
Résumé. Dans cet article, on établit une relation entre la notion de catégorie
codifférentielle et la théorie, plus classique, des différentielles de Kähler,
qui appartient à l’algèbre commutative. Une catégorie codifférentielle est
une catégorie monoı̈dale additive, ayant une monade T qui est en outre une
modalité d’algèbre, c.à.d. une attribution naturelle d’une structure d’algèbre
associative à chaque object de la forme T (C). Enfin, une catégorie cod-
ifférentielle est équipée d’une transformation dérivante, qui satisfait quelques
axiomes typiques de différentiation, exprimés algèbriquement.
La notion classique de différentielle de Kähler définit celle d’un module des
formes A-différentielles par rapport à A, où A est une k-algèbre commuta-
tive. Ce module est équipé d’une A-dérivation universelle. Une catégorie
Kähler est une catégorie monoı̈dale additive, ayant une modalité d’algèbre et
un objet des formes différentielles associé à chaque objet. Suivant l’hypothèse
que la monade algèbre libre existe et que l’application canonique vers T est
epimorphique, les catégories codifférentielles sont Kähler.
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Abstract. This paper establishes a relation between the notion of a codiffer-
ential category and the more classic theory of Kähler differentials in commu-
tative algebra. A codifferential category is an additive symmetric monoidal
category with a monad T , which is furthermore an algebra modality, i.e. a
natural assignment of an associative algebra structure to each object of the
form T (C). Finally, a codifferential category comes equipped with a deriv-
ing transformation satisfying typical differentiation axioms, expressed alge-
braically.
The traditional notion of Kähler differentials defines the notion of a module of
A-differential forms with respect to A, where A is a commutative k-algebra.
This module is equipped with a universal A-derivation. A Kähler category
is an additive monoidal category with an algebra modality and an object of
differential forms associated to every object. Under the assumption that the
free algebra monad exists and that the canonical map to T is epimorphic,
codifferential categories are Kähler.
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1. Introduction

Differential categories were introduced in [3] in part to categorify work
of Ehrhard and Regnier on differential linear logic and the differential λ-
calculus [10, 11]. In the present paper, we shall work with the dual notion
of a codifferential category. The notion was also introduced with an eye to-
wards capturing the interaction in certain monoidal categories between an
abstract differentiation operator and a (possibly monoidal) monad or co-
monad. We require our monads to be equipped with algebra modalities, i.e.
each object naturally obtains the structure of an algebra with respect to the
monoidal structure. The primary examples of differential and codifferential
categories were the categories of vector spaces, relations and sup-lattices,
each with some variation of the symmetric algebra monad. Differentiation is
formal differentiation of polynomials. The notion of algebra modality is also
fundamental in the categorical formulation of linear logic [4]. Thus both the
work of Ehrhard and Regnier as well as our work can be seen as an attempt
to extend linear logic to include differential structure.
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The logical and semantic consequences of this sort of extension of linear
logic look to be very promising, likely establishing connections to such areas
as functional analysis, as in the Köthe spaces or finiteness spaces introduced
by Ehrhard, [8, 9]. Recent work [5] shows that the category of convenient
vector spaces [12] is also a differential category. This category is of great
interest as it provides underlying linear structure for the category of smooth
spaces [12], a cartesian closed category in which one can consider infinite-
dimensional manifolds.

Two significant areas in which there is a well-established notion of ab-
stract differentiation is algebraic geometry and commutative algebra, where
Kähler differentials are of great significance. There the Kähler module of
differential forms is introduced, for instance see [13, 14]. This is similar in
concept to various aspects of the definition of differential category; in par-
ticular, the notion of differentiation must satisfy the usual Leibniz rule. But,
in addition, Kähler differentials have a universal property that the notion of
differential category seems to be lacking. Roughly, given a commutative al-
gebra A, the Kähler A-module of differential forms is a module equipped
with a derivation satisfying Leibniz, which is universal in the sense that to
any other A-module equipped with a derivation, there is a unique A-module
map commuting with this differential structure. There is no such (explicit)
universal structure in the definition of differential category.

With this in mind, we introduce the new notion of a Kähler category. A
Kähler category is an additive symmetric monoidal category equipped with
a monad T and an algebra modality. We further require that each object
be assigned an object of differential forms, i.e. an object equipped with a
derivation and satisfying a universal property analogous to that arising from
the Kähler theory in commutative algebra.

Our main result is that every codifferential category, satisfying a minor
structural property, is Kähler. In retrospect, this perhaps should not have
been surprising. In any symmetric monoidal category, one can define both
the notions of associative algebra and module over an associative algebra.
Furthermore if A is any associative algebra in a symmetric monoidal cat-
egory and C is an arbitrary object, then one can form the free A-module
generated by C, as A⊗C. This satisfies the usual universal property of free
A-modules. So in a codifferential category, TC is automatically an associa-
tive algebra, and thus TC ⊗ C is the free TC-module generated by C. This
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is what we will take to be our object of differential forms.
The difficulty in the proof is in demonstrating that the map of TC-

modules arising from the freeness of TC⊗C also commutes with the differ-
ential structure. This is where an additional property, which we call Property
K, becomes necessary. We assume that our category has sufficient coprod-
ucts to construct free associative algebras. As such, there is a canonical
morphism of monads between this free algebra monad and the monad giv-
ing the differential structure. Property K requires that this morphism be an
epimorphism. In many codifferential categories, this is indeed the case. The
proof that this condition suffices reveals additional structure in the definition
of codifferential category.

A different approach to capturing the universality of Kähler differentials
is contained in [7]. There the work is grounded in the notion of Lawvere
algebraic theory, as opposed to linear logic in the present framework. A
comparison of the two approaches would be interesting.

Acknowledgments Thanks to the University of Ottawa for providing the
third author with a Distinguished Visiting Professorship. We also want to
thank Anders Kock for asking the right question, and the anonymous referee
for insightful comments.

2. Codifferential categories

We here review the basic definition in the paper [3]. The emphasis there was
on differential categories. We here need the dual definition of codifferential
category. We refer the reader to [3] for more details and motivations.

2.1 Basic definitions

Definition 2.1. 1. A symmetric monoidal category C is additive if it is en-
riched over commutative monoids1. Note that in an additive symmetric
monoidal category, the tensor distributes over the sum.

2. An additive symmetric monoidal category has an algebra modality if
it is equipped with a monad (T, µ, η) such that for every object C in

1In particular, we only need addition on Hom-sets, rather than abelian group structure.
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C, the object, T (C), has a commutative associative algebra structure

m:T (C)⊗ T (C) −→ T (C), e: I −→ T (C)

and this family of associative algebra structures satisfies evident nat-
urality conditions.

3. An additive symmetric monoidal category with an algebra modality is
a codifferential category if it is also equipped with a deriving transfor-
mation2, i.e. a natural transformation

d:T (C) −→ T (C)⊗ C
satisfying the following four equations3:

(d1) e; d = 0 (Derivative of a constant is 0.)
(d2) m; d = (id⊗ d); (m⊗ id) + (d⊗ id); c; (m⊗ id) (where c is the

appropriate symmetry) (Leibniz Rule)
(d3) η; d = e⊗ id (Derivative of a linear function is constant.)
(d4) µ; d = d;µ⊗ d;m⊗ id (Chain Rule)

For a diagrammatic presentation of (the duals of) these equations, see
[3].

We will need an iterated version of the Leibniz rule, which we state now.
(The proof is straightforward.)

Lemma 2.2. In any codifferential category, the composite:

TC⊗n
m−−→ TC

d−−→ TC ⊗ C
is equal to the sum over i of the composites:

TC⊗n
id⊗ id · · · d · · · ⊗ id−−−−−−−−−−−−→ TC ⊗ · · ·TC ⊗ C ⊗ · · ·TC

c−→ TC ⊗ · · ·TC ⊗ · · ·TC ⊗ C
m⊗ id−−−−−→ TC ⊗ C

In this composite the d occurs in the i-th position. The c is the appropri-
ate symmetry to move the C to the final position without changing the order
of the TC terms.

2We use the terminology of a deriving transformation in both differential and codiffer-
ential categories.

3For simplicity, we assume the monoidal structure is strict
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2.2 The polynomial example

We review the canonical example of a codifferential category, as this con-
struction will be generalized in a number of different ways. Let k be a field,
and Vec the category of k-vector spaces. It is well-established that Vec is an
additive, symmetric monoidal category, and further that the free symmetric
algebra construction determines an algebra modality. Specifically, if V is a
vector space, set

T (V ) = k + V + (V ⊗s V ) + (V ⊗s V ⊗s V ) . . . ,

where ⊗s denotes the usual symmetrized tensor product.
An equivalent, basis-dependent description is obtained as follows. Let J

be a basis for V , then
T (V ) ∼= k[xj | j ∈ J ],

in other words, T (V ) is the polynomial ring generated by the basis J . We
have that T (V ) provides the free commutative k-algebra generated by the
vector space V , and as such provides an adjoint to the forgetful functor from
the category of commutative k-algebras to Vec. The adjunction determines
a monad on Vec, and the usual polynomial multiplication makes T (V ) an
associative commutative algebra, and endows T with an algebra modality.

Furthermore Vec is a codifferential category [3]. It is probably easiest to
see using the basis-dependent definition. Noting that, even if V is infinite-
dimensional, any polynomial only has finitely many variables appearing, the
coderiving transformation is defined by

f(xj1 , xj2 , . . . , xjn) 7→
n∑
i=1

∂f

∂xji
(xj1 , xj2 , . . . , xjn)⊗ ji

where ∂f
∂xji

is defined in the usual way for polynomial functions.

Theorem 2.3. (See [3]) The above construction makes Vec a codifferential
category.

By similar arguments, we can state:
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Theorem 2.4.

1. The category Rel of sets and relations is a differential and codifferen-
tial category4.

2. The category Sup of sup-semi lattices and homomorphisms is a codif-
ferential category.

Further details can be found in [3].

3. Review of Kähler differentials

To see the origins of our theory of Kähler categories and introduce our main
example, we now consider the classical case of Kähler differentials; see [13,
14] and many other sources, for details.

Let k be a field, A a commutative k-algebra, and M an A-module5.

Definition 3.1. An A-derivation from A to M is a k-linear map ∂:A −→ M
such that ∂(aa′) = a∂(a′) + a′∂(a).

One can readily verify under this definition that ∂(1) = 0 and hence
∂(r) = 0 for any r ∈ k.

Definition 3.2. LetA be a k-algebra. A module ofA-differential forms is an
A-module ΩA together with an A-derivation ∂:A −→ ΩA which is universal
in the following sense: for any A-module M , for any A-derivation ∂′:A
−→ M , there exists a unique A-module homomorphism f : ΩA −→ M such
that ∂′ = ∂f .

Lemma 3.3. For any commutative k-algebra A, a module of A-differential
forms exists.

There are several well-known constructions. The most straightforward,
although the resulting description is not that useful, is obtained by construct-
ing the free A-module generated by the symbols {∂a | a ∈ A} divided out
by the evident relations, most significantly ∂(aa′) = a∂(a′) + a′∂(a). Of
more value is the following description, found, for instance, as Proposition
8.2A of [13].

4Noting the self-duality which commutes with the monoidal structure.
5All modules throughout the paper will be left modules.
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Lemma 3.4. Let A be an k-algebra. Consider the multiplication of A:

µ:A⊗ A −→ A.

Let I be the kernel of µ and set ΩA = I/I2. Define a map ∂:A −→ ΩA by

∂b = [1⊗ b− b⊗ 1]

where we use square brackets to represent the equivalence class. The pair
(ΩA, ∂) acts as a module of differential forms. 2

Example 3.5. For the key example, let A = k[x1, x2, . . . , xn], then ΩA is
the free A-module generated by the symbols dx1, dx2, . . . , dxn, so a typical
element of ΩA looks like

f1(x1, x2, . . . , xn)dx1 + f2(x1, x2, . . . , xn)dx2 + fn(x1, x2, . . . , xn)dxn.

Note how this compares to our polynomial example of a codifferential cate-
gory. If V is an n-dimensional space, then there is a canonical isomorphism:

ΩT (V )
∼= T (V )⊗ V.

This provides the basis for our main theorem on Kähler categories below.

4. Kähler categories

In all of the following, the category C will be symmetric, monoidal and ad-
ditive. Unless otherwise stated, all algebras will be assumed to be both as-
sociative and commutative for the remainder of the paper.

Definition 4.1. Let A be an algebra, and M = 〈M, ·M :A ⊗M −→ M〉 an
A-module. Then an A-derivation to M is an arrow ∂:A −→M such that

µ; ∂ = c; id⊗ ∂; ·M + id⊗ ∂; ·M and ∂(1) = 0

Note that if we are enriched over abelian groups, the second condition may
be dropped.
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Definition 4.2. A Kähler category is an additive symmetric monoidal cate-
gory with

• a monad T ,

• a (commutative) algebra modality for T ,

• for all objects C, a module of T (C)-differential forms ∂C :T (C) −→
ΩC , viz a T (C)-module ΩC , and a T (C)-derivation, ∂C :T (C) −→
ΩC , which is universal in the following sense: for every T (C)-module
M, and for every T (C)-derivation ∂′:T (C) −→ M , there exists a
unique T (C)-module map h: ΩC −→M such that ∂;h = ∂′.

T (C) ∂ //

∂′ ""F
FF

FF
FF

F
ΩC

h
��
M

Remark 4.3. We remark that Ω is functorial, indeed, is left adjoint to a
forgetful functor, in the following sense. Consider the category Der(T ) of
“T -derivations”: its objects are tuples (C,M, ∂), for C an object of C, M
a T (C)-module, and ∂:T (C) −→ M a derivation. A morphism (C,M, ∂)
−→ (C ′,M ′, ∂′) is a pair (f :C −→ C ′, g:M −→M ′), where f is a morphism
in C and g is a T (C)-module morphism, satisfying ∂; g = T (f); ∂′:T (C)
−→ M ′. The universal property of Ω allows us to regard it as a functor C
−→ Der(T ), since given f :C −→ C ′, T (f); ∂′:T (C) −→ ΩC′ is a derivation
if ∂′ is, and hence f induces Ωf : ΩC −→ ΩC′ . Moreover Ω is easily seen
to be left adjoint to the forgetful functor Der(T ) −→ C given by the first
projection.

Theorem 4.4. The category of vector spaces over an arbitrary field is a
Kähler category, with structure as described in the previous section.

We would like to show that codifferential categories are Kähler, but are
not in a position to do so at the moment, although we do not have a coun-
terexample. The difficulty in getting a general result lies in the fact that in
the definition of differential or codifferential category, there is no a priori
universal property; evidently universality is fundamental in Kähler theory.
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However there is a universal property at our disposal: since our monad is
equipped with an algebra modality, we can use the fact that T (C)⊗C is the
free T (C) module generated by C.

Now suppose that C is a Kähler category. For each object C, we wish to
construct an object ΩC , with a universal derivation. As already suggested,
we will define ΩC = T (C)⊗ C.

So suppose we have a T (C)-derivation ∂:T (C) −→ M . We must con-
struct the unique T (C)-module map h : T (C) ⊗ C −→ M with the re-
quired property. But because of the universal property of the free left T (C)-
module generated by C, we already know there is a unique T (C)-module
map h:T (C)⊗ C −→M .

It remains to verify that d;h = ∂, which is the focus of the remainder
of the paper. The key to our approach is that there must be an interaction
between the T -algebra structure and the associative algebra structure.

4.1 Free associative algebras vs. algebra modalities

We assume we have a symmetric monoidal additive category with an algebra
modality and with finite biproducts and countable coproducts. We will also
need to consider the tensor algebra, i.e.

F (C) = I + C + C ⊗ C + C ⊗ C ⊗ C . . .

As always, this is the free (not-necessarily-commutative) associative al-
gebra generated by C. As such, the functor induces a monad (F, µ̄, η̄) on our
category, and that monad has its own (noncommutative) algebra modality.

Because of the existence of biproducts, we are able to establish close
connections between the tensor algebra monad and the associative algebras
arising from our algebra modality. These are expressed as a collection of
natural transformations.

By the universality of F , we have the following natural transformations:
α:FT −→ T (given by the lifting of the identity T −→ T ), and ϕ:F −→ T
(given by the lifting of the unit η: I −→ T ). More explicitly, these are given
by the following constructions.

For any object C, αC :FT (C) −→ T (C) can be built out of each com-
ponent (since its domain is a coproduct). So we want a map αn:T (C)⊗n

−→ T (C), but this is just the n-fold multiplication on T (C). In the case

BLUTE, COCKETT, PORTER & SEELY - KÄHLER CATEGORIES

- 262 -



where n = 0, there is the canonical map η: I −→ T (C). The map αC is the
usual quotient of the free associative algebra generated by (the underlying
object of) T (C) onto T (C).

Also we observe that ϕC :FC −→ TC is simply FηC ;αC :FC −→ FTC
−→ TC.

Lemma 4.5. ϕ is a morphism of monads

Proof. This follows immediately from Proposition 6.1, Chapter 3 of [1]
(where the reader can also find the definition of a morphism of monads).
That proposition states that ϕ will be a morphism of monads if the following
diagrams commute:

T (C)
η //

1 $$I
II

II
II

II
FT (C)

α

��
T (C)

FFT (C)
µ //

Fα
��

FT (C)

α

��

FTT (C)

α

��

Fµoo

FT (C) α
// T (C) TT (C)µ

oo

These are straightforward, and in fact are an immediate consequence of
the universal property of F , since the individual morphisms in these dia-
grams are all associative algebra maps (and so each composite is the unique
lifting of the obvious map). More concretely, since objects of the form F (C)
are all coproducts, it suffices to check the equations componentwise, which
is a simple exercise. 2

Definition 4.6. The monad T satisfies Property K if the natural transforma-
tion ϕ:F −→ T is a componentwise epimorphism.

If we are working in a category in which there is an evident monad, we
will say that the category satisfies Property K, rather than the monad.

Proposition 4.7. The categories of vector spaces, relations and sup-lattices,
as described in Theorems 2.3, 2.4, satisfy Property K.

Proof. (Sketch) For vector spaces, for example, this is the usual quotient by
symmetrizing. The other two examples are similar. 2
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4.2 Codifferential categories satisfying K are Kähler

We now present the main result of the paper. In fact, we offer two proofs to
illustrate different aspects of the notions involved.

Theorem 4.8. If C is a codifferential category, whose monad satisfies Prop-
erty K, then C is a Kähler category, with ΩC = T (C)⊗ C.

Proof. We consider the “inclusion” map η; d:C −→ T (C)⊗C. By equation
1 in the definition of codifferential category, we have η; d = u; e⊗ idC .

Hence by the freeness of T (C) ⊗ C, for any T (C)-module M and for
any morphism h:C −→ M , there exists a unique map of T (C)-modules,
ĥ:T (C) ⊗ C −→ M such that η; d; ĥ = u; e ⊗ idC ; ĥ = h. Suppose as
in the definition of Kähler category that we have a T (C)-module M and a
T (C)-derivation ∂:T (C) −→ M . Taking h = η; ∂, we thus have a unique
T (C)-module map ĥ:T (C)⊗ C −→M such that η; d; ĥ = h = η; ∂

So our goal is to show that we can cancel the η’s in the previous equation.

Proof #1 The first proof is a straight calculation. We consider the mor-
phisms:

Φ = Fη;α; d; ĥ and Ψ = Fη;α; ∂

If we can show these two maps are equal, we are done given that Property K
gives that Fη;α is surjective and thus d; ĥ = ∂.

Since the domain of Φ and Ψ is a coproduct, it suffices to show that the
maps are equal on each component.

For the I component, both composites are 0, by definition.
For the C component, we have η; d; ĥ = η; ∂, which has already been

shown.
We next argue the binary C ⊗ C component, to demonstrate the tech-

niques for the n-ary case. We wish to show that the composite

Φ2 = C ⊗ C η⊗η−→ TC ⊗ TC m−→ TC
d−→ TC ⊗ C ĥ−→M

is equal to:

Ψ2 = C ⊗ C η⊗η−→ TC ⊗ TC m−→ TC
d′−→M
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Proceed as follows. Throughout the proof, we assume strict associativity.
Any unit isomorphism is denoted by u and c always denotes a symmetry. It
will always be clear from the context what the relevant symmetry is.

Φ2 = η ⊗ η; id⊗ d;m⊗ id; ĥ+ η ⊗ η; d⊗ id; c;m⊗ id; ĥ

= η ⊗ u; id⊗ e⊗ id;m⊗ id; ĥ+ u⊗ η; id⊗ e⊗ id; c;m⊗ id; ĥ

= η ⊗ id; ĥ+ id⊗ η; c; ĥ

Now note that

Ψ2 = η ⊗ η; id⊗ ∂; ·M + η ⊗ η; ∂ ⊗ id; ·M
= η ⊗ h; ·M + h⊗ η; c; ·M

The result then follows from the universal property of ˆ(−). In particular,
idTC ⊗ h; ·M = ĥ.

This calculation shows the structure for the general n-ary case, which
requires the n-ary Leibniz rule of Section 2. The n-ary versions of Φ and Ψ
are

Φn = η⊗n;m⊗n−1; d; ĥ Ψn = η⊗n;m⊗n−1; ∂

Expanding, we obtain

Φn =
n∑
i=1

η⊗i−1 ⊗ id⊗ η⊗n−i; c;m⊗n−2; ĥ

and

Ψn =
n∑
i=1

η⊗i−1 ⊗ h⊗ η⊗n−i; c;m⊗n−2; ·M

The result again follows from the definition of ĥ. 2

We now give a more conceptual proof, using the universality of F (as the
free associative algebra functor), rather than its explicit construction.

Suppose that A is a (commutative) algebra, and M an A-module. Then
in fact A+M has the structure of an algebra, in the following way. The unit

is I
〈e, 0〉−−−−→ A+M , and the multiplication (A+M)⊗ (A+M) −→ A+M
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is induced by the following three maps:

A⊗ A m−−→ A −→ A+M

A⊗M ·−−→ M −→ A+M

M ⊗M 0−→ M −→ A+M

Moreover, this construction is functorial in M , so given a module morphism
M −→ N , the map A+M −→ A+N is an algebra morphism.

The following well-known observation [6] was used in the early work of
Beck [2].

Lemma 4.9. If A is a (commutative) algebra, M an A-module, then A ∂−−→
M is a derivation iff A

〈1, ∂〉−−−−→ A+M is an algebra morphism.

Proof #2 We note that d; ĥ = ∂ if and only if

T (C)
〈1,d〉 //

〈1,∂〉 ((PP
PPP

PPP
PPP

P T (C) + T (C)⊗ C

1+ĥ
��

T (C) +M

(∗)

Now, given property K, this previous diagram commutes if and only if

F (C)

rreeeeee
eeeeee

eeeeee
eeeeee

eeeeee
eeeeee

uujjjj
jjjj

jjjj
jjjj

j

zzuu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
u

T (C)
〈1,d〉

//

〈1,∂〉 ((PP
PPP

PPP
PPP

P T (C) + T (C)⊗ C

1+ĥ
��

T (C) +M

Note that a T (C)-derivation followed by a T (C)-module map is a deriva-
tion. So in the diagram above, every morphism is a morphism of algebras.
Since F (C) is the free algebra generated by C, this diagram commutes if
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and only if it commuteson the imageof C.

F (C)

rreeee
eeee

eeee
eeee

eeee
eeee

eeee
eeee

eeee

uujjj
jj
jj
jj
jj
jj
jj
jj

zzuu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
u

C
η

oo

T (C)
〈1,d〉

//

〈1,∂〉 ((P
PP

PP
PP

PP
PP

P
T (C) + T (C)⊗ C

1+ĥ
��

T (C) +M

But thisamounts to theequation η; d; ĥ = η; ∂, which isalready established.
2
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