
Shameless Promotion!

The talks by Robin & Robert from last year’s FMCS have (finally!)
appeared “in print” (i.e. on-line):

Cartesian differential storage categories
(Blute-Cockett-Seely)

http://arxiv.org/abs/1405.6973 and

http://www.math.mcgill.ca/rags/

1 / 1

http://arxiv.org/abs/1405.6973
http://www.math.mcgill.ca/rags/

Revisiting the term calculus for proof-nets

R.A.G. Seely

McGill University & John Abbott College

June 2014

http://www.math.mcgill.ca/rags/

Precursors

Vector algebra and String diagrams

• Einstein’s summation notation (
∑

aix
i = aix

i ,
e.g. dot, cross, and tensor products)

• Ricci calculus

• Feynmann diagrams

• Penrose diagrams

Explicitly tied to vector calculus (though Penrose did have a
system that looked rather like linear logic in many ways).

Of course, vector space manipulations are not far removed from
general monoidal categorical ones . . .

3 / 1

Precursors
String diagrams for monoidal categories

• Joyal–Street: Not a term logic really; more an explicit
connection between tensor calculus and geometry.

• Girard: Well, not really any of the above, as he kept the proof
nets (natural deduction proofs) and sequent calculus fairly
separate.

• BCST: An explicit term calculus for their (our) version of
proof nets (circuits inspired by Joyal–Street), with a separate
sequent calculus (the 2-sided version of Girard’s).

It’s the last I want to “remind” people about today, but to keep
things simple, I’ll only present the monoidal category case, and
then only “briefly”, and I’ll use a simpler (simplistic?) version of
the term calculus in the examples. They will illustrate how one
expresses simple graph rewrites, and even the (notorious!)
re-wirings of “thinning links”.

4 / 1

Why a term calculus?

The usual approach to circuits for monoidal categories
is to use acyclic graphs, and manage equations (equiv-
alences) by graph rewriting. But extracting subgraphs
and replacing them with others can introduce cycles;
the circuit expressions force one to “coalesce” a redex,
giving it a more “local” feel, avoiding (mostly!)∗ the
need to check after a rewrite whether or not it was
legal.
∗ Well, a small number of rewirings of thinning links do require

this, but a least the problem has been “minimized”!

5 / 1

Typed Circuits

A Typed Circuit is built from

• types

• components (with type signatures giving types of inputs and
outputs)

which are then “juxtaposed” together (appropriate wires joined).
(Details . . .)

6 / 1

Circuit Expressions

A typical component looks like this:

h

A B

C D

Naming the “wires”: x1:A, x2:B, y1:C , y2:D, we’d form the circuit
expression

[x1, x2]h[y1, y2]

7 / 1

Juxtaposition

([x2, x3]f [y1, z1, y5, z2]; [x1, z2, x4, z1]g [y2, y3, y4])

represents

g

f

X1 X2 X3 X4

Y1 Y2Y3Y4 Y5

(Think “composition”)

8 / 1

Abstraction

Given a circuit expression C , we can abstract it:

T1, ...,Tn: 〈x1, ..., xn | C | y1, ..., ym〉 :T ′1, ...,T
′
m

(the types are “optional”; the variables are abstracted in just the
way λ-abstraction, λxf , abstracts variables).
An abstraction can be dissipated by reinserting the variables

[x1, ..., xn] 〈x1, ..., xn | C | y1, ..., ym〉 [y1, ..., ym] = C

(think “β-reduction” (λxf [x])(x ′) = f [x ′])
and coalesced

C = [x1, ..., xn] 〈x1, ..., xn | C | y1, ..., ym〉 [y1, ..., ym]

(think “η-reduction” λxf (x) = f , x not free in f)
(as long as there are no variable “clashes”—rename as necessary!)

9 / 1

Abstraction
Note that an abstraction is not a well-formed circuit expression,
but it is an ingredient that we can use to create such expressions;
in particular, it will allow us to treat complicated juxtapositions as
components.
We might think of 〈x1, ..., xn | C | y1, ..., ym〉 as a box with “ports”
identified by the x1, . . . , ym, and then

[x1, ..., xn] 〈x1, ..., xn | C | y1, ..., ym〉 [y1, ..., ym]

as this box wired appropriately.
For example, ∅ is the “empty” circuit expression, and

A: 〈x | ∅ | x〉:A

as an abstraction, thought of as a “floating” port. Then this can
be coalesced to an “identity wire” x :A given by the circuit
expression

[x]〈x | ∅ | x〉[x]

10 / 1

Circuits

Circuit expressions are generated by

• The empty circuit ∅;
• (legal) juxtapositions of circuit expressions;

• coalescing components and coalescing abstracted circuit
expressions.
Technically, if the signature of the component/abstracted circuit

expression is (α, β), and if V ,W are non-repeating wire lists of type α, β

respectively, then VXW is a circuit expression, where X is the

component/abstracted circuit expression.

Circuits are closed abstracted circuit expressions.

11 / 1

Circuit expression equivalences

• Renaming of bound variables (often needed for the following)

• Reassociation: c1; (c2; c3) = (c1; c2); c3

• Elimination of empty circuits: c ; ∅ = c = ∅; c
• Non-interacting subcircuits exchange: c1; c2 = c2; c1

• Abstraction coalescing and dissipating

• “Surgery rules”: other equivalences a theory might impose.

12 / 1

(Symmetric) Monoidal Categories

Given a monoidal category 〈C,⊗,>〉, we have natural isos:

uR⊗ : A⊗> −→ A

uL⊗ : >⊗ A −→ A

a⊗ : (A⊗ B)⊗ C −→ A⊗ (B ⊗ C)

(c⊗ : A⊗ B −→ B ⊗ A)

satisfying

a⊗; 1⊗ uL⊗ = uR⊗ ⊗ 1

a⊗; a⊗ = a⊗ ⊗ 1; a⊗; 1⊗ a⊗

(a⊗; c⊗; a⊗ = c⊗ ⊗ 1; a⊗; 1⊗ c⊗)

13 / 1

Circuits for Monoidal Cats

These correspond to the following circuits

(⊗I) j⊗
A B

A⊗ B

(⊗E)
j⊗
A⊗ B

A B

(>I)
j>
>

(>E)L
j>
>

�� �� (>E)R
j>
>

�� ��

14 / 1

Circuit equivalences: Reductions

j⊗
j⊗ =⇒

A B

A B

A⊗ B

A B

j>
j> =⇒

�� ��

A A

(There is a mirror image rewrite for the unit, with the unit edge
and nodes on the other side of the A edge.)

15 / 1

Expansions

j⊗

j⊗
=⇒

A⊗ B
A⊗ B

A B

A⊗ B

j>j>> =⇒ �� ��
(Again, there is a mirror image rewrite for the unit, with the
thinning edge on the other side of the unit edge and node.)

16 / 1

Unit rewirings

In addition to these rewrites, there are also a number of
equivalences we must directly impose, to account for the unit
isomorphisms.

g⊗
A B

A⊗ B

g>����
>

= g⊗
A B

A⊗ B

g>>���� g⊗A B

A⊗ B

g>> g⊗A B

A⊗ B

g>>=���� ����

17 / 1

g⊗
A B

g> A⊗ B>

g⊗
A B

g> A⊗ B>

=∗
���� ����

g>>

A

��������
g>>

A

����=

g>>

A

����=g>
>

g>
>

g>
>��������

g>>
=
����

Γ A

f

∆ B

g>>Γ A

f

∆ B

����
g>>

=f

A ∆B

>
>

f

A ∆B

���� ����
g

∗(One must check that the “net condition” remains satisfied after such a

move.)

18 / 1

g>>
f

g>>
f

=
���� ����

Γ1 A B Γ2

∆

>Γ1 A B Γ2

∆

g>
=����

A A

����
g>> >

g>> =

Γ

A B

f

∆1 ∆2

���� g>>Γ

A B

f

∆1 ∆2

����

19 / 1

As circuit expressions . . .

All of the above can be expressed in terms of circuit expressions, of
course(!):

Basic components

A,B: 〈x , y | [x , y]⊗ I [z] | z〉:A⊗ B ⊗–introduction
A⊗ B: 〈z | [z]⊗ E [x , y] | x , y〉:A,B ⊗–elimination
〈| []>I [x] | x〉:> unit introduction
>,A: 〈x , y | [x , y]>EL[y] | y〉:A unit left elimination (thinning)
A,>: 〈x , y | [x , y]>ER [x] | x〉:A unit right elimination (thinning)

20 / 1

Reductions

A,B: 〈x1, x2 | [x1, x2]⊗ I [z]; [z]⊗ E [y1, y2] | y1, y2〉:A,B
⇒ A,B: 〈x1, x2 || x1, x2〉 :A,B

A:
〈
x | []>I [z]; [z , x]>EL[x] | x

〉
:A ⇒ A: 〈x || x〉 :A

A:
〈
x | []>I [z]; [x , z]>ER [x] | x

〉
:A ⇒ A: 〈x || x〉 :A

21 / 1

Expansions

A⊗ B: 〈z || z〉:A⊗ B

⇒ A⊗ B: 〈z | [z]⊗ E [z1, z2]; [z1, z2]⊗ I [z] | z〉 :A⊗ B

>: 〈x || x〉 :> ⇒ >:
〈
x | [x]>EL[]; []>I [x] | x

〉
:>

>: 〈x || x〉 :> ⇒ >:
〈
x | [x]>ER []; []>I [x] | x

〉
:>

22 / 1

Unit rewirings

A,>,B:
〈
x , z , y | [x , z]>ER [x]; [x , y]⊗ I [w] | w

〉
:A⊗ B

= A,>,B:
〈
x , z , y | [z , y]>EL[y]; [x , y]⊗ I [w] | w

〉
:A⊗ B

>,A⊗ B:
〈
z , x | [z , x]>EL[x]; [x]⊗ E [x1, x2] | x1, x2

〉
:A,B

= >,A⊗ B:
〈
z , x | [x]⊗ E [x1, x2]; [z , x1]>EL[x1] | x1, x2

〉
:A,B

A⊗ B,>:
〈
x , z | [x , z]>ER [x]; [x]⊗ E [x1, x2] | x1, x2

〉
:A,B

= A⊗ B,>:
〈
x , z | [x]⊗ E [x1, x2]; [x2, z]>ER [x2] | x1, x2

〉
:A,B

A,B,>:
〈
x1, x2, z | [x2, z]>ER [x2]; [x1, x2]⊗ I [x] | x

〉
:A⊗ B

= A,B,>:
〈
x1, x2, z | [x1, x2]⊗ I [x]; [x , z]>ER [x] | x

〉
:A⊗ B

23 / 1

>,A,B:
〈
z , x1, x2 | [z , x1]>EL[x1]; [x1, x2]⊗ I [x] | x

〉
:A⊗ B

= A,B,>:
〈
z , x1, x2 | [x1, x2]⊗ I [x]; [z , x]>EL[x] | x

〉
:A⊗ B

>,>,A: 〈z1, z2, x || x〉 :A

= >,>,A:
〈
z1, z2, x | [z1, z2]>EL[z2]; [z2, x]>EL[x] | x

〉
:A

= >,>,A:
〈
z1, z2, x | [z1, z2]>ER [z1]; [z1, x]>EL[x] | x

〉
:A

A,>,>:
〈
x , z1, z2 | [x , z1]>ER [x]; [x , z2]>ER [x] | y

〉
:A

= A,>,>:
〈
x , z1, z2 | [z1, z2]>ER [z1]; [x , z1]>ER [x] | x

〉
:A

= A,>,>:
〈
x , z1, z2 | x , z1, z2 | [z1, z2]>EL[z2]; [x , z2]>ER [x] | x

〉
:A

>,A,>:
〈
z1, x , z2 | [z1, x]>EL[x]; [x , z2]>ER [x] | y

〉
:A

= >,A,>:
〈
z1, x , z2 | [x , z2]>ER [x]; [z1, x]>EL[x] | x

〉
:A

24 / 1

Γ1,A,>,B, Γ2:
〈
.., x1, z , x2, .. | [x1, z]>ER [x1]; [.., x1, x2, ..]f [..] | ..

〉
: ∆

= Γ1,A,>,B, Γ2:
〈
.., x1, z , x2, .. | [z , x2]>EL[x2]; [.., x1, x2, ..]f [..] | ..

〉
: ∆

>,A, Γ:
〈
z , x1, .. | [z , x1]>EL[x1]; [x1, ..]f [x2, ..] | x2, ..

〉
:B,∆

= >,A, Γ:
〈
z , x1, .. | [x1, ..]f [x2, ..]; [z , x2]>EL[x2] | x2, ..

〉
:B,∆

Γ,A,>:
〈
.., x1, z | [x1, z]>ER [x1]; [.., x1]f [.., x2] | .., x2

〉
: ∆,B

= Γ,A,>:
〈
.., x1, z | [.., x1]f [.., x2]; [x2, z]>ER [x2] | .., x2

〉
: ∆,B

>:
〈
z | []f [x1, .., x2]; [z , x1]>EL[x1] | x1, .., x2

〉
:A,∆,B

= >:
〈
z | []f [x1, .., x2]; [x2, z]>ER [x2] | x1, .., x2

〉
:A,∆,B

(And two more unit rewirings for symmetry . . .)

25 / 1

Examples: The Pentagon
To prove the standard coherences are a consequence of the
equivalences is a simple matter of using the circuit rewrites above.

d

d

d

d
d

d

d
d
d

d
d

d

d
d

d
d

d d

d

d
d

d
dd

d

d
d
d

d
d
⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗ ⊗

⊗

⊗

⊗

⊗

⊗⊗

⊗

⊗

⊗

⊗

⊗

⊗
⇒ ⇐

((A⊗ B)⊗ C)⊗ D

(A⊗ (B ⊗ C))⊗ D

A⊗ ((B ⊗ C)⊗ D)

A⊗ (B ⊗ ((C ⊗ D))

((A⊗ B)⊗ C)⊗ D

(A⊗ B)⊗ (C ⊗ D)

A⊗ (B ⊗ ((C ⊗ D))

26 / 1

Unit Coherence

h
h

h

h

h
h

h

h
h

h

h
h
⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗
⇒

>

>

����
����

(A⊗>)⊗ B

(A⊗>)⊗ B

A⊗ (>⊗ B)

A⊗ B

A⊗ B

27 / 1

Using the circuit expressions
We shall now express these (simple!) graph rewrites using the circuit term

notation—but with some simplifying shortcuts which should make them

less (?intimidating?) cumbersome. We’ll use numerals as variable names,

numbering the wires as we come upon them (reading top down, left to

right), with the understanding that variable renaming is an equality.

So for example, an (abstracted) expression such as

((A⊗ B)⊗ C)⊗ D: 〈x1 | [x1]⊗ E [x2, x3] | x2, x3〉: (A⊗ B)⊗ C ,D

would simply become 1⊗E 2
3.

(Reading this on its side, and doing a mirror-image, one can almost “see”
the circuit this represents.)

With this simplified (though underspecified!) notation, we can look at

the individual steps in showing the pentagon commutes. We’ll leave the

end target in the picture, so you can see where we’re going at each stage.

I’ll highlight the step where an equivalence is used, in the circuit

expression (and initially in the circuit itself).
28 / 1

The Pentagon, step by step 1

d

d

d

d

d

d

d

d
d

d

d
d

d d

d

d
d

d
d

d

d

d
⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗ ⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗
⇒

1⊗E 2
3; 2⊗E 4

5; 4⊗E 6
7; 7

5 ⊗I 8;

6
8 ⊗I 9; 9

3 ⊗I 10; 10⊗E 11
12; 11⊗E 13

14

14
12 ⊗I 15; 13

15 ⊗I 16; 16⊗E 17
18;

18⊗E 19
20; 19⊗E 21

22; 22
20 ⊗I 23;

21
23 ⊗I 24; 17

24 ⊗I 25 ⇒ . . .

29 / 1

The Pentagon, step by step 2

d

d

d

d

d

d

d
d

d

d

d d

d

d
d

d
d

d

d

d
⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗ ⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗
⇒

1⊗E 2
3; 2⊗E 4

5; 4⊗E 6
7; 7

5 ⊗I 8;

6
8 ⊗I 9; ∅9=11

3=12; 9⊗E 13
14;

14
3 ⊗I 15; 13

15 ⊗I 16; 16⊗E 17
18;

18⊗E 19
20; 19⊗E 21

22; 22
20 ⊗I 23;

21
23 ⊗I 24; 17

24 ⊗I 25 ⇒ . . .

30 / 1

The Pentagon, step by step 3

d

d

d

d

d

d

d
d

d

d

d d

d
d
d

d

d

d
⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗ ⊗

⊗

⊗

⊗

⊗

⊗

⊗
⇒

1⊗E 2
3; 2⊗E 4

5; 4⊗E 6
7; 7

5 ⊗I 8;

∅9=11,6=13
3=12,8=14 ;

8
3 ⊗I 15; 6

15 ⊗I 16; 16⊗E 17
18;

18⊗E 19
20; 19⊗E 21

22; 22
20 ⊗I 23;

21
23 ⊗I 24; 17

24 ⊗I 25 ⇒ . . .

31 / 1

The Pentagon, step by step 4

d

d

d

d

d

d
d

d

d

d d

d
d

d

d

d

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗ ⊗

⊗

⊗

⊗

⊗

⊗
⇒

1⊗E 2
3; 2⊗E 4

5; 4⊗E 6
7; 7

5 ⊗I 8;

∅9=11,6=13
3=12,8=14 ;

8
3 ⊗I 15; ∅6=13=17

15=18 ;

15⊗E 19
20; 19⊗E 21

22; 22
20 ⊗I 23;

21
23 ⊗I 24; 6

24 ⊗I 25 ⇒ . . .

32 / 1

The Pentagon, step by step 5

d

d

d

d

d

d
d

d

d

d d

d

d

d

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗ ⊗

⊗

⊗

⊗

⇒
1⊗E 2

3; 2⊗E 4
5; 4⊗E 6

7; 7
5 ⊗I 8;

∅9=11,6=13
3=12,8=14 ; ∅6=13=17,8=19

15=18,3=12=20;

8⊗E 21
22; 22

3 ⊗I 23;

21
23 ⊗I 24; 6

24 ⊗I 25 ⇒ . . .

33 / 1

The Pentagon, step by step 6

d

d

d

d

d

d
d

d

d

d d

d

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗ ⊗

⊗

=

1⊗E 2
3; 2⊗E 4

5; 4⊗E 6
7;

∅6=13=17,8=19,9=11,7=21
3=12=20,5=22,8=14,15=18,;

5
3 ⊗I 23; 7

23 ⊗I 24; 6
24 ⊗I 25

= (renaming bound variables)

1⊗E 2
3; 2⊗E 4

5; 4⊗E 6
7; 5

3 ⊗I 8; 7
8 ⊗I 9; 6

9 ⊗I 10

34 / 1

The Pentagon, step by step 7

d

d

d
d

d
d
d
d

d d d
d

d
d

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗ ⊗ ⊗

⊗

⊗

⊗

⇐
1⊗E 2

3; 2⊗E 4
5; 5

3 ⊗I 6; 4
6 ⊗I 7; 7⊗E 8

9;

8⊗E 10
11; 11

9 ⊗I 12; 10
12 ⊗I 13 ⇒ . . .

35 / 1

The Pentagon, step by step 8

dd
d
d

d
d

⊗
⊗

⊗

⊗

⊗

⊗

d

d

d

d

d

d

⊗

⊗

⊗

⊗

⊗

⊗

=

1⊗E 2
3; 2⊗E 4

5; 5
3 ⊗I 6; ∅4=8

6=9 ; 4⊗E 10
11;

11
6 ⊗I 12; 10

12 ⊗I 13

= (exchanging non-interacting subcircuits)

1⊗E 2
3; 2⊗E 4

5; 4⊗E 10
11; 5

3 ⊗I 6;

11
6 ⊗I 12; 10

12 ⊗I 13

= (renaming bound variables)

1⊗E 2
3; 2⊗E 4

5; 4⊗E 6
7; 5

3 ⊗I 8; 7
8 ⊗I 9; 6

9 ⊗I 10

36 / 1

The Unit Coherence, step by step 1
We extend our simplified notation to include thinning links:

[A,>]>ER [A] becomes 1
2>E 1

◦ and note that 2 = >

[>,B]>EL[B] becomes 1
2>E ◦2 and note that 1 = >

[]>I [>] becomes >I 1 and note that 1 = >

e
e

e
e

e
ee

e
e

e
e
e⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗
⇒

>

>

����
����

1⊗E 2
3; 2⊗E 4

5; 5
3 ⊗I 6; 4

6 ⊗I 7;

7⊗E 8
9; 9⊗E 10

11; 10
11>E ◦11; 8

11 ⊗I 12 ⇒

37 / 1

The Unit Coherence, step by step 2

ee

ee

⊗
⊗

⊗

⇒

>����

e
ee
e⊗

⊗

⊗
>���� 1⊗E 2

3; 2⊗E 4
5; 5

3>E ◦3; 4
3 ⊗I 12

= 1⊗E 2
3; 2⊗E 4

5; 4
5>E 4

◦;
4
3 ⊗I 12

Using

A,>, B:
〈
x, z, y | [z, y]>EL[y]; [x, y]⊗ I [w] | w

〉
: A⊗ B

= A,>, B:
〈
x, z, y | [x, z]>ER [x]; [x, y]⊗ I [w] | w

〉
: A⊗ B

i.e. 5
3>E

◦
3 ; 4

3 ⊗I 12 = 4
5>E

4
◦; 4

3 ⊗I 12

38 / 1

Extensions

This notation was originally developed for linearly distributive
categories, and so handles par as well as tensor.1 We also extended
it to “Full intuitionist linear logic”2, which showed how to include
scope or functor boxes. The idea is simple enough (though the full
notation does get to be a handful!), and I’ll leave that to your own
bedtime reading . . .

1See BCST [JPAA 1996]
2See CS [TAC 1997]

39 / 1

