A Hyperdoctrinal View of Constraint Systems

Prakash Panangaden? McGill University
Vijay Saraswat, Xerox PARC
P. J. Scott! University of Ottawa
R. A. G. Seelyt McGill University and John Abbott College

Abstract

We study a relationship between logic and computation via concurrent constraint
programming. In previous papers it has been shown how a simple language for speci-
fying asynchronous concurrent processes can be interpreted in terms of constraints. In
the present paper we show that the programming interpretation via closure operators
is intimately related to the logic of the constraints. More precisely we show how the
usual hyperdoctrinal description of first order logic can be functorially related to an-
other hyperdoctrine built out of closure operators. The logical connectives map onto
constructions on closure operators that turn out to model programming constructs,
specifically conjunction becomes parallel composition and existential quantification be-
comes hiding of local variables.

1 Introduction

In this paper we develop a category theoretic view of the relationship between concurrent
constraint programming and logic. One may think of this as an explication of the relationship
between logic and what is often called logic programming. More significantly, however, this is
a semantical account of constraint programming in which concurrency fits naturally. Indeed
parallel composition of processes is one of the easiest combinators to define. As far as the
programmer is concerned the most important point of the concurrent constraint program
paradigm is that the programmer can work directly with the notion of partial information.
The basic thesis is this: a computational account of (first-order) logic should spell out
the computational significance of entailment in a minimal logical setting. Fascinating issues

*Research supported by an operating grant from the Natural Sciences and Engineering Research Council
and a team grant from Fonds pour la Formation de Chercheurs et I’Aide & la Recherche (Québec).

TResearch supported by an operating grant from the Natural Sciences and Engineering Research Council,
a team grant from Fonds pour la Formation de Chercheurs et I’Aide & la Recherche (Québec), and the
Ontario Ministry of Colleges and Universities Ontario-Québec Exchange.

tResearch supported by Fonds pour la Formation de Chercheurs et I’Aide & la Recherche (Québec) and
an operating grant from the Natural Sciences and Engineering Research Council

like “how does one efficiently decide whether an instance of entailment holds” or “what
theorem-proving strategy is used” or “how do the other logical connectives fit in” come
later. Thinking in terms of a weak logic with just conjunction and existential quantification
led to the basic process calculus presented in [19] and studied extensively in [17]. In [20] a
variety of denotational semantics, all based on closure operators, are introduced and studied.

In the present paper we show that the various constructions on closure operators, used in
modeling the basic process combinators, arise as the functorial image of logical connectives.
Thus from the computational point of view there is an intimate relation between the math-
ematical structures that arise in the study of closure operators and the logical conenctives.
From a certain point of view, this correspondence is as significant as the model theoretic
semantics of logic programming languages [14, 1] because it shows how the notion of partial
information enters naturally into the computational setting. Furthermore there is a tight
correspondence between intersection of sets of fixed points of closure operators, parallel com-
position of processes and conjunction. Thus, the framework that we present can be seen as
the starting point of a general study of asynchronous processes. The idea of using closure
operators to model logic variables in a parallel functional language was origially thought of
by Pingali and discussed in detail in [10].

The computational paradigm can be described in the following way. The crucial concept
underlying this paradigm is to replace the notion of store-as-valuation behind imperative
programming languages with the notion of store-as-constraint. By a constraint we mean a
(possibly infinite) subset of the space of all possible valuations in the variables of interest.
For the store to be a constraint rather than a valuation means that at any stage of the com-
putation one may have only partial information about the possible values that the variables
can take. We take as fundamental the possibility that the state of the computation may only
be able to provide partial information about the variables of interest. This shift to partially
specified values renders the usual notions of (imperative) “write” and “read” incoherent.

Instead, [17] proposes the replacement of read with the notion of ask and write with the
notion of tell. An ask operation takes a constraint (say, ¢) and uses it to probe the structure
of the store. It succeeds if the store contains enough information to entail ¢. Tell takes a
constraint and conjoins it to the constraints already in place in the store. That is, the set of
valuations describing the resultant store is the intersection of the set of valuations describing
the original store and those describing the additional constraint. Thus, as computation
progresses, more and more information is accumulated in the store—a basic step does not
change the value of a variable but rules out certain values that were possible before; the
store is monotonically refined.

The idea of monotonic update is central to the theoretical treatment of I-structures in Id
Nouveau [10]. I-structures were introduced in order to have some of the benefits of in-place
update without introducing the problems of interference. It is interesting that the concurrent
constraint paradigm can be seen as arising as a purification of logic programming [17], an
enhancement to functional programming and as a generalization of imperative programming.
From the viewpoint of dataflow programming, the concurrent constraint paradigm is also a
generalization in that the flow of information between two processes is bidirectional.

2 Concurrent Constraint Languages

In this section we give a brief summary of the theory of concurrent constraint languages [19,
20]. A detailed discussion of programming idioms within this paradigm is contained in the
forthcoming book by Saraswat [17].

The basic picture is as follows. Consider a system of concurrent processes interacting via
shared data. The shared data can be thought of as a collection of assertions in some first
order language. Processes communicate by adding information to the common pool of data
(a “tell” operation) or by asking whether an assertion is entailed by the existing pool of data
(an “ask” operation). In a concurrent constraint language one has a language for describing
processes or agents and a language for describing the assertions that one may make. Such a
language equipped with an entailment relation is called a constraint system.

We have a constraint system given as a logical language using a very weak positive logic.
This i1s used to state assertions about the data that are used in the programming language.
There are some minimal logical connectives provided, i.e. conjunction and existential quan-
tification, while on the programming side there are some process combinators, e.g. parallel
composition and hiding of local variables. The point of the logic being so weak is that the
constraint system itself is not forced to use a powerful theorem prover of some sort. It is
the minimal structure needed to get a notion of concurrency and synchronization via the
imposition of constraints and requires only a simple notion of answering entailment queries.

By previous work [20], we know that the denotational semantics is fully abstract with
respect to a traditional operational semantics. We first describe what is meant by a constraint
system and give some basic lemmas that we use later. In the next subsection we give an
operational semantics in the style of the Chemical Abstract Machine [3] or CHAM. Finally
we sketch the results that show that the program combinators are the functorial image of
the logical connectives.

An Informal View of Constraint Systems

What do we have when we have a constraint system? First, of course, there must be a
vocabulary of assertions that can be made about how things can be — each assertion will
be a syntactically denotable object in the programming language. Postulate then a set D
of tokens, each giving us partial information about certain states of affairs. At any finite
state of the computation, the program will have deposited some finite set u of such tokens
with the embedded constraint-solver and may demand to know whether some other token
is entailed by u. Postulate then a compact entailment relation FC Py (D) x D (Pyin(D) is
the set of finite subsets of D), which records the inter-dependencies between tokens. The
intention is to have a set of tokens v entail a token P just in case for every state of affairs
for which we can assert every token in v, we can also assert P. This leads us to:

Definition 2.1 A simple constraint system is a structure (D,F), where D is a non-empty
(countable) set of tokens or (primitive) constraints and FC Py (D) X D is an entailment
relation satisfying (where Py, (D) is the set of finite subsets of D:

C1l ut P whenever P € u, and,

C2 ut () whenever ut P for all P € v, and vt Q).
Fxtend F to be a relation on Pyin(D) X Prin(D) by: ut v iff uk P for every P € v. Define

urvifutvand vt u.

Of course, in any implementable language, F must be decidable. Compactness of the en-
tailment relation ensures that one has a semi-decidable entailment relation. If a token is
entailed, it is entailed by a finite set and hence if entailment holds it can be checked in finite
time. If the store does not entail the constraint it may not be possible for the constraint
solver to say this at any finite stage of the computation.

Such a treatment of systems of partial information is, of course, well-known, and underlies
Dana Scott’s information systems approach to domain theory [22]. A simple constraint
system is just an information system with the consistency structure removed, since it is

natural in our setting to conceive of the possibility that the execution of a program can give
rise to an inconsistent state of affairs.

Following standard lines, states of affairs (at least those representable in the system) can
be identified with the set of all those tokens that hold in them.

Definition 2.2 The elements of a constraint system (D, &) are those subsets ¢ of D such
that P € ¢ whenever w Cy ¢ (i.e. u is a finite subset of ¢) and w = P. The set of all such
elements is denoted by |D|. For every uw C; D define u € |D| to be the set {P € D|ut P}.

As is well known, (|D|,C) is a complete algebraic lattice. The lub of chains is, however,
just the union of the members in the chain. The finite elements of |D| are just the elements
generated by finite subsets of D; the set of such elements will be denoted |D|y. We use a,b,c.d
and e to stand for elements of |D|; ¢ > d means ¢ - d. Two common notations that we use
when referring to the elements of |D| or |D]o are T ¢ = {d|c < d} and | ¢ = {d|d < ¢}.

The reader will have noticed that the constraint system need not generate a finitary
lattice since, in general, Scott information systems do not generate finitary domains. Indeed
many common constraint systems are not finitary even when the data type that they are
defined over is finitary.

A concretely presented constraint system is basically a first order theory in the con-
junctive calculus with only existential quantification. Unlike the case of simple constraint
systems, 1t 1s not so obvious, a priori, to move from this to a structure that captures the
notion of information in the way that one passes from an information system to a Scott
domain or from a simple constraint system to a complete algebraic lattice. In particular we
need to know how to carry over the structure described by the variables and the existential
quantification. In previous work we used ideas from cylindric algebras [6] to define this alge-
braically. In the next section we give a presentation based on hyperdoctrines. We conclude
this section with some semi formal examples.

Example 2.1 The Kahn constraint system.

The Kahn constraint system D(B) = (D,Fp) underlies data-flow languages [13], for B =
(B,Fg) so some underlying constraint system on a domain of data elements, F. Let L
be the vocabulary consisting of the predicate symbols = [2,¢/1 and the function symbols
f/l,r/1,a/2,A/0. Postulate an infinite set (X,Y €)Var of variables. Let the set of tokens

D consist of atomic (L,Var) formulas. Let A consist of the single structure with domain
of interepretation BY the set of (possibly infinite) sequences over B, (including the empty
sequence A) and interpretations for the symbols in L given by:

o = is the equality predicate,
o c is the predicate that is true of all sequences except A.

o f is the function which maps A to A, and every other sequence s to the unit length
sequence whose first element is the first element of s,

o 1 is the function which maps A to A, and every other sequence s to the sequence obtained
from s by dropping its first element,

e a is the function which returns its second argument if its first arqument is A; otherwise
it returns the sequence consisting of the first element of its first arqgument followed by
the elements of the second argument.

Now, we can define Fp by:
{e1,...,entFpe <= Abp (a1 A...ch=¢)

thus completing the definition of the constraint system D = (D, Fp).

Note that in this constraint system the set of elements are not finitary. The constraint
X =Y, which is finite, entails infinitely many constraints of the form f(r"(X)) = f(r"(Y)).
In the lattice generated by the entailment closed sets of tokens the set consisting of the
entailment closure of {X =Y} will contain all the tokens of the form f(r"(X)) = f(r"(Y));
the set consisting of all the latter, however, will not contain X =Y . It is possible to define
a vartant system that is finitary. The data type of streams s, of course, finitary.

Example 2.2 The Herbrand constraint system.

We describe this example quickly. There is an ordinary first-order language L with equality.
The tokens of the constraint system are the atomic propositions. FEntailment can vary de-
pending on the intended use of the predicate symbols but it must include the usual entailment
relations that one expects from equality. Thus, for example, f(X,Y) = f(A, g(B,C)) must
entaill X = A and Y = ¢g(B,C). If equality is the only predicate symbol then the constraint
system s finitary. With other predicates present the finitariness of the lattice will depend on
the entailment relation.

Example 2.3 Rational intervals.

The underlying tokens are of the form X € [x,y]| where x and y are rational numbers and
the notation [x,y] means the closed interval between v and y. We assume that every such
membership assertion is a primitive token. The entailment relation is the one derived from
the obvious interpretation of the tokens. Thus, X € |x1,11] B X € [xg,y2] if and only if
[21,y1] C [x2,y2]. In the lattice generated by these assertions we will have lots of elements that
we cannot think of in the usual set theoretic way. For example, since (,50[0,1+1/n] = [0, 1],
we would normally have {X € [0,1 + 1/n|jn > 0} = (X € [0,1]) but no finite subset of
{X €10,1+1/n]ln > 0} would entail X € [0,1]. Instead there will be a new element of |D)|
that sits below the intersection. Thus, for example, the join |,50 X € [0,1 4+ 1/n] will not be
X €10,1] but rather a new element that sits below X € [0, 1].

Syntax.
Aii=c|ec— A| A||A | new z in A

Reaction Equations.
c—c,dife>d
c— A,c— Ac
(AlB) — A, B
(new zin A) —< A >,
<A>pc—< A dre>,
<, d>=<c>,,<d>,
< ¢ >,— dr.c

Above, ¢ and d range over constraints while A and B range over processes.

Table 1: CHAM Operational semantics for the Ask-and-Tell cc languages

Semantics of Concurrent Constraint Languages

The discussion in this subsection is a condensation of the discussion in [20]. The syntax and
operational semantics of the language are given in Table 1. We use the letter ¢ to stand for
an element of the constraint system. The basic combinators are the ask and tell written
¢ — A and c¢ respectively. Intuitively, ¢ — A executes by asking the store whether ¢ holds,
if it does than A executes otherwise the process suspends; we also have an indeterminate
generalization of the ask construct that simultaneously asks whether several constraints hold.
The tell combinator ¢ simply asserts the constraint ¢. The parallel composition of two agents
is written A;||A;. Hiding is written new z in A. Finally we have procedure calls, including
possibly recursive procedures but we exclude them from the present discussion.

The operational semanticsis given as a set of reaction rules. We assume that the dynamics
occurs in a “solution” in which one all the assertions in the store and all the assertions entailed
by those in the store. Furthermore one has processes in the solution as well. We use the
following chemical imagery to describe existential quantification. A process may be shielded
by a “membrane” that allows facts to enter but may filter out information in the process of
letting facts enter and leave. We write < P >, for a process P shielded by an z-membrane.
A reaction that can happen can also happen inside a membrane.

The syntax and operational semantics of the language are given in Table 1.

The first equation says that the solution is entailment closed. One can see that the
interaction between the processes constraints does not destroy the constraints, thus the
idempotence of the process behaviour is built into the operational semantics. The second
rule says that if the solution contains enough information to satisfy an ask the process makes
the transition to the body. If one has the parallel composition of two process they just
dissociate and work independently. The last four rules describe how block structuring in the
programming language interacts with existential quantification. The explanation uses the
notion of membrane discussed above. The key points are that when a shielded process comes
into contact with a constraint, the constraint must first penetrate the membrane in order to
react with the process. In so doing all information about the variable(s) being shielded will
be hidden, as is shown by the existential quantification of the constraint. Similarly when a

Syntax.
Av=c|c— A]A| Alnew X in A

Semantic Equations.
Alel ={d € |D||d > ¢}
Ale = Al ={d € |D||d > c=d € A[A]}

AHA | B ={de|D||de AlA] A d e A[B]}
Alnew X in A] = {d € |D| | 3c € A[A].3xd = Ixc}

Above, ¢ ranges over basic constraints, that is, finite sets of tokens.

Table 2: Denotational Semantics for the Ask-and-Tell cc languages

constraint leaves a membrane it has its shielded variable quantified out.

The basic idea of the denotational semantics is to model processes as closure operators.
Operationally, the important point is that in order to model a process compositionally, it
suffices to record its resting points. Mathematically, this is mirrored by the fact that a
closure operator is completely specified by its set of fixed points. Given this representation
of closure operators, we can define some operations on sets of fixed points that are clumsy to

state in terms of closure operators as functions. Most notably, one can define intersection of
sets of fixed points of closure operators; it is quite awkward to write down this combinator
in terms of functions. It turns out that this operation is exactly what one needs to model

parallel composition.

To be determinate, the process must define a function. This function maps each input
¢ to a new store that corresponds to the result of the process augmenting the store. If the
process, when initiated in ¢, engages in an infinite execution sequence we map ¢ to the store
that is the limit of the information added in this infinite process. Otherwise we map ¢ to d
if the process ultimately quiesces having upgraded the store to d. Intuitively the motivation
for using closure operators is as follows. A closure operator is extensive (increasing), which
reflects the fact that the processes add information. A closure operator is also idempotent.
The fact that the processes are modeled by idempotent functions means that once they add
the information that they are going to add the store is not going to be affected by adding
the same information again. Finally we require monotonicity (and continuity) for the usual
computability reason. The denotational semantics is given in 2. We have left out details
like the definition of the environment mechanism and procedures. The closure operators are
described by giving their set of fixed points.

3 Constraint Systems as Hyperdoctrines

In this section we review the connection, elucidated by Lawvere originally[15], between or-
dinary first-order logic and category theory through the use of hyperdoctrines. We will give
a minimal and simplified account that only encompasses conjunction and existential quan-
tification. These are the two connectives that any constraint system must have. Subsequent
investigations will build on the present work to incorporate other logical connectives and

their corresponding program combinators. OQur main point in this section is to show that a
constraint system is in fact a hyperdoctrine. The various axioms that we found necessary
in our analysis of constraint programming languages [20] all follow from the adjunction be-
tween existential quantification and substitution. There is nothing original in this section;
we follow the ideas in Seely’s discussion [23] of the connection between natural deduction
and hyperdoctrines.

Hyperdoctrines have, until recently, not received a great deal of attention; the main
arena for categorical logic being elementary toposes. There has, however, been a surge of
interest starting with the recent categorical description of models of the polymorphic lambda
calculus [24]. There is also a recent trend to using more general fibred categories in describing
dependent type systems, see for example the recent papers of Hyland and Pitts [7], Jacobs [8]
and Pavlovi¢ [16].

Recall that constraint systems are given by a first order language interpreted over some
structure and that they come equipped with a notion of entailment, conjunction and substi-
tution. Our main task is to introduce existential quantification in terms of substitution. In
order to facilitate the presentation, we do not use the most general definitions possible; for
example, we assume that the constraint system is one sorted.

In the hyperdoctrinal presentation, one has a family of categories, called the fibres, in-
dexed by the objects of a cartesian category called the base category. Corresponding to the
arrows of the base category are functors between the fibres. Thus, in general, a hyperdoc-
trine over the base category is a contravariant functor! to CAT. For our purposes it will be
sufficient to consider the fibres to be preordered sets.

We define a constriant system as a simplified hyperdoctrine.

Definition 3.1 A constraint system is a contravariant functor P(): B> — A — Preord,
where A — Preord is the category of meet-preorders, and B is cartesian (i.e. has all finite
products). We assume that for each arrow f in B, the (monotone) function P(f) (often
written *) preserves meets and has a left adjoint, written 3¢. We also require the following
two conditions:

1. Beck condition If the following diagram is a pullback

A / B
g h
A/ k BI
and ¢ € P(B) then 3,(f*¢) ~ k*(Ind), where ~ means that we have two way entail-

ment.

2. Frobenius Reciprocity: For each f : A — B in B and ¢ € P(A) and b € P(B) we
have 3;(f*p A ¢) — 1 A T4 6.

!Generally these are pseudofunctors but in the posetal situation that we consider it does not make any
difference.

In the case where we have a constraint system syntactically presented as a concrete theory
in first order conjunctive logic with existential quantification the hyperdoctrine conditions are
easy to check [23]. In the next several paragraphs we describe the passage from a syntacticall
presented first order theory to a (hyperdoctrinal) constraint system.

At the least, the base category is generated by a set of basic data values V' : the objects of
B are all finite products of V', including the empty product 1, and the arrows are the smallest

set of arrows containing all the projections and identity arrows, and closed under composition
and pairing. In general there may be other arrows between objects corresponding to terms.
For example, if there is a function symbol f of arity two, this will appear as an arrow from
VZ to V. The role of the two conditions will be explained after we develop some elementary
properties of the hyperdoctrine.

Convention 3.1 Since the objects of B are indexed by nonnegative integers we will usually
Just write n when we mean the object V™ of B.

The base category essentially contains information about “terms” that describe individuals.

Information about the formulas, the “predicates”, lives in the fibres indexed by the
objects of B. Rather than view the fibres as general categories we use the category of
preorders equipped with binary meets, called A — Preord here.

Convention 3.2 We will use greek letters like ¢, i etc. to stand for formulas.

Definition 3.2 Given a concrete constraint system we define a functor P() from B to
A — Preord as follows. The functor P() takes an object n to the formulas with n free
variables constructed out of terms, variables, predicate symbols, conjunction and existential
quantification. The preorder describes the entailment relation. Thus, if ¢ F ¢ we define
o <, or, equivalently, ¢ — . If f is an arrow from m to n in B, we define P(f) from
P(n) to P(m) by P(f)($)[X] = (§)[f(Y)], where X and Y are vectors of variables.

Note that the arrows P(f) are clearly meet preserving when f is one of the projection maps,
because all this means in this case is that adjoining dummy variables is defined structurally.
The entailment relation was originally defined between finite subsets of formulas and single
formulas. One can easily redefine it in terms of pairs of formulas by introducing finitary
conjunction.

Now we define existential quantification as the left adjoint to substitution and show how
it corresponds to the usual definition in terms of variables. Consider, for definiteness, the
fibres over 1 and 2, i.e. P(1) and P(2). Recall that 2 is just 1 x 1, let p be the first
projection from 2 to 1. The functor (monotone function between preorders), P(p), written
p* by convention, from P(1) to P(2) is, according to the above, just p*(¢)[X] = ¢[p(X,Y)].
Because p* preserves meets, it has a left adjoint?, written 3,, a functor from P(2) to P(1).
In fact,

3,.0[X, Y] =3X IV (p(X,Y') = X Ap[X Y)).

By Tarski’s trick, this equals 3Y"¢[X, Y] . It is easy to prove directly (for intuitionistic first
order logic with equality) that 3, is left adjoint to subsitution p*.

2This is easily proved for Galois connections between posets, see for example [5].

Slightly more generally, in the multisorted case, we may allow our base category B to
be the cartesian category generated by a set of Sorts U, V) ..., in which any sorted function
symbols f : U — V become arrow-forming operations: i.e. the arrows of B are the
smallest set of arrows containing the projections, identities, and the sorted function symbols
[, closed under composition and pairing. We may then define subsititution and existential
quantification along term f , as follows (using lower case letters as variables): f*W(v) =
U[f(u)/v], and Fy®(u) = FJu(f(u) = v A ®(u)). Again, rules of first-order intuitionistic
logic with equality show that ds is left adjoint to f*. It is easily verified that this definition
includes the former, when f is a projection p.

Defined this way, the functor enjoys all the properties one normally expects of existential
quantification. The only change that one needs to make is to insert p* in appropriate places in
order to take into account the stratification induced by the arities of formulas. For example,
in the traditional presentations of first-order predicate calculus, one has ¢ < dx.¢ where
X is a variable. In the present framework, in order to make sense of ¢ < 3,4 we really
need to write ¢ < p*(3,¢), since we need to make the formulas live in the same fibre before
we can sensibly compare them. The fact that ¢ < p*(3,¢), is of course just the unit of
the adjunction. We collect together the basic facts about existential quantification in the
present framework. For convenience, we write down the hyperdoctrinal version as well as
the version with existential quantification defined in terms of free variables and without the
stratification in terms of the number of free variables. Proofs, are omitted here; in any case
they are all trivial.

Fact 3.1 ¢ < p"(3,0) [6 < Ix.0].

The proof is immediate from the definition of 3, as the left adjoint of p*; this is the unit of
the adjunction.

Fact 3.2 3,(p*¢) < ¢ [FBx.¢ < ¢ if X does not occur in ¢.]

This is just the counit of the adjunction.

Fact 3.3 3,(p*(3,(¢))) = 3,(¢) [Ix.Ix.¢ = Ix.¢ |, where the equality can mean either two
way entailment or equality of subsets of V.

This is just one of the two “triangle equalities” of adjunctions. (In the posetal context, this
is an equality; generally one could only expect maps going each way, with equality of one
composition.) This equation says that existential quantification is idempotent.

Fact 3.4 p*(3,(p*(4))) = p*(¢) [Ax.¢ = ¢ if X does not occur in ¢.]

This is the other triangle equality.
Fact 3.5 IfV #£ 0 (i.e. if there is an arrow 0 — 1 in B), then 3,(p*(¢)) = ¢ [Ax.¢ = ¢ if

X does not occur in ¢.]

The proof follows from applying f* to the previous equation, for the map f: 0 — 1 mentioned
in the hypothesis. Thus, this says we have a reflection rather than just an adjunction. For
the following we just use colimit preservation.

10

Fact 3.6 Suppose that the fibres are equipped with a least element, generically written falsey.
Then 3,.falseni1 = falsey.

This is immediate because left adjoints preserve colimits, or initial objects in this case. In
view of this we will skip the subscripts on false henceforth.

Fact 3.7 If joins, written V, exist then

Elp(¢’ \ ¢) = Elp(¢) \ Elp(¢)

[Ax.(¢ V) =3Tx.0V Ix.7)]

Again this is immediate because left adjoints preserve joins.

Fact 3.8 If joins exist then,

Fp(o VP (Fp(¥))) = Fp(@) V Fp().

Bx.(6 V 3x.0) = Ix.6 V Ix.2)]

This follows from facts 3.5 and 3.3.

The Beck condition that we discussed above needs to be checked for only a few simple
classes of diagrams. Again when the constraint system is derived from syntax these are easily
checkable formulas. Frobenius reciprocity, when one has implication, is equivalent to saying
that the maps of the form f* preserve implication. The following calculation demonstrates
part of this claim.

Fyne
¢

F 3 () A o))
[@)= E () A ¢))

T T T T T

¢ [(=3 (f"(¥) A 9))
dré V=3;(f" () N @)
v ATpo ([() A @)

where the first line is the unit of the adfunction, the second, is the adjunction between
implication and conjunction, the third is preservation of implication and the last two are
the same adjunctions used in the reverse direction. In the absence of an implication in the
fibres we demand Frobenius reciprocity as a condition. When the hyperdoctrine arises from
a concrete presentation of logic, we can easily prove Frobenius reciprocity. In fact Seely [23]
shows how one can go back and forth between the hyperdoctrinal presentation and first order
logic with equality.

We conclude this section with a discussion of equality. Suppose that we have equality in
our syntax. Again, for simplicity, we consider the case where the relevant base objects are
P(1) and P(2). In a cartesian category, we have, for any object A, an arrow, the diagonal
arrow, A from A to A x A given by (/4, I4). Thus in the base category we have an arrow
from P(1) to P(2). In the same was as we defined p* we can define A*, which now goes from
P(2) to P(1). If our logic has equality then A* has a left adjoint. The left adjoint to A* is

11

written do. The definitions can be understood as follows. Let ¢ be a formula with one free
variable, then 3 ¢ is a formula with two free variables obeying In¢[X, Y] = (X = Y)A¢[X].
In particular, if we choose ¢ to be true; we get datrue; is the same as X = Y. We can
use a quick categorical argument to show that 3x.X =Y is equal to true;. We have that
dx.X =Y is, in categorical form, 3,datrue;. Since the existential quantifier acts functorially
we can rewrite this as J,,alrue; but po A = Id so we have Jjslrue; = true; where we have
again used the functoriality of 3 in the last step. Finally we remark that checking the Beck
conditions is easy because one has to check them in the case that the hyperdoctrine expresses
simple properties of first order lTogic or first order Togic with equality as has already been

done by Seely [23].

4 A Hyperdoctrine of Closure Operators

In this section we show how one can build a new hyperdoctrine, actually two new hyperdoc-
trines, by defining a suitable functor from A — Preord to CAL, the category of complete
algebraic lattices and then an endofunctor on CAL. Roughly speaking the first functor takes
us from logic to “information structure” in a familiar way and the second takes us from an
information structure to a collection of closure operators. The second construction is not fa-
miliar and, though, in retrospect, it is clear and easy to describe it makes precise an intuition
for which it is not, a priori, clear that one can have a formalized statement.

The category A — Preord has preordered sets equipped with binary meets as objects
and monotone functions as the morphisms. The category we actually use is not quite CAL
but instead CAL®¥ which has complete algebraic lattices as objects and adjunction pairs
as morphisms.

Definition 4.1 The objects of the category CALY are complete algebraic lattices. A mor-
phism m from L to M is a adjunction pair between L and M. In more detail, a morphism m
from L to M is a pair of monotone functions, (f : L — M, g: M — L) with f left adjoint
to g (i.e. fg). The composition of morphisms (f, g) and (h, k) is (ho f, go k).

By the adjoint functor theorem, f preserves arbitrary sups.

The lattices in question are obtained by taking entailment closed sets of formulas or
“theories”. The programming significance of this is that these theories embody the infor-
mation present in the store of a constraint programming system. The fact that we have a
hyperdoctrine structure here means that one can pass from the logical concepts, conjunction
and existential quantification to the information theoretic concepts of combining informa-
tion and hiding information. The fact that the hyperdoctrine is the functorial image of the
previous hyperdoctrine under a very obvious functor means that there is a very small shift
in viewpoint taking place here. Since we are getting this hyperdoctrine by composing the
previous hyperdoctrine with a functor the Beck conditions and Frobenius reciprocity hold
automatically. This is a great simplification over having to check these conditions explicitly.

We can define a functor, F(), from A — Preord to CAL as follows. In the next few
paragraphs let A and B be meet preorders and m : A — B a monotone function between
them.

12

Definition 4.2 A filter in A is an upwards closed set that is also closed under the formation
of binary (and hence all finitary) meets.

Definition 4.3 The lattice F(A) is defined to be the set of filters of A ordered by inclusion.

It is easy to check that F(A) is a complete algebraic lattice. We could have equally well
used the reverse inclusion order on filters. The present choice of order is the so called
“information ordering”, traditionally used in programming language semantics. It has the
unfortunate effect of reversing the sense of a few adjunctions, but the intuitions associated

with the notion of information are too useful to give up. The reason that we have meet
closure in the definition of filters is because we want filters to be entailment closed with the
notion of entailment introduced in our preliminary discussion of constraint systems. Our
notion of entailment there was that a finite set of formulas could entail a formula. Thus if ¢
and ¢ are in an entailment closed set and we have meets then ¢ At will have to be included
as well.

Convention 4.1 We use letters like u,v,w to stand for elements of the complete algebraic
lattices generated in this way.

Notation 4.1 Given ¢ an element of A, we write (¢) T for the principal filter generated by
¢. For any subset A" of A we write (A") T for Ugea(¢) T.

Note that with our choice of ordering we have ¢ <) = () T C () 1.

Notation 4.2 Given any set X, a function f from X to X' and a subset Y of X we write
f(Y") for the direct image {f(y)|y € Y}.

Definition 4.4 The arrow part of the functor F(), is given by mapping the monotone func-
tion m to the pair, (F(m), m™"'), where F(m) from F(A) to F(B) is given by u — (m(u)) T

where u € F(A) and m™" is inverse image.

It is easy to see that F() really is a functor between the categories defined above.

Proposition 4.5 [f A is a meet-preorder then F(A) is a complete algebraic lattice with joins
given by upward closures of unions and meets given by intersections. If m is a monotone
function from A to B then (F(m), m™") is an adjunction pair from F(A) to F(B). F()

defined in this way is a functor.

Proof: The proof is straightforward. As an example we check that F(m) 4 m™'. Suppose
that u € F(A) and v € F(B). We want to show that F(m)(u) Cv <= u C m™(v). The
forward direction is trivial. For the reverse direction, let € F(m)u, then, for some z € u,
m(z) < x. Now by assumption, m(z) € v and, since v is upwards closed, = € v. il

In fact we can think of F() as going from adjunction pairs to adjunction pairs. In view of
this we have the following theorem.

Theorem 4.6 The composition of the functors F() and P() produces another hyperdoctrinal
structure on B with (p*)~" right adjoint to F(p*).

13

Note that if we had chosen the reverse ordering we would have had existential quantification
as a left adjoint as before. The following calculation shows that (p*)~! is in fact F(3,).
Suppose that u € F(A), we show that (p*)™*(u) = F(3,)(u). Suppose that ¢ € (p*)~'(u),
ie. p*(¢) € u or, in other words, 3,p*(¢) € I,(u). Now using the fact that 3,p*(¢) < ¢
we conclude that ¢ € F(3,)(u). For the other direction, we note that if ¢ in F(3,)(u) then,
for some ¥ € u, 3,10 < ¢. Using the adjunction, ¢ < p*(¢). Since u is a filter, and hence
upwards closed, we have p*(¢) € u so ¢ € (p*)7'(u). We will often write (F(p*), F(3,))
rather than (F(p*), (p*)™'), to emphasize the role of existential quantification.

Now we consider closure operators over the lattices produced in the last hyperdoctrine.
We have already explained the significance of closure operators for constraint programming.
The remarkable property of closure operators is that one can think of them either as functions
or in terms of their sets of fixed points. We will pass back and forth between these two ways
of viewing closure operators.

We recall the formal definition of closure operators and some basic facts about them [21,
5]. In order to avoid confusion in comparing our statements with those in the compendium
we note that we say “left adjoint” where the compendium would say “lower adjoint” and
similarly we say “right adjoint” where the compendium would say “upper adjoint”.

Definition 4.7 Given a lattice L a function ¢ from L to L is a closure operator if ¢ is
monotone, idempotent, i.e. ¢ = co ¢, and increasing (extensive), i.e. Yo € L.x < ¢(x).

The following proposition, taken from pages 21 and 22 of [5], gives an equivalent character-
ization of closure operators.

Proposition 4.8 Let f be a monotone function from L to L. Let f° be the corestriction to
the image f°: L — f(L) and let f, be the inclusion of the image of f in L, fo: f(L) — L.
Then f s a closure operator iff f° is right adjoint to f,.

The next two propositions relate a closure operator with its set of fixed points.

Proposition 4.9 The set of fized points of a closure operator are closed under the formation
of meets (infs) to the extent that they exist.

Proposition 4.10 Let L be a complete lattice. Let C1(L) be the set of closure operators on
L ordered extensionally. Let C(L) be the set of meet-closed subsets of L ordered by reverse
inclusion. Then the map fix : Cl(L) — C(L) that takes a closure operator to its image
(which is its set of fized points) is an order isomorphism. The inverse of fix is the map

clo: C(L) — CI(L) given by clo(S)(x) = main((z) TNS) =1inf((x) TNS).

Proposition 4.11 The collection of closure operators on a complete algebraic lattice ordered
extensionally, form a complete algebraic lattice.

The proof is sketched in Data Types as Lattices [21].

Notation 4.3 We write C1(L) for the closure operators on a lattice L.

14

Now we define a hyperdoctrine of lattices by taking the closure operators on the lattces
that form the fibres in the previous hyperdoctrine. Once again we will define the new
hyperdoctrine as the functorial image of the preceding hyperdoctrine. It turns out, however,
that in order to do this we need to use adjoint pairs in a fashion reminiscent of the use of
embedding-projection pairs in the construction of D.. It does not seem possible to map
directly the hyperdoctrinal structure above onto a hyperdoctrine of closure operators.

Now we note the following technique for lifting adjunctions between posets to adjunctions
between their endofunction spaces.

Proposition 4.12 Suppose that (f, g) is a morphism® in CAL*¥ from L to M. Then
(f', ") is a morphism from [L — L] to [M — M]; where f' = A : [L — L].fohog ¢ =
Ak o [M — M].goko f

Proof: We need to establish that if £ € [M — M] and h € [L — L] that fohog <
k iff h <goko f. Suppose that fohog < k, composing on the left with ¢ and on the
right with f we get go fohogo f < goko f. The unit of the adjunction, f - ¢, gives
gof > Idy. Thus h < gofohogof and hence h < gokof. Similarly for the other direction. W

The basic idea is to try to define an endofunctor from CAL®¥ to CAL¥ as follows.
We map an object L (a complete algebraic lattice) to the set of all closure operators on L
ordered pointwise. For the arrow part of the functor, we define it by saying that it maps a
morphism (f, ¢g) from L to M to (f’, ¢') as defined in the last proposition. Since the closure
operators on L are a sublattice of [L. — L] we should have another adjoint pair and hence
a morphism of CAL*¥. Unfortunately, however, given h, a closure operator on L, fohog
need not be a closure operator on L.

In order to get around the above difficulty we use a remarkable function, V', discussed
by Scott [21]. The function V maps functions on [D — D] to closure operators on D. It
turns out that V is itself a closure operator on [[D — D] — [D — D]] whose fixed points
are exactly the closure operators. In our discussion we use the characterization of closure
operators in terms of their sets of fixed points.

Lemma 4.13 If f is any monotone function in [D — D], where D is any poset, then {x €
D|f(z) < a} is closed under the formation of meets insofar as they exist.

Proof: Let S be any subset of {z € D|f(z) < x}. Let u be MS. Note that f(u) is a lower
bound for S and hence f(u) < wu. Thus u =1S5isin {z € D|f(z) < x}. 1

Definition 4.14 Suppose that [is a function in [D — D] where D is any poset. We define
the function V in [[D — D] — [D — D]] by V(f) = clo({z € D|f(x) < z}).

The lemma tells us that this definition makes sense. In terms of functions, V' is defined as
Af A Y (Ay.x U f(y)). Intuitively this can be thought of as follows. In order to make f
into a closure operator, extensionally greater than f, one has to guarantee that the result

3We only use the fact that they form an adjunction.

15

is bigger than the input; thus one is led to define it as Az.x U f(x)) but now in order to
guarantee idempotence one has to iterate this.

Thus, using V., we may take any monotone endofunction and convert it into a closure
operator by applying V' to it.

Notation 4.4 Suppose that f is a monotone function in [D — D] we write f for V(f).

Comment 4.1 Note thal [is the least closure operator extensionally greater than f.

Lemma 4.15 If(f, g) is a morphism in CAL™ from L to M then (f', ¢') is a morphism in
CAL"Y from CI(L) to CI(M) where f' = Ah: Cl(L).fohogandg = Mc: Cl(M).goko f.

Proof: This can be proved directly as follows. We need to show that for A : CI(L) and
k: Cl(M) we have f'(h) < kiff h < ¢'(k).

Suppose that f'(h) < k,i.e. fohog < k. Since (.) is a closure operator itself, fohog < k.
Now using the argument from the proposition above, we get h < goko f andsoh < go ko f.
Now suppose that h < ¢'(k). We use the fact that closure operators can be represented by
their sets of fixed points. In this paragraph, we will not notationaly differentiate between the
closure operator as a function and the closure operator as a set of fixed points, the resulting
confusion is easily resolved by context. The payoff is that the proofs are easy to read (and
invent!). In terms of sets of fixed points; go ko f C h. We will show that £ C fohoyg.
Assume that u € k, i.e. that k(u) = u. According to the counit of the adjunction f 4 g,
fog(u) < wu. Thus, since g is monotone go ko fog(u) < gok(u) = g(u). This means that
glu) € goko f Ch. Thus h(g(u)) = g(u), hence h(g(u)) < g(u). Applying f to both sides
and using the counit of f 4 ¢, we get fohog(u) < uie u € fohog, in other words,
kC fohoyg. 1

We can now define the promised endofunctor on CAL¥,

Definition 4.16 The functor Cl(—) from CAL"Y to CAL"Y is defined as follows. It takes
a complete algebraic lattice L to the complete algebraic lattice of closure operators on L
ordered extensionally (reverse inclusion of the sets of fived points). It takes a morphism

(f, g) from L to M to the morphism (f’, ¢') where f" = Ah : [L — L].fohog ¢ = Xk :

(M — M].goko f.
We need, of course, to check that we really have a functor, i.e. that identities and compo-

sitions are preserved. In order to do this, however, it is much easier to describe the arrow
part of the functor in terms of the effects on sets of fixed points.

Lemma 4.17 Suppose that (f, g) is a morhism from L to M with h € CI(L) and k €
CI(M). Then goko f = g(fix(k)) and fohog =g '(fiz(h)).

Proof: We use the same ambiguity between a closure operator and its set of fixed points.
Suppose that v € L. Now u € goko f&go ko f(u) < u by definition. From the unit of
f 4 ¢ we have u < go f(u), now using monotonicity of ¢ the fact that k is a closure operator
and transitivity we have u < goko f(u) for any u € L. Thusu € go ko feu=goko f(u).
The latter is of course in ¢g(k). The reverse inclusion is equally easy.

16

Suppose that v € M. Now v € fohoge(fohog(v) <v)shog(v) < g(v)&h(g(v)) =
gv)yeveg(h). I

With this in hand the proof of the folowing is trivial.

Lemma 4.18 CI((f1, ¢1)) o Cl({f2, g2)) = CL({f1 0 f2, ¢1 0 g2)).

This now completes the description of the endofunctor on CAL®*?. Since we have defined
it as acting on adjoint pairs it is evident that the hyperdoctrinal structure on CALY is
carried over to the closure operators.

One can now inspect the table for the denotational semantics of the concurrent constraint
Tanguage and see that the definintion of the construct new X in A uses the concrete version
of the existential quantification operation in the last hyperdoctrine. Parallel composition is
modelled by the sup operation in the lattices which is, of course comes ultimately from the
meet operation in the first hyperdoctrine.

5 Properties of the Closure Operator Functor

The functor Cl(—) defined in the last section turns out to define an adjunction between the
category Frm of frames and the category Frm — I of frames equipped with an “inversion”
operation. This adjunction helps clarify the role of ask and tell in the categorical framework.
For general constraint systems, which may not be distributive, one has only a lax adjunction.
The adjunction also suggests some, as yet poorly understood, connections to locale theory.

We first recapitulate some basic definitions [12] about frames. Frames are complete
lattices obeying the following infinite distributivity law « M (|; #;) = [;(z M ;). Morphisms
preserve finite meets and arbitrary joins. In the category that we consider, morphisms
preserve arbitrary joins but not finite meets. Furthermore, we do not have any distributivity
laws. Thus we are in a situation not as general as that of the last section. The category
Frm — I has, as objects, frames equipped with an additional unary operation written z~1.
This obeys the following additional axioms.

f<g=gt <
f<uh!
(fug)t=f"1ng!
fltug™t < (fng)t
foft=1

LM =T, T =1

S O = W N —

Any Heyting algebra has such a negation and the objects themselves are in fact Heyting
algebras qua objects. The reason that we do not refer to this category as the category of
Heyting algebras is because the morphisms are not required to preserve implication, only
inversion. There is an obvious forgetful functor, U from Frm to Frm —I. We claim that
Cl() is left adjoint to U.

In order to establish this claim we need to define the inversion operation on lattices of
closure operators.

17

Definition 5.1 Let f be a closure operator on L. Consider the set L\ [of nonfized points
of f. We define f~1 to be the smallest meet closed subset of L that contains L\ f.

Checking the following proposition is routine.

Proposition 5.2 The inversion operation on closure operators obeys all the axioms required

of a Frm — I object.
Proposition 5.3 If L is a frame then CI(L) is an object of Frm — 1.

Proof We already know that CI(L) is a complete lattice. The preceding proposition shows
that the inversion structure exists. The infinite distributivity law is a trivial calculation;
viz.,
(f U fi)(z)
(f(z) ML fi(z))
LL(f(2) 0 fi(x)) =
L(f 11 fi) ().

Given this structure on Cl(L) we have the following “representation theorem” for closure
operators.

Theorem 5 4 Let ¢ be a closure operator on L. The set of fixed points of ¢ is given by

Uperl(x) 17111 (e(2)) 1]

Proof: Recall that the lub of a family of closure operators is given by the intersection of
their set of fixed points. Suppose u € ¢ and let & be an arbitrary member of L. Suppose
that = < u, it follows that ¢(z) < u so u € (c(z)) 1. If # £ u then u € (2) 17", In either
case u € [(2) 17" M (e(x)) 1]. T u & ¢ then u & [(u) 17" M (¢(u)) 1] and hence not in the

intersection. B

This shows that arbitrary closure operators can be expressed in terms of the uparrow
embedding, which defines tell, and its inverse and the basic lattice operations. The combi-
nation [(x) 17" M (e(z)) 1] is the set of fixed points of the closure operator defined by the
ask/tell combination ask(x) — tell(c(x)). Thus any closure operator is a sup of such ask/tell
combinations. This fact is reminiscient of the fact that every sublocale can be expressed as
a sup of meets of open and closed sublocales [12]. Note, however, that the nuclei used in
the definition of sublocales are closure operators that preserve meets, whereas our closure
operators are not required to preserve meets.

With this in mind we can state the basic adjunction.

Theorem 5.5 CI() 4 U.

Proof: We establish this by showing that given any Frm object L we can canonically embed
L in CI(L) in such a way that given any Frm — I object K and any Frm map f from L
to K we can factor this map through the embedding. The embedding of L into Cl(L) is
achieved by (.) T. This will turn out to be the unit of the adjunction. Though this is not
necessary, it is illuminating to check that this is a nautral transformation from CI(.) to the

identity functor. In order to do this, we need to show that CI(f)((z) T) = (f(z)) T. Recall,

18

however, that an arrow f : L — L’ is really a pair of arrows (f, ¢) and that by lemma 4.17,
Cl(f), viewed in terms of its action on sets of fixed points, is just the inverse image under
g. Thus, CI(f)((z) 1) ={u € L'|x < g(u)} = {u|f(z) < u} since f is left adjoint to g. But
this last expression is just (f(z)) T.

Now we check the universal mapping property, which establises the adjunction. Given
[L — U(K) we define f+: Cl(L) — K by ft(c) = Uuer[f(2)71 1 f(e(z))]. Now we
verify that f*((z) 1) = f(x) by the following calculation. By definition we have f*((z) 1) =
Uwer[f(u)™' 1 f(u U)]. Using the fact that f preserves sups and distributivity we get
Uwer[(f(w)™' 00 f (u)U(f(u)~ ' f(2))]. Now using property 5 of inversion we get | |,er,[f ()™
f(2)] and using big distributivity we get f(z) M [U,er, f(v)™']. Now since f preserves L we
have f(L)~' =T, hence [,er, f(u)™'] = T. Thus we get f(x).

Finally, we need to show that f* is the unique arrow that satisfies f*((z) 1) = f(x). We
show that (.) T is epic. Suppose that ho(.)T = ko (.) . Let 2 be an arbitrary element of
L. Now we have ho (z) T = h(Uyer[(w) 17" M (z Wwu) 1)), using the representation theorem
for closure operators and the fact that the closure operator () T is just Au.u U x. Now
since h 1s preserves all the structure, i.e. finite meets, arbitrary joins and inversion, and
that (ulUa) T = () TU (u) T, we conclude that the last expression can be rewritten as
Uuer[(h((w) 1)) T [A((2) T) W A((w) 7)]]. Using the assumed equality, ko (.) T = ko (.) T,
we can replace all hs with ks to get | er[(k((w) 7))~ M [k((2) T)UE((u) 1)]] from which the

required equality immediately follows.

The counit of the adjunction is the map € = Ac: CI(L). U ep ™ Me(x).

6 The Fibrational Version

It is often easier to study indexed structures in what is called the fibrational form. Instead of
presenting an indexed structure as a functor I from a base category B to another category C
one can present it as a “projection” functor P from G to B, where G is a suitably constructed
category. Roughly speaking, the category G “collects” all the fibres of the indexed structure
into a single category.

It is well known that one can go from a hyperdoctrine to a fibration by a standard
construction called the “Grothendieck” fibration. If the fibres are posets the Grothendieck
construction still yeilds a non-posetal category. In this section we discuss the fibrational
version of constraint systems. The main reason for doing this will be to develop a suitable
notion of map between constraint systems. A good elementary reference for fibrations is the
recent book by Barr and Wells [2]. Our discussion is taken from chapter 11 of that book,
simplified where possible to take into account that our fibres are posets.

Suppose that we have a base category B and a functor P from B to a category of posets
C. For example, C could be A —Preord. We construct a category G(P) and a functor
P(P) from G(P) to B. The inverse images of the functor P(P) are the fibres in the original
indexed presentation. The construction is itselt functorial in the sense that given arrows
between indexed categories, i.e. natural transformations between functors from B to C, one
can define an arrow, i.e. a functor, between the corresponding fibrations.

19

The objects of G(P) are pairs (¢, n) where n is an object of B, which we are thinking
of as an integer, and ¢ is an object in the fibre over n. This in our first hyperdoctrine
the Grothendieck construction yields a category where the objects are formulas tagged by
an integer which represents the number of free variables. The arrows of G(P) are pairs
(u, f): (&, n) — (¢, n') where f is an arrow in B from n’ to n and u is an arrow in n’
from P(f)(¢) to ¢'. An arrow like u is just an instance of the order relation. The definition
of composition of arrows is more or less inevitable given the definition of arrows.

Note that the category G(P) is not posetal in general even when the fibres of the original
indexed category are. In the case where the hyperdoctrine that we start with is just the
one corresponding to a first order logic, the arrows in the resulting category are entailment
instances between formulas and substitution instances of other formulas. Of course given two
formulas with different numbers of free variables there may be several different substitution
instances of one that entail the other.

7 Conclusions

We view the results of this paper as the start of a larger investigation in the same spirit. The
most important direction is to formulate a notion of higher order constraint programming.
Higher order process calculi are starting to be studied in earnest especially those related to
the lambda calculus [4, 9]. In recent work, Jagadeesan and Pingali [11], and independently,
Saraswat [18] have developed a higher order concurrent constraint process calculus. In order
to understand models for these calculi we are using our framework to develop a category
of constraint systems in analogy with the category of information systems. One can define
such a category by applying the Grothendieck fibration construction to the hyperdoctrines
that we have. The technical questions that we are studying are how one defines exponents
in this category and how such exponential objects would be related to the models of higher
order concurrent constraint calculi.

The other important direction to pursue is the study of other logical combinators and
process combinators. For example, what happens when disjunction, negation, implication
or universal quantification are added to the logic? One can also ask the reverse type of
question, what is the logical significance of the meet operation on constraint systems? We
have studied some of these issues already and are preparing additional investigations.

Date: Wed, 17 Jun 92 09:55:49 -0400 From: Prakash jprakash@trichur.cs.mcgill.ca;

References

[1] K.R Apt and M.H. van Emden. Contributions to the theory of logic programming.
JACM, 29(3):841-862, 1982.

[2] M. Barr and C. Wells. Category Theory for Computing Science. prentice-Hall, 1990.

[3] G. Berry and G. Boudol. The chemical abstract machine. In Proceedings of the Seven-
teenth Annual ACM Symposium on Principles of Programming Languages, pages 81-94.
ACM, 1990.

20

[4]

[14]
[15]
[16]

[17]

[18]

G. Boudol. Towards a lambda-calculus for concurrent and communicating systems. In
J. Diaz, editor, TAPSOFT 89, Lecture Notes in Computer Science 351, pages 149-161.
Springer-Verlag, 1989.

G.Gierz, K.H.Hoffman, K.Keimel, J.D.Lawson, M.Mislove, and D.S.Scott, editors. A
compendium of continuous lattices. Springer-Verlag Berlin Heidelberg New York, 1980.

Leon Henkin, J. Donald Monk, and Alfred Tarski. Cylindric Algebras (Part I). North
Holland Publishing Company, 1971.

J. M. E. Hyland and A. M. Pitts. The theory of constructions: Categorical semantics
and topos-theoretic models. In Categories in Computer Science and Logic, pages 137—

199. AMS, 1987. AMS Contemporory Mathematics Series 92.

B. Jacobs. Fibrations. Submitted to Mathematical Structures in Computer Science,

[991.

R. Jagadeesan and P. Panangaden. A domain-theoretic model of a higher-order process
calculus. In M. Paterson, editor, Proceedings of the 17th International Colloguium on
Automata Languages and Programmaing, pages 181-194. Springer-Verlag, 1990. Lecture
Notes in Computer Science 443.

R. Jagadeesan, P. Panangaden, and K. Pingali. A fully abstract semantics for a func-
tional language with logic variables. In Proceedings of IEEE Symposium on Logic in
Computer Science, pages 294-303, 1989.

R. Jagadeesan and K. Pingali. A higher order functional language with logic variables. In
Proceedings of the Nineteenth Annual ACM Symposium on Principles of Programming
Languages, 1992.

Peter Johnstone. Stone Spaces, volume 3 of Cambridge Studies in Advanced Mathemat-
ics. Cambridge University Press, 1982.

G. Kahn. The semantics of a simple language for parallel programming. In Information

Processing 7/, pages 993-998. North-Holland, 1977.

R.A. Kowalski and M.H. van Emden. The semantics of predicate logic as a programming

language. Journal of the ACM, 23(4):733-742, 1976.

F. W. Lawvere. Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci. U.S.A.,
50:869-872, 1963.

D. Pavlovi¢. Predicates and Fibrations. PhD thesis, University of Amsterdam, 1991.

V. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie-
Mellon University, 1989. To appear Doctoral Dissertation Award and Logic Program-
ming Series, MIT Press.

V. Saraswat. The category of constraint systems is cartesian closed. In Seventh Annual
IEEE Symposium On Logic In Computer Science, 1992.

21

[19] Vijay Saraswat and Martin Rinard. Concurrent constraint programming. In Proceedings
of the Seventeenth Annual ACM Symposium on Principles of Programming Languages,
pages 232-245, 1990.

[20] Vijay Saraswat, Martin Rinard, and Prakash Panangaden. Semantic foundations of
concurrent constraint programming. In Proceedings of the Eighteenth Annual ACM
Symposium on Principles of Programming Languages, 1991.

[21] D. Scott. Data types as lattices. SIAM Journal of Computing, 5(3):522-587, 1976.

[22] D. S. Scott. Domains for denotational semantics. In Ninth International Colloguium
On Automata Languages And Programming. Springer-Verlag, 1982. Lecture Notes In
Computer Science 140.

[23] R. A. G. Seely. Hyperdoctrines, natural deduction and the beck conditions. Zeitschr.
f. math. Logik und Grundlagen d. Math., 29:505-542, 1983.

[24] R. A. G. Seely. Categorical semantics for higher-order polymorphic lambda calculus. .J.
Symb. Logic, 52(4):969-989, 1987.

22

