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Francesco Faa di Bruno (1825-1888) was an Italian of noble
birth, a soldier, a mathematician, and a priest. In 1988 he was
beatified by Pope John Paul II for his charitable work teach-
ing young women mathematics. As a mathematician he studied
with Cauchy in Paris. He was a tall man with a solitary dispo-
sition who spoke seldom and, when teaching class, not always
successfully. Perhaps his most significant mathematical contribu-
tion concerned the combinatorics of the higher-order chain rules.
These results were the cornerstone of ‘‘combinatorial analysis”:
a subject which never really took off. It is the combinatorics
underlying the higher-order chain rule which is of interest to us
here.
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Theorem Cartesian differential categories are exactly standard
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Cartesian Differential Categories

1. Category X, Cartesian left additive: hom-sets are commu-
tative monoids & f(g+ h) = (fg) + (fh), fO=0.
( h is additive if also (f + g)h = (fh) + (gh) and Oh = 0. )
‘Well-behaved' products: mg, 71, A additive
f, g additive = f x g additive.

2. Differential operator D:

x -1y

XxX —Y
D[f]

(Ref: [Blute-Cockett-Seely] TAC 2009)

Eg (of “left additive’”): the category of commutative monoids & set maps
is left additive; the additive maps are homomorphisms.

Satisfying:

[CD.1] D[f + gl = D[f] + D[g] and D[0] =0

[CD.2] (h + k,v)D[f] = (h,v)D[f] + (k,v)D[f] and (0,v)Dx[f] =0

[CD3] D[l] = 70, D[ﬂ'o] = TOTQ and D[Trl] = mQ71

[CD.4] D[{f,9)] = (DIf], Dlg])

[CD.5] D[fg] = (DI[f],m1f)Dlg]

[CD.6] ({g,0), (h, k))D[D[f]] = (g, k) D[f]

[CD.7] ((0,h),(g,k)) DID[f]] = ((0, 9), (h, k)) D[D[f]]

d(f1 + f2)
dp

df1 dfz

[Dt.1] (-0 =) 0t L) ana ()0 =0,
p

t.21 L)@ +02) = L)1+ L) 02 ana L) 0= 0,
p dp dp dp

()-0=a, —<df )@, = B

an d( P, p )(S> l) (O ,)_

or.al ) o= (L0200,

[Dt.3] &

i (s)-a

df[S/p] () a

dg[f/p]

[Dt.5] ———(s)-a dg (f[ /pl) - ( i(s) . a) (no variable of p may occur in f);

d (8) P’

[Dt.6] ——(r)-a= —(s) a.
df df
[Dt?] ddpl(dﬁ(SQ) d((:ﬁ(sl) -aq
p2 P1

The Chain Rule
D[fg] = (DIf], 71f)Dlg] a
WU/ (5) 0= 2 f[s/a]) - (4(s) - a)

F9D(s) -a= gD () - (B (s) - a)



The Bundle Fibration over X
Objects: (A, X) (pairs of objects of X)

Morphisms: (f«, f1): (A, X) — (B,Y): fx: X — Y in X;
f1:Ax X — B in X, additive in its first argument.

Composition: (fs, f1)(g%,91) = (fxgx, (f1,71f)91)
(Think f1 = D(f+))

Additive structure: defined “component-wise”
(A, X) — X; (f«, f1) — f« is a fibration

If X is Cartesian left additive, so are the fibres, and so is the
total category

2nd Order Chain Rule
d(2)g(:l(if(.1’)) (S) . a]_ . (12
= £06) (L) a )
+ 422G (E ) a) - (L) 0)
i.e.

ap ap ap  ap
(f9)P(s) -ay - az

Y U
= gW(f(s)) - (fP(s) - a1 - a2))

+ 9 () - V() - ar) - (FD(s) - ap)
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The differential of a symmetric tree

ai ay a2 ai a2
# - # l #
ai a2 P ay a2 ‘13 ayp az a2 ai az azg
a1 ap a1 ap a3 ai ap as

BN
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Faa(X), the Faa di Bruno Fibration over X
Objects: (A, X) (pairs of objects of X)

Morphisms: f = (f«, f1, f2,...): (A, X) — (B, X), where:
f+: X —Y inX;

for r > 0: friAx...x AxX — B a “symmetric form” (i.e.

T
additive and symmetric in the first r arguments
(think fr: A®" /rl x X — B, even though X need not have ®)

Composition? This is where the higher order chain rules come
in...
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Faa di Bruno convolution

T: a symmetric tree of height 2, width r, on variables {ay,... ,ar};
(A, X) -1 (B, Y) -2 (C, 2) in Faa(X).

Then (fxg)r:AX...x AxX — C is defined thus (for example):

Y
for 7 the tree on the left, interpret it as the tree on the right:

al a» ag a3z al a» a4 a3z x

E{jﬁ @
T

(f*g)r = go(f«(x), f1(az, x), f3(a1,an,as,2)): AXAXAXAXX — C.

NB: (fxg)r is additive in each argument except the last whenever
the components of f and g have this property.
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w5t is the (unique) height 2 width 1 tree (with variable aj)

72017-.. ar 3(12,... ,ar(Lgl)v

i.e. the bag of trees obtained by ‘deriving” Lgl r-times with
respect to the given variables. (This is the set of all symmetric

trees of height 2 and width r.)

The Faa di Bruno convolution (composition in Faa(X)) of f and
g is given by setting (fg)« = f«g«, and for r > 0

FDr = *9) gy = o1 (F % 0)r
2 n-re T;].,...a.

(This is well-defined: permuting the variables of any 7 € 73
either leaves 7 fixed or produces a new tree in T2a1""’a".)

Proposition For any Cartesian left additive category X, Faa(X)
is a Cartesian left additive category.
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Faa: CLAdd — CLAdd is a functor:

e:Faa(X) — X: (A, X) — X, (f«, f1,...) — f is a fibration.
(and a natural transformation)

There is a functor (indeed, a natural transformation)
§: Faa(X) — Faa(Faa(X)) so that (Faa,¢ d) is a comonad on
CLAdd.

On objects, §: (A, X) — ((A,A), A, X)

On morphisms, things are a bit “complicated”. Some notation:
we write f = (f«, f1,f2,...): (A, X) — (B,Y) as follows

fir X —=Y 2 fi(x)
A" X X — B 1 (ax1,--.,0sn,2) — fn(x) - ae1 ...  axn
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We then define §: Faa(X) — Faa(Faa(X)) as follows:
on objects, § takes (A4,X) to ((A,A), A X).

On arrows, f— §(f) = (f, FI11, 121 ) by setting
o An o X — Bi(any, ... s asn, @) — fa(@) - as - ... - asm

£l an Ay x (A" x X) — B:
a11-.-01np | 1%

Aprl .- 0rn | Qrx
Ayl - .- QAxn |$

s<n&s<r
& ramp; ,(cr [ )

where the “ramp” condition amounts to choosing (for each
s < min(r,n)) s elements from (a;;)i<rj<n, at Mmost one from
each row and column, (this amounts to choosing a partial iso-
morphism) and constructing the function term as follows (for
example,):
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If o is the following partial iso (here n =4, r =5, and s = 3):

a11012a13014 | A1x% a12 a130a14 | 1x

a1 a22 a3 424 | A2 a21a22a23a24 | a2

a31a32 a330a34 | A3x o~ a31a32a33[a34]| a3«

(41 042 G443 Q44 | A4y (41 Q42 Q43 Q44 | Qdx

as51 452 a53 454 | A5x4 as1 ’@a53 as4 | as An example of the pI‘OOfS:

@x1 B2 A+3 Qx4 | T Ax] Q2 043 Qx4 | T
Then construct Let's show that 6(f)d(g) = 8(fg):

f7 = fe(x) - a11 - asz - a.3 - azq - az. - ags For the most part (as seen in the sequence of equations on

fe since we need n+r—s = 6 linear arguments. The linear argu- the next slide) this involves expanding the definitions, followed
ments of f are determined by putting in the selected arguments by several applications of additivity; only the last step requires
and arguments from the bottom row and rightmost column cor- comment, as it involves a combinatorial argument.

responding to the rows and columns not containing a selected
argument. Then we set fi"] to be the sum of all such expressions:

M=y

oeParlso(r,n)
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Remark: The intended interpretation of f"! is the +th higher 5§(Hs(g) = D (6(F) *x6(9))r xm
order differential term T1L,T2
/
d” ‘a1 -an = fa * ga
djzgr‘zla-]:~ ana (.’L’7 ALs-ees an).(a]-’ aiis--- ,G,]_n) """ (a’f’7 Qrl,--- 70'7‘71) 7'%7:'2 (0’723 >lj (o”-kz—>l )kl
e ’ T1XTo
Properties: f" is additive, symmetric in its first » arguments. = > (Z g“l> > fou
1,72 \ o/ oo —5; ..
ij
(o = g0 g a
= > > 97 |2 f
71,72 O'/ Uij Z]

If F is Cartesian left additive, Faa(F)(fI") = (Faa(F)(y))M

- v (sm]

§: Faa(X) — Faa(Faa(X)) is a functor, and is natural (as a nat- TLT2 of Tij ijeo

ural transformation). = > g% f%H,)
TLT2 o) 045ij€0

(Faa, e, 8) is a comonad on CLAdd. = Y Y. (Ux9f = (f9)
oin—mreT,
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The key combinatorial lemma is the equivalence of the following
data:

e Partitions 71 = (a1,...,a), ™ = (B1,...,0) and partial iso-
morphisms ¢’:k — 1 and o;;: a; — B; for (4,5) € o’

e Partial isomorphism o:n — m and partition of n 4+ m — |o|.

where n is the set partitioned by 71, m the set partitioned by 75,
and o is the union of the o;;.

We sketch the proof, with an example as illustration.
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We shall frequently identify an integer n with the set of integers
from 1 to n, unless otherwise stated. We shall represent a partial
isomorphim as the set of pairs (z,5) where ¢ — 3.

Suppose we are given partitions 1y = (a1,...,a5), 7 = (B1,--.,0))
and partial isomorphisms ¢’: k — [ and o;;: a; — ; for (4,5) € o’

Consider the following example:

m = ((1,3),(2,5),(4,6))

»=(01,2,4),(3),(5)) (sok=1=3)

03 —3=1{(1,3),(3,1)} (so e.g. (2,2) is notin o)
c13:{1,3} — {5} ={(3,5)}

031:{4,6} — {1,2,4} = {(4,4),(6,1)}

Then o = U’L] O'ijl6 — b= {(3,5),(4,4),(6, 1)} and
n=6,m=>5,|c| =3

It remains to construct 7, a partition of an 8-element set.
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Some notation: for a partial iso o:n — m, let

¢ =0U{(z,*) |z en\mo}U{(xy) |y €m\mo}
Note that the set & has n +m — |o| elements.

For our example, this gives

& =1{(3,5),(4,4),(6,1),(1,%),(2,%),(5,%), (x,2), (x,3)}
o13 ={(3,5),(1,%)}
031 ={(4,4),(6,1),(x,2)}

More notation: write o; = U;0;5 and 0 = U045
(and similarly for a;, 7;).
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We define a partition r on ¢ as 7 =

{75t peor U {(@i\m1o3) x {+})\Ti}ticr U {({x} x (Bj\720;))\7;}je1
This means that pairs from the same o;; end up in the same
partition, and pairs with a x end up in the same partition if
the “other” elements come from the same «; or 3; (and aren't
already in some o;;).

In our example, this gives the 4-fold partition of S

7= (((4,4),(6,1),(%,2)),((3,5), (1,%)), ((2,%), (5, %)), ((x,3)))

(This completes one direction of the equivalence)
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What's going on?

The given partitions and partial isos amount to this selection
from a variable base:

e

ail a12 aia ai 3 1,5
a3,;1 a32 a34 a3;3
a1 a22 aza4 a3 a2 5
as51 a52 G454 as5.3 as s

441 442 as,3 as.5
ag2 a4 a3 a5

and it's clear that what both sets of data are defining is the
following term from the sums that define §(f)d(g) and §(fg):

ga(x) - (f3(x) - aga - ag1 - ax2) - (fo(x) - azs - a1y) - (fo(x) - aoy - asy) -
(f1(z) - as3)
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The other direction:
Suppose we are given a partial isomorphism o:n — m and a
partition 7 of n 4+ m — |o|.

We must construct partitions 71 = (aq,...,a;), ™ = (B1,---,06)
and partial isomorphisms ¢’: k — [ and o;;: o; — f3; for (4,5) € o/,
of appropriate sizes.

Since 7 and ¢ have the same size, we can re-notate 7, so that it
is a partition of &.

Example: If 0:6 — 5 = {(3,5),(4,4),(6,1)}, and
= ((1),(2,3),(4,5,8),(6,7)), then

d=4{(6,1),(%,2),(%,3),(4,4),(3,5),(1,%),(2,%),(5,%)} and
7= (((6,1)), ((*,2),(x,3)), ((4,4),(3,5),(5,%)), (1,%),(2,%)))

(There are many ways we can do this, but they only differ by permutation,

and both sets and partitions are invariant under permutation.)
26

From the re-notated version of 7, it is easy to regard = as a
partition of a matrix, and so obtain partitions 71, 7 of the rows
and columns:

71 = (7}v)i and 7 = (75%);
where wly = m;v \ {*}, and the re-notated 7 = (y1,... ,7).

In our example, this gives

1 — ((6)7 (47375)’ (1)2)) and ™ = ((1)) (273>a (475>)
(note k=1=3, and n =6, m =5 as required)
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We can also construct partial isos from 7, by ignoring the pairs
with xS, and taking the remaining pairs from each partition:

Let T = (al,... ,Ozk) and T = (,81,... ,ﬂl)

Then set o/ = {(4,5) | (a; x 8;) N # 0}
and for (i,j) € o/, set o;; = (o X Bj) No.

Note that by this construction, ¢ is the union of these partial
isOs, as required.
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In our example, we get o/ = {(1,1),(2,3)} (since {(6,1)} is a
pair from o coming from the first partition in 71 and the first
partition in m, and {(4,4),(3,5)} are pairs in o coming from the
second partition in 71 and the third partition in 75).

So 011 = {(6,1)} and o3 = {(4,4),(3,5)}, whose union is the
c:6 —5=1{(3,5),(4,4),(6,1)} we started with.

And this completes the construction. (That these processes are
inverse we leave as homework!)
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What's going on?

This time we have the following selection from the variable base:

a6 1 ( a62 06,3 ) ( a6.4 06,5 )
aq,1 a4 a43 4,5
az; az> azg3 as 4
as,1 as2 as3 as4 ass
ai aip ai3 aia ais
a1 ax> a3 ax3 azs

and the common function term corresponding to this is
ga(zx) - (f1(z) - ae1) - (f2(x) - as2 - ay3) - (f3(x) - ags - azs - asy)-
(f2(z) - a14 - a2y)

30

Coalgebras

Suppose X, D: X — Faa(X) is a coalgebra (so eD = 1, DFaa(D) =
D§). Since the bundle fibration is included in the Faa di Bruno
fibration, we know (BCS, TAC2009) D induces a differential
structure satisfying [CD.1]-[CD.5]. But [CD.6], [CD.7] ... 7

On objects: Let D(X) = (Dg(X), D1(X)); then

X =e(D(X)) = e(Do(X), D1(X)) = D1(X) so D1(X) =

Also

(DFaa(D))(X) = Faa(D)(D(X)) =

g Faa(D)(Do(X), X) = ((Do(Do(X)), Do(X))(Do(X), X))
n

(D8)(X) = 6(Do(X), X) = ((Do(X), Do(X)), (Do(X), X))
s0 Dg(Do(X)) = Do(X), i.e. Dg is an idempotent.

Call such a coalgebra in which Dg is the identity on objects a
standard coalgebra. Inside each coalgebra there always sits a
standard coalgebra determined by the objects with Dg(X) = X
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On morphisms: Write D(f) = (f, f(1, @), ...). The coalgebra
equation for § tells us these are equal:

£ (2 3 4 .

O (A (72D (fGHAD) (pAHA)

@ (FAH@ (Y@ (fGH@D) (sGNHE2)

FADIDUDN = | 43 (0B (F@)B) ;GG (@3 .
A (FOH@® (7Y@ (fGHA) (fHEH

r o bl D(f)?l D(f)L‘”

F D(f){lﬂ D(f)g D(f) D(f)
_| r@ b b pps! b

s(o))=| 7

by @ D(f)f” D(f)fz] D(f)%] D(f)F‘”

@ pHH pH? pHP bl

(which is enough to guarantee(!) [CD.6] & [CD.7])
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(Why?) Higher order derivatives

Since (fW)® = p(pH,

. (1) dt
Define £t (s)-a=9(s)-a and
a1 @y (FHYD r1 | [ a11 @ () dw(s_z)
asx1 | T Ay 1 d(n)y dd L(z)-ar-.-ap_1
) ’ d (S)'al'...'an: dz d (5)'an

=f@ (@) aw1-z1+ fD(@) a1 v *
Setting a, 1 = 0 which yields [CD.6]: Then

ey [ . . W(O)-az%(s)-a (z not free in s)

1)4(1 1. 1,1 ) — Q2 )

(f ) ( x > < 0 ) f (a:) 1,1 dffx)t (S) caq - ap = dffx)t (S) -an - al (I not free in al,ag)
. _ . . (n) (n)
and setting a; ; = 0 yields [CD.7]: St (s)-ag .. an =901 (8) g1y - Ap(n) (fOr any o € Sn.)
0
(f(l))(n(wl ) ( ) .
z ay1 dd(dz)t(s).al.,...x-...~an (s) - ap = d)¢ (s)-ai ... ar-... an
= (@) a1 21 & ¢
FP (@)1 awq d4t (p)- )
Wy (a1 ) (O L @) - = S ol /o) - ol ) - () - )
= () <x ><x1> +3 ol /) - (£ @) o)  (forygd)
33 35
Corollary: In any cartesian differential category:
)

So we have proved % (2)-a1-...-an=(f *g)T;l,...,an(z)
Proposition Every standard coalgebra of the Faa di Bruno Furthermore

comonad is a Cartesian differential category.
d0) £ (fpe1 (- (F (@)) ) (2)-ay -
dz 1

am = (f1* fax - & fn) a1 om(2)
To prove the converse involves some calculations using the term
calculus of Cartesian differential categories. Here are some high-
lights.
In other words, the higher order derivatives connect with the Faa
di Bruno convolution in exactly the right way, ...
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and so (after some technical calculations!):

Theorem Cartesian differential categories are exactly standard
coalgebras of the Faa di Bruno comonad.
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