D)(D(X)) =

Faà(D)(D0(X), X) = ((D0(D0(X)), D0(X))(D0(X), X))

And

(Dδ)(X) = δ(D0(X), X) = ((D0(X), D0(X)), (D0(X), X))

so D0(D0(X)) = D0(X), i.e. D0 is an idempotent.

Call such a coalgebra in which D0 is the identity on objects a

standard coalgebra. Inside each coalgebra there always sits a

standard coalgebra determined by the objects with D0(X) = X.
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On morphisms: Write D(f) = (f, f(1), f(2), . . . ). The coalgebra

equation for δ tells us these are equal:

Faà(D)(D(f)) =




f f(1) f(2) f(3) f(4) . . .

f(1) (f(1))(1) (f(2))(1) (f(3))(1) (f(4))(1) . . .

f(2) (f(1))(2) (f(2))(2) (f(3))(2) (f(4))(2) . . .

f(3) (f(1))(3) (f(2))(3) (f(3))(3) (f(4))(3) . . .

f(4) (f(1))(4) (f(2))(4) (f(3))(4) (f(4))(4) . . .
. . .




δ(D(f)) =




f D(f)
[1]
∗ D(f)

[2]
∗ D(f)

[3]
∗ D(f)

[4]
∗ . . .

f(1) D(f)
[1]
1 D(f)

[2]
1 D(f)

[3]
1 D(f)

[4]
1 . . .

f(2) D(f)
[1]
2 D(f)

[2]
2 D(f)

[3]
2 D(f)

[4]
2 . . .

f(3) D(f)
[1]
3 D(f)

[2]
3 D(f)

[3]
3 D(f)

[4]
3 . . .

f(4) D(f)
[1]
4 D(f)

[2]
4 D(f)

[3]
4 D(f)

[4]
4 . . .

. . .




(which is enough to guarantee(!) [CD.6] & [CD.7])
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(Why?)

Since (f(1))(1) = D(f)
[1]
1 ,(

a1,1 x1

a∗,1 x

)
7→ (f(1))(1)

(
x1
x

)
·

(
a1,1
a∗,1

)

= f(2)(x) · a∗,1 · x1 + f(1)(x) · a1,1

Setting a∗,1 = 0 which yields [CD.6]:

(f(1))(1)

(
x1
x

)
·

(
a1,1
0

)
= f(1)(x) · a1,1

and setting a1,1 = 0 yields [CD.7]:

(f(1))(1)

(
x1
x

)
·

(
0
a∗,1

)

= f(2)(x) · a∗,1 · x1

= f(2)(x) · x1 · a∗,1

= (f(1))(1)

(
a∗,1
x

)
·

(
0
x1

)
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So we have proved

Proposition Every standard coalgebra of the Faà di Bruno

comonad is a Cartesian differential category.

To prove the converse involves some calculations using the term

calculus of Cartesian differential categories. Here are some high-

lights.
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Higher order derivatives

Define d(1)t
dx (s) · a = dt

dx (s) · a and

d(n)t
dx (s) · a1 · . . . · an =

dd(n−1)t
dx (x)·a1·...·an−1

dx (s) · an

Then
dt[x+s/y]

dx (0) · a = dt
dy (s) · a (x not free in s)

d(2)t
dx (s) · a1 · a2 = d(2)t

dx (s) · a2 · a1 (x not free in a1, a2)

d(n)t
dx (s) · a1 · . . . · an = d(n)t

dx (s) · aσ(1) · . . . · aσ(n) (for any σ ∈ Sn.)

dd(n)t
dz (s)·a1·...·x·...·an

dx

(
s′
)
· ar = d(n)t

dz (s) · a1 · . . . · ar · . . . · an

d dt
dx(p)·a

dy

(
p′
)
· a′ = d(2)t

dx

(
p[p′/y]

)
· a[p′/y] ·

(
dp
dy

(
p′
)
· a′
)

+ dt
dx

(
p[p′/y]

)
·
(

da
dy

(
p′
)
· a′
)

(for y 6∈ t)
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Corollary: In any cartesian differential category:

d(n)g(f(x))
dx (z) · a1 · . . . · an = (f ? g)

T
a1,... ,an
2

(z)

Furthermore

d(m)fn(fn−1(...(f(x))··· ))
dx (z) · a1 · · · am = (f1 ? f2 ? · · · ? fn)T

a1,... ,am
n

(z)

In other words, the higher order derivatives connect with the Faà

di Bruno convolution in exactly the right way, . . .
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. . . and so (after some technical calculations!):

Theorem Cartesian differential categories are exactly standard

coalgebras of the Faà di Bruno comonad.
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