Outline

Faà di Bruno categories

R.A.G. Seely

John Abbott College & McGill University

(Joint work with J.R.B. Cockett)

CMS & FMCS, June 2010

• Cartesian differential categories

- The bundle fibration
- Faà di Bruno categories
- The comonad
- The coalgebras

Theorem Cartesian differential categories are exactly standard coalgebras of the Faà di Bruno comonad.

3

Key structure:

$$\frac{X \xrightarrow{f} Y: x \mapsto f(x)}{X \times X \xrightarrow{D(f)} Y: \langle a, s \rangle \mapsto \frac{df}{dx}(s) \cdot a}$$
 (linear in *a* but not in *s*)

Example:

If
$$f: \langle x, y, z \rangle \mapsto \langle x^2 + xyz, z^3 - xy \rangle$$

then: $\frac{d\langle x^2 + xyz, z^3 - xy \rangle}{d\langle x, y, z \rangle} = \begin{pmatrix} 2x + yz & xz & xy \\ -y & -x & 3z^2 \end{pmatrix}$
and $\frac{d\langle x^2 + xyz, z^3 - xy \rangle}{d\langle x, y, z \rangle} (\langle r, s, t \rangle) = \begin{pmatrix} 2r + st & rt & rs \\ -s & -r & 3t^2 \end{pmatrix}$
and $\frac{d\langle x^2 + xyz, z^3 - xy \rangle}{d\langle x, y, z \rangle} (\langle r, s, t \rangle) \cdot \langle a, b, c \rangle = \langle (2r + st)a + rtb + rsc, -sa - rb + 3t^2c \rangle$

Francesco Faà di Bruno (1825-1888) was an Italian of noble birth, a soldier, a mathematician, and a priest. In 1988 he was beatified by Pope John Paul II for his charitable work teaching young women mathematics. As a mathematician he studied with Cauchy in Paris. He was a tall man with a solitary disposition who spoke seldom and, when teaching class, not always successfully. Perhaps his most significant mathematical contribution concerned the combinatorics of the higher-order chain rules. These results were the cornerstone of "combinatorial analysis": a subject which never really took off. It is the combinatorics underlying the higher-order chain rule which is of interest to us here.

Cartesian Differential Categories

- 1. Category X, **Cartesian left additive**: hom-sets are commutative monoids & f(g+h) = (fg) + (fh), f0 = 0. (*h* is **additive** if also (f+g)h = (fh) + (gh) and 0h = 0.) 'Well-behaved' products: π_0 , π_1 , Δ additive *f*, *g* additive $\Rightarrow f \times g$ additive.
- 2. Differential operator D:

$$\frac{X \xrightarrow{f} Y}{X \times X \xrightarrow{D[f]} Y}$$

(Ref: [Blute-Cockett-Seely] TAC 2009)

Eg (of "left additive"): the category of commutative monoids & **set** maps is left additive; the additive maps are homomorphisms.

Satisfying:

[CD.1]
$$D[f+g] = D[f] + D[g]$$
 and $D[0] = 0$

[CD.2]
$$\langle h + k, v \rangle D[f] = \langle h, v \rangle D[f] + \langle k, v \rangle D[f]$$
 and $\langle 0, v \rangle D_{\times}[f] = 0$

[CD.3]
$$D[1] = \pi_0$$
, $D[\pi_0] = \pi_0 \pi_0$ and $D[\pi_1] = \pi_0 \pi_1$

[CD.4] $D[\langle f, g \rangle] = \langle D[f], D[g] \rangle$

[CD.5] $D[fg] = \langle D[f], \pi_1 f \rangle D[g]$

[CD.6] $\langle\langle g, 0 \rangle, \langle h, k \rangle\rangle D[D[f]] = \langle g, k \rangle D[f]$

[CD.7] $\langle \langle 0, h \rangle, \langle g, k \rangle \rangle D[D[f]] = \langle \langle 0, g \rangle, \langle h, k \rangle \rangle D[D[f]]$

$$\begin{aligned} [\text{Dt.1}] \quad & \frac{d(f_1 + f_2)}{dp}(s) \cdot a = \frac{df_1}{dp}(s) \cdot a + \frac{df_2}{dp}(s) \cdot a \text{ and } \frac{d0}{dp}(s) \cdot a = 0; \\ \\ [\text{Dt.2}] \quad & \frac{df}{dp}(s) \cdot (a_1 + a_2) = \frac{df}{dp}(s) \cdot a_1 + \frac{df}{dp}(s) \cdot a_2 \text{ and } \frac{df}{dp}(s) \cdot 0 = 0; \\ \\ [\text{Dt.3}] \quad & \frac{dx}{dx}(s) \cdot a = a, \ \frac{df}{d(p,p')}(s,s') \cdot (a,0) = \frac{df[s'/p']}{dp}(s) \cdot a \\ & \text{and } \frac{df}{d(p,p')}(s,s') \cdot (0,a') = \frac{df[s/p]}{dp'}(s') \cdot a'; \\ \\ [\text{Dt.4}] \quad & \frac{d(f_1,f_2)}{dp}(s) \cdot a = \left(\frac{df_1}{dp}(s) \cdot a, \frac{df_1}{dp}(s) \cdot a\right); \\ \\ [\text{Dt.5}] \quad & \frac{dg[f/p']}{dp}(s) \cdot a = \frac{dg}{dp'}(f[s/p]) \cdot \left(\frac{df}{dp}(s) \cdot a\right) \text{ (no variable of } p \text{ may occur in } f); \\ \\ \\ [\text{Dt.6}] \quad & \frac{d\frac{df}{dp}(s) \cdot p'}{dp'}(r) \cdot a = \frac{df}{dp}(s) \cdot a. \\ \\ \\ [\text{Dt.7}] \quad & \frac{d\frac{df}{dp}(s_1) \cdot a_1}{dp_2}(s_2) \cdot a_2 = \frac{d\frac{df}{dp_2}(s_2) \cdot a_2}{dp_1}(s_1) \cdot a_1 \end{aligned}$$

$$D[fg] = \langle D[f], \pi_1 f \rangle D[g]$$

$$\frac{dg[f/x']}{dx}(s) \cdot a = \frac{dg}{dx'}(f[s/x]) \cdot \left(\frac{df}{dx}(s) \cdot a\right)$$

$$(fg)^{(1)}(s) \cdot a = g^{(1)}(f) \cdot (f^{(1)}(s) \cdot a)$$

The Bundle Fibration over $\ensuremath{\mathbb{X}}$

Objects: (A, X) (pairs of objects of X)

Morphisms: $(f_*, f_1): (A, X) \longrightarrow (B, Y): f_*: X \longrightarrow Y$ in \mathbb{X} ; $f_1: A \times X \longrightarrow B$ in \mathbb{X} , additive in its first argument.

Composition: $(f_*, f_1)(g_*, g_1) = (f_*g_*, \langle f_1, \pi_1 f_* \rangle g_1)$ (Think $f_1 = D(f_*)$)

Additive structure: defined "component-wise" $(A, X) \mapsto X$; $(f_*, f_1) \mapsto f_*$ is a fibration If X is Cartesian left additive, so are the fibres, and so is the total category

2nd Order Chain Rule

$$\frac{d^{(2)}g(f(x))}{dx}(s) \cdot a_1 \cdot a_2$$

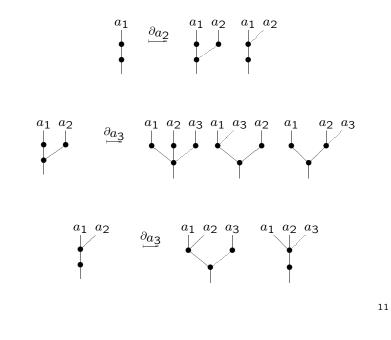
$$= \frac{dg}{dx}(f(s)) \cdot \left(\frac{d^{(2)}f}{dx}(s) \cdot a_1 \cdot a_2\right)$$

$$+ \frac{d^{(2)}g}{dx}(f(s)) \cdot \left(\frac{df}{dx}(s) \cdot a_1\right) \cdot \left(\frac{df}{dx}(s) \cdot a_2\right)$$

i.e.

 a_1

 a_2



Faà(X), the Fàa di Bruno Fibration over X

Objects: (A, X) (pairs of objects of X)

Morphisms: $f = (f_*, f_1, f_2, \dots): (A, X) \longrightarrow (B, X)$, where:

 $f_*: X \longrightarrow Y$ in \mathbb{X} ;

for r > 0: $f_r: \underbrace{A \times \ldots \times A}_r \times X \longrightarrow B$ a "symmetric form" (*i.e.* additive and symmetric in the first r arguments

(think $f_r: A^{\otimes^r}/r! \times X \longrightarrow B$, even though \mathbb{X} need not have \otimes)

Composition? This is where the higher order chain rules come in ...

 $a_1 \quad a_2$

Faà di Bruno convolution

 τ : a symmetric tree of height 2, width r, on variables $\{a_1, \ldots, a_r\}$; $(A, X) \xrightarrow{f} (B, Y) \xrightarrow{g} (C, Z)$ in Faà(X).

Then $(f \star g)_{\tau}: \underbrace{A \times \ldots \times A}_{r} \times X \longrightarrow C$ is defined thus (for example): for τ the tree on the left, interpret it as the tree on the right:

 $(f \star g)_{\tau} = g_2(f_*(x), f_1(a_3, x), f_3(a_1, a_2, a_4, x)): A \times A \times A \times A \times X \longrightarrow C.$ **NB:** $(f \star g)_{\tau}$ is additive in each argument except the last whenever the components of f and g have this property.

13

$$\iota_2^{a_1}$$
 is the (unique) height 2 width 1 tree (with variable a_1)

$$\mathcal{T}_2^{a_1,\ldots,a_r} = \partial_{a_2,\ldots,a_r}(\iota_2^{a_1}),$$

i.e. the bag of trees obtained by "deriving" $\iota_2^{a_1}$ *r*-times with respect to the given variables. (This is the set of *all* symmetric trees of height 2 and width *r*.)

The Faà di Bruno convolution (composition in Faà(X)) of f and g is given by setting $(fg)_* = f_*g_*$, and for r > 0

$$(fg)_r = (f \star g)_{\mathcal{T}_2^{\{a_1, \dots, a_r\}}} = \sum_{n \, \cdot \, \tau \, \in \, \mathcal{T}_2^{a_1, \dots, a_r}} n \, \cdot \, (f \star g)_{\tau}$$

(This is well-defined: permuting the variables of any $\tau \in \mathcal{T}_2^{a_1,\dots,a_r}$ either leaves τ fixed or produces a new tree in $\mathcal{T}_2^{a_1,\dots,a_r}$.)

Proposition For any Cartesian left additive category X, Faà(X) is a Cartesian left additive category.

Faà: CLAdd \longrightarrow CLAdd is a functor: $\mathbb{X} \mapsto \mathsf{Faà}(\mathbb{X}) ; (f_*, f_1, \dots) \mapsto (F(f_*), F(f_1), \dots)$

 ϵ : Faà(X) \longrightarrow X: $(A, X) \mapsto X, (f_*, f_1, ...) \mapsto f$ is a fibration. (and a natural transformation)

There is a functor (indeed, a natural transformation) δ : Faà(X) \rightarrow Faà(Faà(X)) so that (Faà, ϵ , δ) is a comonad on CLAdd.

On objects, $\delta: (A, X) \mapsto ((A, A), A, X)$

On morphisms, things are a bit "complicated". Some notation: we write $f = (f_*, f_1, f_2, ...): (A, X) \longrightarrow (B, Y)$ as follows

$$f_* \colon X \longrightarrow Y \quad \colon \ x \mapsto f_*(x)$$
$$f_n \colon A^n \times X \longrightarrow B \quad \colon \ (a_{*1}, \dots, a_{*n}, x) \mapsto f_n(x) \cdot a_{*1} \cdot \dots \cdot a_{*n}$$

15

We then define δ : Faà(X) \rightarrow Faà(Faà(X)) as follows:

on objects, δ takes (A, X) to ((A, A), A, X). On arrows, $f \mapsto \delta(f) = (f, f^{[1]}, f^{[2]}, \dots)$ by setting $f_*^{[n]} \colon A^n \times X \longrightarrow B \colon (a_{*1}, \dots, a_{*n}, x) \mapsto f_n(x) \cdot a_{*1} \cdot \dots \cdot a_{*n}$ $f_r^{[n]} \colon (A^n \times A)^r \times (A^n \times X) \longrightarrow B \colon$ $\begin{pmatrix} a_{11} \dots a_{1n} & a_{1*} \\ \vdots & & \vdots \\ a_{*1} \dots a_{*n} & x \end{pmatrix} \mapsto \sum_{\substack{s \leq n \& s \leq r \\ \& \operatorname{ramp}_{r,n}^s(\alpha \mid \gamma)}} f_{r+n-s}(x) \cdot a_{\alpha_1 1} \cdot \dots \cdot a_{\alpha_n n} \cdot a_{\gamma_1 *} \cdot \dots \cdot a_{\gamma_{r-s*}}$

where the "ramp" condition amounts to choosing (for each $s \leq \min(r, n)$) s elements from $(a_{ij})_{i \leq r, j \leq n}$, at most one from each row and column, (this amounts to choosing a partial isomorphism) and constructing the function term as follows (for example,):

If σ is the following partial iso (here n = 4, r = 5, and s = 3):

$$\begin{pmatrix} a_{11} a_{12} a_{13} a_{14} & a_{1*} \\ a_{21} a_{22} a_{23} a_{24} & a_{2*} \\ a_{31} a_{32} a_{33} a_{34} & a_{3*} \\ a_{41} a_{42} a_{43} a_{44} & a_{4*} \\ \underline{a_{51} a_{52} a_{53} a_{54} & a_{5*} \\ a_{*1} a_{*2} a_{*3} a_{*4} & x \end{pmatrix} \longrightarrow \begin{pmatrix} \boxed{a_{11}} a_{12} a_{13} a_{14} & a_{1*} \\ a_{21} a_{22} a_{23} a_{24} & a_{2*} \\ a_{31} a_{32} a_{33} \boxed{a_{34}} & a_{3*} \\ a_{41} a_{42} a_{43} a_{44} & a_{4*} \\ \underline{a_{51}} \boxed{a_{52}} a_{53} a_{54} & a_{5*} \\ \hline a_{*1} a_{*2} a_{*3} a_{*4} & x \end{pmatrix}$$

Then construct

$$f^{\sigma} = f_6(x) \cdot a_{11} \cdot a_{52} \cdot a_{*3} \cdot a_{34} \cdot a_{2*} \cdot a_{4*}$$

 f_6 since we need n + r - s = 6 linear arguments. The linear arguments of f are determined by putting in the selected arguments and arguments from the bottom row and rightmost column corresponding to the rows and columns **not** containing a selected argument. Then we set $f_r^{[n]}$ to be the sum of all such expressions:

$$f_r^{[n]} = \sum_{\sigma \in \mathsf{ParIso}(r,n)} f^{\sigma}$$

Remark: The intended interpretation of $f_r^{[n]}$ is the r^{th} higher order differential term

$$\frac{\mathsf{d}^r f(x) \cdot a_1 \cdot \cdots \cdot a_n}{\mathsf{d}(x, a_1, \dots, a_n)} (x, a_1, \dots, a_n) \cdot (a_1, a_{11}, \dots, a_{1n}) \cdot \cdots \cdot (a_r, a_{r1}, \dots, a_{rn})$$

Properties: $f_r^{[n]}$ is additive, symmetric in its first *r* arguments.

$$(f+g)_r^{[n]} = f_r^{[n]} + g_r^{[n]}$$

If F is Cartesian left additive, $Faa(F)(f^{[n]}) = (Faa(F)(f))^{[n]}$

 δ : Faà(X) \longrightarrow Faà(Faà(X)) is a functor, and is natural (as a natural transformation).

(Faà, ϵ , δ) is a comonad on CLAdd.

An example of the proofs:

Let's show that $\delta(f)\delta(g) = \delta(fg)$:

For the most part (as seen in the sequence of equations on the next slide) this involves expanding the definitions, followed by several applications of additivity; only the last step requires comment, as it involves a combinatorial argument.

$$\begin{split} \delta(f)\delta(g) &= \sum_{\tau_1,\tau_2} (\delta(f) \star \delta(g))_{\tau_1 \times \tau_2} \\ &= \sum_{\tau_1,\tau_2} \left(\left(\sum_{\sigma:i \longrightarrow j} f^{\sigma} \right)_{ij} \star \left(\sum_{\sigma':k \longrightarrow l} g^{\sigma'} \right)_{kl} \right)_{\tau_1 \times \tau_2} \\ &= \sum_{\tau_1,\tau_2} \left(\sum_{\sigma'} g^{\sigma'} \right) \left(\sum_{\sigma_{ij}:\alpha_i \longrightarrow \beta_j} f^{\sigma_{ij}} \right)_{ij} \\ &= \sum_{\tau_1,\tau_2} \sum_{\sigma'} g^{\sigma'} \left(\sum_{\sigma_{ij}} f^{\sigma_{ij}} \right)_{ij} \\ &= \sum_{\tau_1,\tau_2} \sum_{\sigma'} g^{\sigma'} \left(\sum_{\sigma_{ij}} f^{\sigma_{ij}} \right)_{ij \in \sigma'} \\ &= \sum_{\tau_1,\tau_2} \sum_{\sigma',\sigma_{ij},ij \in \sigma'} g^{\sigma} (\dots, f^{\sigma_{ij}}, \dots) \\ &= \sum_{\sigma:n \longrightarrow m} \sum_{\tau \in T_{n+m-|\sigma|}} (f \star g)_{\tau}^{\sigma} = \delta(fg) \end{split}$$

The key combinatorial lemma is the equivalence of the following data:

- Partitions $\tau_1 = (\alpha_1, \ldots, \alpha_k), \tau_2 = (\beta_1, \ldots, \beta_l)$ and partial isomorphisms $\sigma': k \longrightarrow l$ and $\sigma_{ij}: \alpha_i \longrightarrow \beta_j$ for $(i, j) \in \sigma'$
- Partial isomorphism $\sigma: n \longrightarrow m$ and partition of $n + m |\sigma|$.

where *n* is the set partitioned by τ_1 , *m* the set partitioned by τ_2 , and σ is the union of the σ_{ij} .

We sketch the proof, with an example as illustration.

Some notation: for a partial iso $\sigma: n \longrightarrow m$, let

$$\tilde{\sigma} = \sigma \cup \{(x, *) \mid x \in n \setminus \pi_1 \sigma\} \cup \{(*, y) \mid y \in m \setminus \pi_2 \sigma\}$$

Note that the set $\tilde{\sigma}$ has $n + m - |\sigma|$ elements.

For our example, this gives

$$\begin{split} \tilde{\sigma} &= \{(3,5),(4,4),(6,1),(1,*),(2,*),(5,*),(*,2),(*,3)\}\\ \widetilde{\sigma_{13}} &= \{(3,5),(1,*)\}\\ \widetilde{\sigma_{31}} &= \{(4,4),(6,1),(*,2)\} \end{split}$$

More notation: write $\sigma_i = \bigcup_j \sigma_{ij}$ and $\sigma_j = \bigcup_i \sigma_{ij}$ (and similarly for $\widetilde{\sigma_i}$, $\widetilde{\sigma_j}$).

21

We shall frequently identify an integer n with the set of integers from 1 to n, unless otherwise stated. We shall represent a partial isomorphim as the set of pairs (i, j) where $i \mapsto j$.

Suppose we are given partitions $\tau_1 = (\alpha_1, \dots, \alpha_k), \tau_2 = (\beta_1, \dots, \beta_l)$ and partial isomorphisms $\sigma': k \longrightarrow l$ and $\sigma_{ij}: \alpha_i \longrightarrow \beta_j$ for $(i, j) \in \sigma'$

Consider the following example:

$$\begin{split} \tau_1 &= ((1,3), (2,5), (4,6)) \\ \tau_2 &= ((1,2,4), (3), (5)) \quad (\text{so } k = l = 3) \\ \sigma': 3 &\longrightarrow 3 = \{(1,3), (3,1)\} \quad (\text{so } e.g. \ (2,2) \text{ is not in } \sigma) \\ \sigma_{13}: \{1,3\} &\longrightarrow \{5\} = \{(3,5)\} \\ \sigma_{31}: \{4,6\} &\longrightarrow \{1,2,4\} = \{(4,4), (6,1)\} \end{split}$$

Then $\sigma = \bigcup_{ij} \sigma_{ij}: 6 \longrightarrow 5 = \{(3,5), (4,4), (6,1)\}$ and $n = 6, m = 5, |\sigma| = 3$

We define a partition τ on $\tilde{\sigma}$ as $\tau = \{\widetilde{\sigma_{ij}}\}_{(i,j)\in\sigma'} \cup \{((\alpha_i \setminus \pi_1 \sigma_i) \times \{*\}) \setminus \widetilde{\sigma_i}\}_{i\in k} \cup \{(\{*\} \times (\beta_j \setminus \pi_2 \sigma_j)) \setminus \widetilde{\sigma_j}\}_{j\in l}$

This means that pairs from the same $\widetilde{\sigma_{ij}}$ end up in the same partition, and pairs with a * end up in the same partition if the "other" elements come from the same α_i or β_j (and aren't already in some $\widetilde{\sigma_{ij}}$).

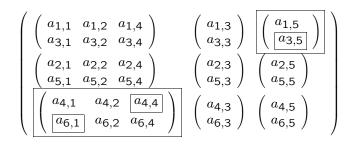
In our example, this gives the 4-fold partition of ${\boldsymbol S}$

 $\tau = (((4,4),(6,1),(*,2)),((3,5),(1,*)),((2,*),(5,*)),((*,3)))$

(This completes one direction of the equivalence)

It remains to construct τ , a partition of an 8-element set.

The given partitions and partial isos amount to this selection from a variable base:



and it's clear that what both sets of data are defining is the following term from the sums that define $\delta(f)\delta(g)$ and $\delta(fg)$:

 $g_4(x) \cdot (f_3(x) \cdot a_{44} \cdot a_{61} \cdot a_{*2}) \cdot (f_2(x) \cdot a_{35} \cdot a_{1*}) \cdot (f_2(x) \cdot a_{2*} \cdot a_{5*}) \cdot (f_1(x) \cdot a_{*3})$

The other direction:

Suppose we are given a partial isomorphism $\sigma: n \longrightarrow m$ and a partition τ of $n + m - |\sigma|$.

We must construct partitions $\tau_1 = (\alpha_1, \ldots, \alpha_k), \tau_2 = (\beta_1, \ldots, \beta_l)$ and partial isomorphisms $\sigma': k \longrightarrow l$ and $\sigma_{ij}: \alpha_i \longrightarrow \beta_j$ for $(i, j) \in \sigma'$, of appropriate sizes.

Since τ and $\tilde{\sigma}$ have the same size, we can re-notate $\tau,$ so that it is a partition of $\tilde{\sigma}.$

Example: If $\sigma: 6 \rightarrow 5 = \{(3,5), (4,4), (6,1)\}$, and $\tau = ((1), (2,3), (4,5,8), (6,7))$, then

 $\tilde{\sigma} = \{(6,1), (*,2), (*,3), (4,4), (3,5), (1,*), (2,*), (5,*)\} \text{ and } \tau = (((6,1)), ((*,2), (*,3)), ((4,4), (3,5), (5,*)), ((1,*), (2,*)))$

(There are many ways we can do this, but they only differ by permutation, and both sets and partitions are invariant under permutation.)

From the re-notated version of τ , it is easy to regard τ as a partition of a matrix, and so obtain partitions τ_1 , τ_2 of the rows and columns:

$$\tau_1 = (\pi'_1 \gamma_i)_i$$
 and $\tau_2 = (\pi'_2 \gamma_i)_i$

where $\pi'_i \gamma = \pi_i \gamma \setminus \{*\}$, and the re-notated $\tau = (\gamma_1, \ldots, \gamma_p)$.

In our example, this gives

$$\tau_1 = ((6), (4, 3, 5), (1, 2))$$
 and $\tau_2 = ((1), (2, 3), (4, 5))$
(note $k = l = 3$, and $n = 6$, $m = 5$ as required)

27

We can also construct partial isos from τ , by ignoring the pairs with *s, and taking the remaining pairs from each partition:

Let $\tau_1 = (\alpha_1, \ldots, \alpha_k)$ and $\tau_2 = (\beta_1, \ldots, \beta_l)$

Then set $\sigma' = \{(i, j) \mid (\alpha_i \times \beta_j) \cap \sigma \neq \emptyset\}$ and for $(i, j) \in \sigma'$, set $\sigma_{ij} = (\alpha_i \times \beta_j) \cap \sigma$.

Note that by this construction, σ is the union of these partial isos, as required.

In our example, we get $\sigma' = \{(1,1), (2,3)\}$ (since $\{(6,1)\}$ is a pair from σ coming from the first partition in τ_1 and the first partition in τ_2 , and $\{(4,4), (3,5)\}$ are pairs in σ coming from the second partition in τ_1 and the third partition in τ_2).

So $\sigma_{11} = \{(6,1)\}$ and $\sigma_{23} = \{(4,4), (3,5)\}$, whose union is the $\sigma: 6 \longrightarrow 5 = \{(3,5), (4,4), (6,1)\}$ we started with.

And this completes the construction. (That these processes are inverse we leave as homework!)

Coalgebras

Suppose \mathbb{X} , $D:\mathbb{X} \longrightarrow \mathsf{Faa}(\mathbb{X})$ is a coalgebra (so $\epsilon D = 1$, $D\mathsf{Faa}(D) = D\delta$). Since the bundle fibration is included in the Faa di Bruno fibration, we know (BCS, TAC2009) D induces a differential structure satisfying [CD.1]–[CD.5]. But [CD.6], [CD.7] ...?

On objects: Let $D(X) = (D_0(X), D_1(X))$; then $X = \varepsilon(D(X)) = \varepsilon(D_0(X), D_1(X)) = D_1(X)$ so $D_1(X) = X$.

Also

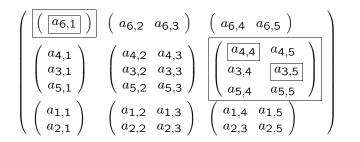
 $\begin{array}{l} (D{\sf Faà}(D))(X)={\sf Faà}(D)(D(X))=\\ {\sf Faà}(D)(D_0(X),X)=((D_0(D_0(X)),D_0(X))(D_0(X),X))\\ {\sf And}\\ (D\delta)(X)=\delta(D_0(X),X)=((D_0(X),D_0(X)),(D_0(X),X))\\ {\sf so}\ D_0(D_0(X))=D_0(X),\ i.e.\ D_0\ {\rm is\ an\ idempotent}. \end{array}$

Call such a coalgebra in which D_0 is the identity on objects a **standard coalgebra**. Inside each coalgebra there always sits a standard coalgebra determined by the objects with $D_0(X) = X$.

29

What's going on?

This time we have the following selection from the variable base:



and the common function term corresponding to this is $g_4(x) \cdot (f_1(x) \cdot a_{61}) \cdot (f_2(x) \cdot a_{*2} \cdot a_{*3}) \cdot (f_3(x) \cdot a_{44} \cdot a_{35} \cdot a_{5*}) \cdot (f_2(x) \cdot a_{1*} \cdot a_{2*})$ **On morphisms:** Write $D(f) = (f, f^{(1)}, f^{(2)}, ...)$. The coalgebra equation for δ tells us these are equal:

$$\mathsf{Faà}(D)(D(f)) = \begin{pmatrix} f & f^{(1)} & f^{(2)} & f^{(3)} & f^{(4)} & \dots \\ f^{(1)} & (f^{(1)})^{(1)} & (f^{(2)})^{(1)} & (f^{(3)})^{(1)} & (f^{(4)})^{(1)} & \dots \\ f^{(2)} & (f^{(1)})^{(2)} & (f^{(2)})^{(2)} & (f^{(3)})^{(2)} & (f^{(4)})^{(2)} & \dots \\ f^{(3)} & (f^{(1)})^{(3)} & (f^{(2)})^{(3)} & (f^{(3)})^{(3)} & (f^{(4)})^{(3)} & \dots \\ f^{(4)} & (f^{(1)})^{(4)} & (f^{(2)})^{(4)} & (f^{(3)})^{(4)} & (f^{(4)})^{(4)} & \dots \\ \dots & & & & \end{pmatrix} \\ \delta(D(f)) = \begin{pmatrix} f & D(f)_1^{[1]} & D(f)_1^{[2]} & D(f)_1^{[3]} & D(f)_1^{[4]} & \dots \\ f^{(1)} & D(f)_1^{[1]} & D(f)_1^{[2]} & D(f)_1^{[3]} & D(f)_1^{[4]} & \dots \\ f^{(2)} & D(f)_2^{[1]} & D(f)_2^{[2]} & D(f)_2^{[3]} & D(f)_2^{[4]} & \dots \\ f^{(3)} & D(f)_3^{[1]} & D(f)_3^{[2]} & D(f)_3^{[3]} & D(f)_3^{[4]} & \dots \\ f^{(4)} & D(f)_4^{[1]} & D(f)_4^{[2]} & D(f)_4^{[3]} & D(f)_4^{[4]} & \dots \\ \dots & & & & \end{pmatrix}$$

(which is enough to guarantee(!) [CD.6] & [CD.7])

(Why?)

Since
$$(f^{(1)})^{(1)} = D(f)_1^{[1]}$$
,
 $\begin{pmatrix} a_{1,1} & x_1 \\ a_{*,1} & x \end{pmatrix} \mapsto (f^{(1)})^{(1)} \begin{pmatrix} x_1 \\ x \end{pmatrix} \cdot \begin{pmatrix} a_{1,1} \\ a_{*,1} \end{pmatrix}$
 $= f^{(2)}(x) \cdot a_{*,1} \cdot x_1 + f^{(1)}(x) \cdot a_{1,1}$

Setting $a_{*,1} = 0$ which yields **[CD.6]**:

$$(f^{(1)})^{(1)} \begin{pmatrix} x_1 \\ x \end{pmatrix} \cdot \begin{pmatrix} a_{1,1} \\ 0 \end{pmatrix} = f^{(1)}(x) \cdot a_{1,1}$$

and setting $a_{1,1} = 0$ yields [CD.7]:

$$(f^{(1)})^{(1)} \begin{pmatrix} x_1 \\ x \end{pmatrix} \cdot \begin{pmatrix} 0 \\ a_{*,1} \end{pmatrix}$$

= $f^{(2)}(x) \cdot a_{*,1} \cdot x_1$
= $f^{(2)}(x) \cdot x_1 \cdot a_{*,1}$
= $(f^{(1)})^{(1)} \begin{pmatrix} a_{*,1} \\ x \end{pmatrix} \cdot \begin{pmatrix} 0 \\ x_1 \end{pmatrix}$

Higher order derivatives

Define
$$\frac{d^{(1)}t}{dx}(s) \cdot a = \frac{dt}{dx}(s) \cdot a$$
 and
 $\frac{d^{(n)}t}{dx}(s) \cdot a_1 \cdot \ldots \cdot a_n = \frac{d\frac{d^{(n-1)}t}{dx}(x) \cdot a_1 \cdot \ldots \cdot a_{n-1}}{dx}(s) \cdot a_n$

Then

$$\frac{dt[x+s/y]}{dx}(0) \cdot a = \frac{dt}{dy}(s) \cdot a \quad (x \text{ not free in } s)$$

$$\frac{d^{(2)}t}{dx}(s) \cdot a_1 \cdot a_2 = \frac{d^{(2)}t}{dx}(s) \cdot a_2 \cdot a_1 \quad (x \text{ not free in } a_1, a_2)$$

$$\frac{d^{(n)}t}{dx}(s) \cdot a_1 \cdot \ldots \cdot a_n = \frac{d^{(n)}t}{dx}(s) \cdot a_{\sigma(1)} \cdot \ldots \cdot a_{\sigma(n)} \text{ (for any } \sigma \in S_n.)$$

$$\frac{d\frac{d^{(n)}t}{dz}(s) \cdot a_1 \cdot \ldots \cdot x \cdot \ldots \cdot a_n}{dx}(s') \cdot a_r = \frac{d^{(n)}t}{dz}(s) \cdot a_1 \cdot \ldots \cdot a_r \cdot \ldots \cdot a_n$$

$$\frac{d\frac{dt}{dx}(p) \cdot a}{dy}(p') \cdot a' = \frac{d^{(2)}t}{dx}(p[p'/y]) \cdot a[p'/y] \cdot \left(\frac{dp}{dy}(p') \cdot a'\right)$$

$$+ \frac{dt}{dx}(p[p'/y]) \cdot \left(\frac{da}{dy}(p') \cdot a'\right) \quad \text{(for } y \notin t)$$

35

Corollary: In any cartesian differential category:

$$\frac{\mathsf{d}^{(n)}g(f(x))}{\mathsf{d}x}(z) \cdot a_1 \cdot \ldots \cdot a_n = (f \star g)_{\mathcal{T}_2^{a_1, \ldots, a_n}}(z)$$

Furthermore

$$\frac{\mathsf{d}^{(m)}f_n(f_{n-1}(\dots(f(x))\dots))}{\mathsf{d}x}(z) \cdot a_1 \cdots a_m = (f_1 \star f_2 \star \dots \star f_n)_{\mathcal{T}_n^{a_1,\dots,a_m}}(z)$$

In other words, the higher order derivatives connect with the Faà di Bruno convolution in exactly the right way, ...

So we have proved

Proposition Every standard coalgebra of the Faà di Bruno comonad is a Cartesian differential category.

To prove the converse involves some calculations using the term calculus of Cartesian differential categories. Here are some highlights.

... and so (after some technical calculations!):

Theorem Cartesian differential categories are exactly standard coalgebras of the Faà di Bruno comonad.