
JOURNAL OF 
PURE AND 
APPLIED ALGEBRA 

Journal of Pure and Applied Algebra 116 (1997) 49-98 

Categories for computation in context and unified logic 

R.F. Blute”,‘, J.R.B. Cockettb,2, R.A.G. Seelyc**s3 
a Department of Mathematics. University of Ottawa, 585 King Edward St., Ottawa, ON, 

KIN 6N5, Canada 
b Department of Computer Science, University of Calgary, 2500 University Drive, Calgary, AL, 

T2 N I N4, Canada 
c Department of Mathematics, McGill University, 805 Sherbrooke St., Montreal, PQ. 

H3 A 2K6, Canada 

Received 1 February 1996; revised 31 August 1996 

Presented to Peter Freyd to mark the occasion of his 60th birthday 

Abstract 

In this paper we introduce context categories to provide a framework for computations in 
context. The structure also provides a basis for developing the categorical proof theory of Girard’s 
unified logic. A key feature of this logic is the separation of sequents into classical and linear 
zones. These zones may be modelled categorically as a context/computation separation given by 
a fibration. The perspective leads to an analysis of the exponential structure of linear logic using 
strength (or context) as the primitive notion. 

Context is represented by the classical zone on the left of the turnstile in unified logic. To 

model the classical zone to the right of the turnstile, it is necessary to introduce a notion of 
cocontext. This results in a fibrational fork over context and cocontext and leads to the notion of 
a bicontext category. When we add the structure of a weakly distributive category in a suitably 
fork fibred manner, we obtain a model for a core fragment of unified logic. 

We describe the sequent calculus for the fragment of unified logic modelled by context cat- 
egories; cut elimination holds for this fragment. Categorical cut elimination also is valid, but 
a proof of this fact is deferred to a sequel. 0 1997 Elsevier Science B.V. 
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0. Introduction 

This document has its roots in the attempt to elucidate the structure of linear logic 
using weakly distributive categories [9]. In that programme we started by investigating 
the categorical proof theory of the (two-sided) linear cut rules, giving rise to the notion 
of weakly distributive categories. Our rationale was that by doing so we could better 
modularize the structure of linear logic which would facilitate the establishment of 
coherence theorems [5]. It was a natural step to ask whether the exponentials, ! and 
?, could be added in a modular fashion to this basic setting [6]. When we started to 
study this question, we were struck by the prominent role of tensorial strength (and 
costrength) in the formulation. This led us to consider whether it might be possible to 
use strength as a more primitive notion in the modular decomposition of these settings 
and resulted in the development of context categories. * 

The coherence conditions (over twenty commuting diagrams just for the notion of 
context) for a setting in which strength is taken as primitive are quite daunting. In- 
deed, initially, as we lacked any motivating models, we were concerned that these 
“context categories” would simply foist a needless and rather complex abstraction on 
the community. However, two connections persuaded us that this basic setting was 
worthwhile. 

The first connection, which we explore in this paper, is the similarity of the system 
to Girard’s approach to amalgamating classical and linear logic into one setting. In 
a linear sequent calculus it is natural to model context by dividing the terms to the 
left of the turnstile into a “classical” portion followed by a “linear” portion. Context 
categories are the categorical proof theory of this fragment of Girard’s “unified logic” 
[12]. Many of the significant features of the semantics of unified logic may be studied 
in this fragment alone, and although we press on to a more symmetric system, we 
suggest some attention is warranted for this more modest fragment. Indeed, it does 
provide the basic building block of the categorical proof theory for unified logic: by 
adding a cocontext one can then model the division of the terms to the right of the 
turnstile into a classical and linear portion. This allows one to view the linear portion as 
being fork fibred over the context and cocontext. To obtain the further “features” of 
linear logic we claim that one simply now adds them in a suitably fork fibred manner. 

The second connection, which we do not explicitly explore in this paper but rather 
leave to future work, is to the “Action Calculi” of Robin Milner. Strength is of course 
a pervasive notion in computer science. The view of a function (or program) as a map 
between two objects in a given context is absolutely fundamental to computing. The 
categorical machinery for handling context in this sense is, specifically, strength and, 

4 We must point out that the similar term “contextual categories” has been used in a completely different 

sense by Cartmell [S]. We use “context categories” to avoid a terminological clash, but shall use “contextual” 

as the corresponding adjective elsewhere. 

5 Here by being “fork fibred” we mean that there is a fibrational fork, i.e. a fibration over Con x D. In 

this paper, we shall primarily be concerned with the case when C and D are actually the same categories; 
generally C is the context while D is the cocontext. 
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in generality, fibration. That the former gives rise to the latter in the classical set- 

ting is known (this is detailed in [ll]). However, less well-explored is the notion of 

strength as applied to linear settings and this becomes quite important when reasoning 

about communicating processes. The fact that some processes are limited-resource or 

“threaded” leads naturally to treating them in a linear fashion. It was partly to accom- 

modate these features that Milner developed his “Action Calculi” [14]. These (or at 

least the static portion) provide another source of examples for context categories and 

contextual modules. For related work see [ 16,171. 

The development actually starts by describing the general notion of strength and how 

it gives rise to a fibration. The aim is to remind the reader of the correspondence that 

the various notions of strong ftmctor, strong natural transformation etc. have to their 

fibrational counterparts. Formally, there is a full 2-embedding of these strong categories 

into (structured) fibrations. We briefly discuss datatypes and the properties one should 

expect of them in the presence of context. 

Next we study context categories: these are categories with a natural contextual self- 

action. Much of the discussion is centered on the necessary but rather mundane task of 

establishing the coherence conditions both for context categories and for their actions 

(which we call contextual modules). We consider context categories both with and 

without the empty context T: when the empty context is omitted there are a number of 

natural models. Its inclusion demands considerably more of the situation. In particular, 

empty context induces a “storage” cotriple which turns an object X into a context for 

T : X H X 8 T. This is the contextual version of the ! operator of linear logic. 

The structure so far is just half the basic story: with this we can account for contexts 

“on the left of the turnstile” (i.e. in the hypothesis). Our next step is therefore to address 

the remaining half: we dualize the material above, giving a notion of cocontext. For 

context and cocontext to fit together properly, there are three “weak distributivities” 

(very much in the spirit of [9]) which allow the construction of a fibrational fork from 

the fibration and cofibration induced by context and cocontext. These distributivities we 

will discover correspond precisely to the cut rules of the sequent calculus for unified 

logic. 

To be able to handle at least the tensor-par fragment of linear logic, we must add 

these connectives as well. As mentioned above the strategy is to add these features in 

a bistrong manner. The interaction between the classical and linear portions of sequents 

then begins to develop some of the complexity we expect from linear logic. 

Finally, we describe the fragment of unified logic, called the context calculus, for 

which these context categories are the proof theory. The categorical coherence diagrams 

may be seen as arising from those manipulations which are necessary to establish the 

cut elimination theorem. In a sequel to this paper we intend to describe the proof 

circuits for this logic. These provide a usable and more economical view of the whole 

calculus, and give a convenient description of the free structures for this doctrine. 

Rather than overwhelm the reader with the extremely long and opaque diagram chasing 

involved in establishing the theorems of the later sections - some of the diagrams 

involve at least thirty cells, which certainly overreaches our I4T$ formatting ability - 
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we give an overview of the main results which we hope to present in a more transparent 
and complete style in a sequel which introduces the circuits. 

To conclude, we would like to emphasize again the philosophy which underlies this 
work. In the series of papers of which this is a part we have repeatedly stressed the 
importance of tensorial strength in Girard’s logical systems. In this paper, for the first 
time, we take strength as our starting point and show how the categorical proof theory 
of Girard’s systems can be reconstructed. This manner of developing the proof theory 
gives, in particular, a very natural explanation of the exponentials and of the coherence 
conditions governing them. We would argue that hitherto such an explanation has been 
absent. 

From this perspective, the original work on multiplicative linear logic did not pay 
sufficient attention to strength. In the case of unified logic the separation into classical 
and linear parts was suggestive of strength. However, the lack of connectives for the 
semicolons blocked any direct expression of the sense in which strength arose. While, 
in a sense, the crux in making the role of strength explicit is the simple technical 
expedient of introducing connectives (and the corresponding rules) to represent the 
semicolons, this belies its significance. The perspective provided by strength not only 
reveals a uniformity behind the details of the categorical proof theory, which hitherto 
was absent, but also provides a key to the proper understanding of the semantics of 
these settings. 

1. Strength and fibrations 

This section starts by introducing the notion of strength through the notion of a func- 
torial action. Next structural actions are described. It is then shown that these can 
alternatively be formulated as a fibration. 

Throughout this development we shall talk about “computations in context.” This 
terminology is not meant to prejudice the generality of the theory but rather to lend 
a certain intuition to the proceedings. 

1.1. Functorial actions and strength 

Let X be a category then X is said to have an action on a category Y if there is 
a functor 

0:XxY--+Y 

A strong functor F :Y -+ Y’ between two categories with an X-action is a functor 
together with a natural transformation 

d:X0F(Y) -+ F(x@Y) 
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called a strength. A strong natural transformation between strong functors is an or- 
dinary natural transformation a: FI -+ F2 which satisfies the additional property: 

XsFl(Y) 
10u 

- X0F2(Y) 

t 
Fl(X0Y) a 

We shall often call these strong transformations. It is almost a formality to observe 
that: 

Proposition 1.1. Categories with an X-action, strong functors, and strong natural 

transformations form a 2-category Act(X). 

The only ingredient in this which needs a comment is the manner of composing the 
strengths of strong fimctors: 

(F, 6~) 0 (G, eG) = (F 0 G, eG; G(b)). 

1.2. Structural actions 

An action -0_ is structural if the functor X 0 _ is a cotriple for each object X; 
explicitly this means that there are in addition the following natural transformations, 
called duplication and elimination: 

d:XBY + Xs(X0Y), e:X@Y 4 Y, 

where these data satisfy: 

X0Y ceXS(X0 Y) =x0 Y 

ldA/ 
X0Y 

d 
~XS(X0Y) 

X0(X0Y) 
10d 

~x0(x0(x0Y)) 
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or equationally: 

d;e= 1 

d;10e= 1 

(1) 

(2) 

d;d=d;10d (3) 

There is a standard structural action on any category Y. Let CoTriple(Y) be the 

category whose objects are cotriples (Q&E) on Y and whose morphisms are cotriple 

homomorphisms. We may define a structural action: 

_0_: CoTriple(Y) x Y -+ Y 

with T 0 Y = T(Y); the cotriple structure then gives the duplication and elimination 

map. 

It is now obvious that: 

Lemma 1.2. There is a bijective correspondence between structural actions G :X x 
Y -P Y and jiinctors G’ : X + CoTriple(Y) satisfying G(X, Y) = G’(X)0 Y, d = 

&-‘(X) : G’(X) 8 y + G’(X)0(G’(X)0Y) and e = &o’(X):G’(X)0Y -+ Y. 

If Y is a monoidal category we say that a structural action is a monoidal structural 

action in case there is a functor F: X -+ Y such that X 0 Y = F(X) 0 Y and there 

are natural transformations d : F(X) + F(X) 0 F(X) and z : F(X) * T satisfying the 

usual requirements for being a comonoid. Explicitly these are: 

d;10r;24~=1=/4;201& 

A; A 0 l;ag, = A; 10 A. 

We say it is a commutative monoidal structural action in case Y is a symmetric 

monoidal category and 

A;c@ = A. 

Any F with such a comonoid structure does give rise to a structural action: 

Lemma 1.3. Zf F : X ---t Y is a comonoid (as above) then _ 0 _ : X x Y --t Y defined 

by (X, Y) H F(X) 0 Y is a structural action with: 

d = A0l;a~:X0Y +xS(x0Y) 

As for general structural actions there is a standard monoidal action. Let CoMon(Y) 

be the category of comonoids and comonoid homomorphisms in Y; then the underlying 

functor U : CoMon(Y) + Y is immediately a monoidal structural action. Furthermore: 
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Lemma 1.4. There is a bijective correspondence between monoidal structural actions 

given by F: X + Y and functors F’ :X ---f CoMon(Y) satisfying F’; U = F, AF = 

F’; Au, and 1~ = F’; 1~. 

These ideas are closely related to the treatment of names in the action calculi, as 
analyzed by Pavlovic [17]. There he shows that to add an indeterminate to a sym- 
metric monoidal category in a manner which is functionally complete (in the sense 
of Lambek and Scott [13]) is equivalent to moving to the Kleisli category induced 
by a commutative comonoid. He then uses this to explain the treatment of names 
in the static part of the action calculus. Thus, a commutative monoidal structural 
action provides a means to add functionally complete indeterminates at all acting 
types. 

As mentioned in the introduction a motivating example is the “bang” functor of 
a MELL category: that is a category modelling the tensor and exponential fragment of 
linear logic described by Bierman in [3]. The bang functor gives a monoidal structural 
self-action on any MELL category: we shall refer to such an action as a bang action. 
The action, then, is defined by X 0 Y = ! X 18 Y, and d and e are given by the following 
canonical maps: 

e=!X@Y-+T@Y-+Y 

Of particular relevance to this paper is the analysis of this situation provided by Nick 
Benton [l]: already implicit in his work was the use of bang as a structural action. 

In the case that Y is a Cartesian category, so that the tensor is the product, each 
object is a (commutative) comonoid in exactly one way. Thus, the standard monoidal 
action is simply _ x _ : Y x Y + Y and we call this the standard simple action of Y. 
The mono&l structural actions of a Cartesian category Y are thus induced by arbitrary 
functors F :X + Y and we call these simple actions. 

Next we extend the definitions of strong functors and transformations to the structural 
case. In fact, the strong transformations are unchanged from above, but structurally 
strong functors must also preserve the duplication and elimination structure. Specifically 
this means that the following diagrams must commute: 

Elimination strength: 

XBF(Y)LF(X0Y) 

\I 

F(e) 
e 
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Duplication strength: 

e 1 10e;e 

F(X0Y) 
F(d) 

- F(X0(X0Y)) 

Once again it is a formality to show that 

Proposition 1.5. Categories with an X-structural action, structurally strong functors, 
and strong natural transformations form a a-category StrAct(X), which is a sub- 

2-category of Act(X). 

1.3. Fibrations and structural actions 

We suppose the reader is familiar with the basic notions concerning fibrations and 

indexed categories. See for example [7]. 

An X-structural action on Y gives rise to an indexed category over X and thus 

a fibration over X. The fiber over an object X is to be thought of as the Y-computations 

in the context X. Thus, maps in the fiber are f : X 0 Y -+ Y’ and g : X 0 Y’ + Y” with 

composition given by d; 10 f; g : X 0 Y + Y” and identities given by e :X 0 Y + Y. 

This is of course the Kleisli category of the cotriple X0-. Functors between these 

categories of computations in context are provided by precomposing with the change 

in context. The functorial nature of this change in context follows immediately from 

the naturality of the duplication and the elimination transformations. 

Alternatively we may form the total category %x(Y) of computations and contexts 

and show that the functor to X is a fibration. The objects of the total category are 

(following the Grothendieck construction) pairs (X, Y) where X E X and Y E Y, the 

maps are pairs (h,f):(X,Y) + (X’,Y’) where h:X + X’ and f :X0Y + Y’ is 

a computation in the context X. 

Slightly more surprising is the fact that strong functors give rise to morphisms 

of fibrations and strong transformations to transformations of fibrations. The passage 

between the two is as follows: 

a Strong functor to morphism of jibration: Given a strong functor F: Y + Y’ we 

may define a family of functors between Y-computations in context X and Y’- 

computations in context X. Let f :X0 Y + Y’ then define Fx( f) :X0F( Y) + 
F(Y’) to be 

X0F(Y) L F(X0Y) % F(Y’). 

It is straightforward to check that these are functors and they commute with the 

fimctors which change context. 
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l Strong transformation to jibrational transformation: Given a strong transformation 
tl : F + G we have a transformation CQ : FX -+ GX defined in the obvious way by 
e;a:XBF(Y) + G(Y). 
It is clear that this gives a faithful 2-functor from the 2-category StrAct(X) to the 

2-category of fibrations over X. Our aim is now to supply a full and faithful 2-fun&or 
to a 2-category which we know to have all weighted limits. (We shall see in the 
next section that StrAct(X) does not have this property.) In order to achieve this we 
construct the comma 2-category between the following 2-fun&or and the identity: 

Const : Cat -+ Fib(X) given by Y H [Prl : Y x X + X]. 

An object of this 2-category ConstFib(X) is a triplet (Y, A4: Prl + F, F), where F 
is a fibration over X and A4 is a morphism of fibrations from the constant fibration 
at Y. 

Theorem 1.6. For any category X there is a full and faithful 2-embedding V : StrAct 

(X) -+ ConstFib(X). 

First we note that the fun&or K : Y x X -+ Cx(Y) sending (f ,x) H (e; f ,x), which is 
the identity on objects but sends maps to those which do not use context is a morphism 
of fibrations. This is a 2-fknctorial assignment. We must show that it is full and 
faithful. To this end we show how from morphisms of fibrations and transformations 
of fibrations we can recapture their strong counterparts: 
l Morphism of Jibrations to strong functor: Given a l-cell in ConstFib(X) between 

morphisms of fibrations given by structural actions, part of this data is a functor 
F : Y + Y’. It suEices to show that this is a strong fknctor. The strength at X for 
this fun&or is provided by the identity map on X 0 Y as seen in the fiber over X. 
Here the map 1 : X 0 Y + X 0 Y is not the identity in the fibre over X, but is a map 
Y -+ X0Y, so under F turns into a map O:X0F(Y) -+ F(X0Y), giving the 
required strength of F. 

a Fibrational transformation to strong transformation: A transformation in Const- 

Fib(X) has as part of its data an ordinary transformation. It suffices to show that 
it is strong which is a consequence of the fact that the transformation of the total 
category is natural at the particular maps which provide the strength. 

1.4. 2-limits and datatypes 

Given two X-structural actions Y and Y’ their product is an X-structural action given 
by: 

X0(Y,Y’) = (X0Y, XSY’). 

Thus the 2-category of StrAct(X) has finite products. 
Also StrAct(X) has “arrow” categories Y’. This is the ordinary category of arrows 

with the tensor action X 0( Y L Y’) = X 0 Y 
I@f 

--+ X 0 Y’. The strength natural 

transformation for a fun&or into this arrow category gives a commutative square which 
expresses the strength of the natural transformation. 
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StrAct(X) does not have equalizers. If H is the equalizing functor of two functors 
of this 2-category F, G : Y + Y’ then certainly H o F = H o G as functors. However, 
taking the equalizer as mere functors will not do as this equalizer category need not 
be closed under the X-action. 

Not only must H equalize the functors but also the composite must agree on the 
strengths and it is possible that H have a non-trivial strength (consider the pullback of 
the identity functor with an arbitrary functor expressed as an equalizer). This means 
that the equation 

must hold. This does not hold in general with a structural action. 
Thus, the 2-category of StrAct(X) does not have all weighted limits. 
By contrast, of course, the 2-category of fibrations (with morphisms preserving cleav- 

age) certainly has equalizers and preserves the products and arrow categories of struc- 
tural actions under the embedding. This is also true of the underlying Victor to Cat. 
This means the full 2-embedding to Con&Fib(X) preserves these limits. This allows 
us to regard this 2-category as a “completion” of the latter in which equalizers exist. 

For the discussion of datatypes, inserters are needed [I l] and so it is pragmatic 
to work in the 2-category ConstFib(X) to determine the form datatypes take in this 
setting. When one unwinds the various diagrams involved for a structural action, the 
universal diagram which must be satisfied by a linear natural number object, for ex- 
ample, takes the following form: 

Id;181 

Note how it differs from the form suggested by Park and Roman [ 161 as the context 
appears not only on the top line but also on the bottom where the properties of being 
a context become crucial. 

Perhaps, the most important single inductive datatype is the list datatype. To construct 
lists a strong tensor product in Y is needed: the universal diagram for lists will then be: 

X0 T% X0 list(A) N 10 cons X0 (A 8 list(A)) 

Id;1 s(e,,_;lsk) 

9 
X0&C) 
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Similarly, one may define diagrams for other inductive datatypes. As datatypes have 
hardly been studied in these settings it would be interesting to know what properties 
they satisfy. 

2. Context categories 

A situation of particular interest arises when a category X has a structural action on 
itself which is, furthermore, strong with respect to itself. Such categories are essentially 
the subject matter of this section. To be reasonable, the strength transformations must 
satisfy various coherence conditions. When these are written out they are very similar to 
the conditions governing a symmetric tensor product. There are, however, two major 
differences: first, the associativity map is not an isomorphism, and second, the unit 
(called an empty context) does not have an identity action on either side. (Note that 
in the case of bang actions these are not isomorphisms.) This, of course makes it 
necessary to write down explicitly many coherence diagrams which would otherwise 
be implied. 

A category with a strong structural action on itself has a natural transformation: 

such that e = 6_0_;e0e and d;108_0_;8_0_ = 0_0_;d@d. Rather than dealing 
with the strength of 8_0_ we may work with the linear strengths in each argument: 

a0 = tO_; 10e:X0(Y0Z) 4 (x0Y)0z 

to be thought of as an associativity map and 

c0 = 8_0_;e01 :x0(Y0Z) 4 Ys(x0z) 

to be thought of as a symmetry map. We note that tI_s_ can then be reconstituted as: 

8 _s_=d;10a0;cs =d;l@c0;a0. 

Thus, in axiomatizing such a setting we may organize the axioms around the linear 
strengths of associativity and symmetry. Our first major test of the axiomatization will 
be to recover the strength of 8_0_ from its linear strengths (see Proposition 2.9). 

In the following the reader should have in mind standard simple actions and bang 
actions: both are examples of context categories. 

2.1. The definition 

A context category is a category equipped with a structural action 

_@_:XxX+X 
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and an empty context T and natural transformations: 

a@ : xs(Ysz) -+ (xsY)sz 

C@ : XS(Y0Z) --f Ys(xsz) 

lifi:X+T0X 

read : X0T -+X 

satisfying a number of coherence diagrams, as given below. 

Empty context: 

T0T Xs(T0Y) 

\ a0 p:Oy 

T x0 Y= X0Y 

lift; read = 1 

10lift;a~;read0 1 = 1 

Symmetry: 

cg);c0 = 1 

d;c@ =d 

Elimination, duplication and lifting: 

(4) 

(5) 

x0z 

2-K 
XS(X0Z) c0 -XS(XSZ) 

(6) 

(7) 

lift; d = lift; lift 

1 = 1ifi;e 

(8) 

(9) 
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Transpositions: 
10d:d 10CG? 

X0(Y0Z) --I-+ =wwy0(y0z)))-- xs(Ys(xs(Ysz))) 

d 
* (X0 Y)0&0Y)0Z) 

10d;d 
A0(B0Z) - A0(A0(B0(B0Z))) ‘OcO - A0(B0(A0(B0Z))) 

C0 

1 

c0;10(10c0) 

10d;d 10c0 I 

B0(A0Z) - B0(B0(A0(A0Z))) - B0(A0(B0(A0Z))) 

aa;d = l@d;d;l@c,;a0; l@aa (10) 

cs;l0d;d;10c0 = 10d;d;lOcO;cO;lO(lOcO) (11) 

Bistrengths of the action: 

X0(Y0(A0B)) 
10c0 

* xs(As(YsB)) 

This ensures that 6_0_ is a contextual strength (see Proposition 2.9). 

c0; 10as;c0 = l@c0;a0 (12) 

Strong transformations. 

10 lit? 
X0Y-Xs(T@Y) 

\. 

lift c0 

TB(X0Y) 

X0(Y0 T) - 10read xOy 

a0 

(X0Y)0T 

l@lift;c0 = lift 

a0;read = 1 Bread 

(13) 

(14) 
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Elimination of strengths: 

x0(Y0z)~(x0Y)0z \ eO1 xO(yOyyI 

T T 

Y0Z Y0Z 

aa;e01 =e 

C0;10e=e 

(15) 

(16) 

Duplication of strengths: 

X0(Y 0Z) -L-+ XS(~S(YSZ)) XS(YSZ) dX0(mB(Y02)) 

a0j ~lOaO;IO cOj llarOijO 
(X0Y)0Z =+ W0(X0Y))0Z Y0(X0Z) 2s YS(XS(X0Z)) 

(17) 

(18) 

Associativity of strengths: 

xs(Ys(zsw)) 
a0 

c (X0Y)0(Z0 W) 

10as;a0;a001 =aO;aO 

10as;as;c001 =c0; 10aO;aO 

(19) 

(20) 



RF. Blute et al. I Journal of Pure and Applied Algebra 116 (1997) 49-98 63 

Symmetry of strengths: 
C0 10C@ 

X0(Y 0(Z0 W)) -Y0(X0(Z0W)) -Y0(z0(x0w)) 

10a0 1 t 1 "0 

xs((Ysz)s~) 
c0 

(Ysz)s(xsFv 

10c0 
XB(YB(VBZ)) - xs(vs(Ysz)) CQ VS(~S(Y0Z)> 

Y 0(X&V0Z)) -z?-?L Y0(v0(x0z)> 2-f-w VS(Y0+(XSZ)) 

l@a0;c0 = co; 10c@;a@ (21) 

l@c,;c,;l0c@ =c@;l@c@;cO (22) 

Lifting of strengths: 

X0Y ,-si:*” XO,+TO~O” 

(T0X)0Y X0(T 0 Y) 

Note that the second of these diagrams has already 

naturality for lift. 

lift; a0 = Iifi0 1 

occurred to ensure the strong 

(23) 

Remark 2.1 (Unitless context categories). If we drop all references to the empty con- 
text T above, we arrive at the notion of a “unitless context category”, or a “context 
category without empty context”. For the most part we shall not consider such context 
categories, but we shall see some unitless examples later. 

First it is obvious how to interpret a Cartesian category with its standard simple 
action as a context category. We shall refer to these examples as simple context cate- 

gories. They are equivalently specified by the additional requirement that the strength 
transformations a 0, read, and lift are isomorphisms. This latter is the interpretation of 
the word “simple” that we have in mind in the discussion of context. 

Lemma 2.2. In a simple context category, X 8 Y is a Cartesian product. 



64 RF. Blute et al. I Journal of Pure and Applied Algebra I16 (1997) 49-98 

Proof. The fact that a~, read, and lift are isomorphisms immediately means that 

X8 Y is a symmetric tensor. Duplication and elimination turns each object into a nat- 

ural commutative comonoid. However, a symmetric tensor with a natural commutative 

comonoid structure is a product. q 

With a view to understanding how a bang action gives a context category, we note 

that there are many examples of unitless context categories. 

Suppose Y is a symmetric monoidal category and F : Y -+ Y gives a commutative 

monoidal structural action. Clearly, the role of ca can be filled using the symmetric 

map of the tensor; note (6), (7), (ll), (16), (18), and (22) will then automatically be 

satisfied. If the functor F has a tensorial strength then there is an obvious candidate 

for the associativity: 

(a&-‘; OF @ 1 :F(X) @ (F(Y) @Z) + F(F(X) @ Y) 63 Z. 

With this definition (12), (15), (17), (19)-(21) are easy consequences. This leaves 

(4), (8)-( lo), (13), (14), and (23) to be satisfied. All these except (10) involve the 

empty context. (10) is satisfied if the following diagram commutes: 

F(X) @F(Y) 
A@A;s 

h (F(X) @ F(Y)) @ (F(X) @F(Y)) 

BF I OF@ fv 

F(F(X) 63 Y) A . F(F(X) ~3 Y) @ F(F(X) 8 Y) 

where s is the obvious exchange map. 

Proposition 2.3. Zf Y is a symmetric monoidal category and F : Y + Y is a commu- 
tative monoidal structural action which has a symmetric monoidal strength relative 
to F such that 

then Y is a unitless context category with X0 Y = F(X) ~3 Y. 

In a Cartesian tensor category (that is a tensor category with 8 = x ) this extra 

condition is always satisfied as in this setting A @ A; s = A and natural@ of A gives 

the desired square. Thus, we have: 

Corollary 2.4. Zf Y is a Cartesian category and F : Y --) Y has a Cartesian strength 
then Y is a unitless context category with X0 Y = F(X) x Y. 

The categorical interpretation of the bang functor in MELL categories [3] requires 

that it be a monoidal cotriple whose (free) coalgebras are naturally commutative 

comonoids. This means the functor gives a symmetric monoidal structural action and a 



RF. Blute et al. I Journal of Pure and Applied Algebra 116 (1997) 49-98 65 

strength relative to itself. For example, the map a~ is the canonical map !X 8 ( ! Y @ 
z)--,(!X@!Y)~zz(!!X~!Y)~z+ ! ( !X r8 Y) @Z. (Note that this is not an 
isomorphism.) Further, the extra condition of the proposition is an easy consequence 
of the coherence requirement that d 18 d; s; rn@ 8 m 8 = m@,;d. Thus, the bang action 
already gives a unitless context category. 

To obtain an interpretation of the empty context we need to describe the read and 
lift maps: 

lift = (u&)-l; m-r @ 1 :X -+ ! T @X 

read=z&;s:!X@T-+X 

(Again, note these are not isomorphisms.) 
Finally we must check (4), (8), (9), (13), (14), and (23) for this definition of the 

maps. This is an easy exercise which we leave to the reader (see [ 1, 3, 61 for the 
relevant coherence conditions). 

Proposition 2.5. Any MELL category is a context category with respect to the bang 
action. 

2.2. Contextual modules 

It is reasonable to ask what a contextual action of a context category X must look 
like. We shall call contextual actions contextual modules or simply X-modules when 
X is understood to be a context category. A module is an action, as before, but is 
equipped not only with elimination and duplication but also a lifting, associativity, and 
symmetry map. Note that the read map cannot be assumed as part of the structure 
of a contextual module, as the typing of its domain and codomain would make no 
sense if X were not acting on itself. The diagrams which must be satisfied are all the 
diagrams above less (4) and (14) (which would demand that T is in the module). 

A simple contextual module is an X-module Y in which X is a simple context 
category and such that the strength transformations a~ and lift are isomorphisms. In 
particular this means that T 0 Y is naturally isomorphic to Y, for any Y E Y. 

The strong I%nctors between modules must now preserve the additional structure we 
have introduced. This gives three further diagrams (that is including elimination and 
duplication strength) to be satisfied by the strength transformation of the functors: 

Associative strength: 

X0(Y0F(Z)) 10sp;eF c F(X0(Y0Z)) 
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Symmetric strength. 

C0 I 
Y S(XSF(Z)) l 0eF;eF 

Lifting strength: 

F(T 0X) 

A functor (with strength) which satisfies the structural strength conditions together 
with the above will be called contextually strong. 

It is clear that we may now form a 2-category of X-modules, contextually strong 
functors, and strong transformations: 

Proposition 2.6. X-modules, contextually strong functors, and strong transformations 

form a 2-category Context(X). 

Again the only point that needs comment concerns the composition of contextually 
strong functors. Clearly we may define 

and we leave it as an exercise for the reader to check that the five strength requirements 
are satisfied by the composite strength. 

In order to explain what these requirements mean at the fibrational level we must 
make the action itself part of the fibrational information. The point is that a context cat- 
egory has a natural structural action on itself and so gives rise to a structural fibration. 
This structural fibration acts as a jibration on the fibration arising from the module. 
The desire to have the action represented at the level of the fibrations is, therefore, the 
motivation behind this notion of contextually strong. As we shall see, this pattern of 
“self-strengthening” will be repeated. 

The property of being an X-module transfers both onto the Eilenberg-Moore category 
of gtrong cotriples and onto the Kleisli category of strong triples. 

Proposition 2.7. Context(X) has 
(i) the Eilenberg-Moore construction for cotriples, 

(ii) the Kleisli construction for triples. 
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Proof. (i) Suppose (S,E,~) is a contextually strong cotriple on an X-module Y. Then 
an arbitrary object of the Eilenberg-Moore category is v : Y + S( Y) satisfying the usual 
diagrams. However, this gives 

X0YLs(X0Y)=X0Y=+ Xss(Y) -% S(X0Y) 

which is also a coalgebra, since the following commute: 

x0 Y -=LXBS(Y) es - S(X0 Y) 

10v 10 S(v) S(10 v) 

v ? . 
X0S(Y) ~X0WW) 7 W@ S(Y)) 

s 

In each case, the bottom diagrams commute by the strength of E, 6, and the top 
diagrams commute because v is a coalgebra (and 8 is natural, in the case of the right- 
hand side diagram). 

Furthermore this is a contextual action as it is given by the action of X on itself. 
(ii) In a similar manner the Kleisli category may be turned into an X-module. The 

objects of the Kleisli category are just the objects of the original module, thus there is 
a natural candidate for ingredients of a contextual action, which is the underlying action 
on objects, and post-composing with 8 gives the action on algebra morphisms. We must 
verify that all the context category structure lifts naturally to the Kleisli category. 

The main point is this: strength Or :X0 T(Y) --) T(X 0 Y) is (exactly) a distri- 
bution for the functor X 0- and this ensures the action lifts to the Kleisli category. 
Furthermore the fact that the contextual structural transformations are strong means that 
they “commute” with this distribution, which ensures that they all lift to natural trans- 
formations in the Kleisli category, by the standard Kleisli comparison functor. Thus, 
each structure map becomes the underlying map post-composed with q, the unit of the 
triple, e.g. e in the Kleisli category is e; q, the image of e under the Kleisli comparison 
functor. Finally the necessary coherence diagrams are induced by their counterparts in 
the underlying category. This shows that the Kleisli category is a contextual module. 

0 

An example of this is given by the Kleisli construction for a (product) strong triple. 
A strong triple in this sense is just a contextual triple for the standard simple action 
of a cartesian category on itself. The proposition tells us that the Kleisli category is 
a contextual module. 
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Before leaving this example it is worth briefly mentioning an interesting aspect which 
is a consequence of this observation. As the Kleisli category has the same objects as X, 
this means at the level of objects we have an operation given by the action. Further, this 
operation is functorial in the second argument for each fixed entry in the first argument 
(as it is the action) and the symmetry of the product allows one to conclude that it 
is also functorial in the first argument for each fixed entry in the second argument. 
However, it is not a functor of two arguments as the interchange law does not hold. 
This “shuffle” tensor structure was used by Power and Robinson [18] to characterize 
Moggi’s computational monads [ 151. They argued that the notion of a “shuffle” tensor 
(they used the terms “binoidal” and “premonoidal”) was usefully more general as it 
captured (among other things) elementary control structures. 

A contextual line is a contextual module generated by a single object. For any 
simple contextual module Y we may obtain a contextual line by considering the least 
full submodule containing Y. This we call the contextual line generated by Y. Observe 
that we obtain essentially the same basic structure as observed by Power and Robinson: 
their Cartesian based structures - which include elementary control structures - are 
simple contextual lines. 

Notice, however, that our approach has an orientation complementary to that of 
Power and Robinson, and indeed to most of the work on action calculi. Rather than 
build up the structure from an action, as suggested here, they take the total structure 
and, essentially, extract the action. Thus, the center of a premonoidal category always 
has a tensor action on the whole category, and elementary control structures have 
a Cartesian category at their center. With a Cartesian center, since all objects can be 
generated from ones of the form X @ T, this action provides a (simple) contextual 
line. 

2.3. Contextual strength for functors of two arguments 

The requirements (15)-(23) can retrospectively now be seen as arising out of the de- 
mand that aa and CD be the linear contextual strengths for the functor -0 _. Certainly, 
we have: 

Lemma 2.8. In a context category X for all objects Y and Z the following functors 

with strengths are contextually strong: (-05 a@ ) and (Y 0 _, c0 ). 

We now wish to establish that _0_ as a functor of two arguments has a contextual 
strength. We shall accomplish this by proving the following important proposition 
which shows how the linear strengths for the single arguments of a two argument 
functor can be combined into a strength for the functor: 

Proposition 2.9. A functor F: Y1 x Y2 -+ Y between X-modules has a contextual 
strength OF iSand only if 
l F has linear contextual strengths fst :XBF(YI, Yz) + F(X0 YI, Yz) and snd : 

XBF(YI, r,) + F(YI,X~Y~), 
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a The linear strengths commute: 

10 snd 
.X0F(A, Y0B) 

YB(XBF(A,B)) - YW’(X0AB) ---F(X0A,Y0B) 

This correspondence is a btjection. Furthermore a natural transformation between 

functors tl : F(X, Y) + G(X, Y) is strong if and only zf it is strong with respect to the 

(single argument) linear strengths. 

This immediately explains the requirement (12) as this gives 

Corollary 2.10. In a context category, g_O_=d; 1 OcO;aO is a contextual strength 
.for the structural action. 

Proof (of 2.9). We start by assuming that 6 is a contextual strength for F: our task 
is to show that 

X0F(A,B) 2 F(X0A,B) 

=X0F(A,B) -% F(X0A,X0B) F(l,e! F(X0A,B) 

will be a contextual strength. By symmetry this will allow us to conclude that snd :X 0 
F(A, B) + F(A,X OB) will be a contextual strength. To establish the Iirst direction of 
the equivalence it will then only remain to show that these linear strengths commute. 

We need to check the five conditions for strength; we illustrate two cases: 

Elimination strength: 

fst;F(e,l)=e~;F(l,e);F(e,l)=BF;F(e,e)=e. 

Associative strength: 

10fst;fst;F(aa,l)= 10(eF;F(l,e));eF;F(l,e);F(aO,l) 

= lseF;eF;F(l,lOe);F(l,e);F(as,l) 

= 10eF;eF;F(as,lOe;e) 

= 10&;eF;F(aO,e;e) 

= 10&;gF;F(aO,aO;eO1;e) 

= 10e~;eF;F(as,aO);F(l,eO1;e) 

=aO;&;F(l,e) 

= a 8 ; fst 

It is easy to verify that the linear strengths so defined commute. 
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For the converse we now assume that we have the linear strengths which commute 
and will establish that 

X0F(A,B) 5 F(X0AJ0B) 

=X0F(A,B) -%Y0(X0F(A,B)) =X0F(A,X0B) 

z F(X0AJ0B) 

is a contextual strength. Again we must check the five conditions governing strength. 
We shall illustrate with three cases. One equation used frequently in the proof is the 
following: 

lseF;e, = 10d;d; 10c 0;10(10(10snd;snd));10fst;fst 

which uses the fact that the linear strengths commute to re-express the process of 
moving contexts inside. 

Duplication strength: 

d;l0&;eF=d;10d;d;10c 0; 10(10(10snd;snd)); 10fst;fst 

=d;d;10d;10c ~;10(10(10snd;snd));10fst;fst 

=d;d;10d;10(10(10snd;snd));10fst;fst 

=d;d;10(10d);10(10(10snd;snd));10fst;fst 

=d;d;10(10snd);10(10F(l,d));10fst;fst 

=d;10snd;10F(l,d);d;10fst;fst 

= d; 10snd; 10F(l,d); fst;F(d, 1) 

= d; 10 snd; fst; F(d, d) 

Commutative strength: 

10&;&;F(cO,cO)= 10d;d;10c ~;10(10(10snd;snd));10fst;fst; 

F(c~,c0) 

=10d;d;10c 0; 10(10(10snd;snd));c0; 

10(lOF(l,cO));lOfst;fst 

=lOd;d;lOcO;cO;lO(lOcO); 

10(10(10snd;snd)); 10fst;fst 

=c@;10d;d;l0~~;10(10(10snd;snd));10fst;fst 

=c@;10B~;& 
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Notice the use of the transposition identity (11) to bring the symmetry map out in 
the penultimate step. 

Lifting strength: 

lift; 6~ = lift; d; 10 snd; fst 

= lift; lift; 10 snd; fst 

= lift; snd; lift; fst 

= F( 1, lift); F(lift, 1) 

= F(lift, lift) 

Note the use of (8) in the first step. 
It would be strange indeed if the re-expression of a bistrength in terms of its lin- 

ear strengths (and vice-oersa) did not yield the bistrength itself. We now verify that 
these transitions are indeed inverses of each other. First we assume we are given the 
bistrength and reconstitute it from its components: 

6~ = d; 10snd; fst 

=d;10(BF;F(e,l));eF;F(l,e) 

=d;lOOF;&;F(lOe,e) 

= tI,;F(d; 1 @e,d; e) 

= OF 

Next we assume we have the linear strengths and verify that extracting the linear 
strengths from the bistrength that we build does give back the original linear strengths: 

fst = &;F(l,e) snd = OF; F(e, 1) 

=d; 10fst;snd;F(l,e) = d; 10 snd; fst; F(e, 1) 

=d; 10fst;e =d;10snd;e 

= d; e; fst = d; e; snd 

= fst = snd 

The final statement of the proposition dealing with natural transformations is straight- 

forward to verify. 0 

For example, in the 2-category Context(X) the trivial category 1 of one object and 
one map (the identity) with the trivial action is a final object. Functors from it pick 
out objects as usual and have strength 

e:XBF(l) + F(X01) = F(l), 

thus the above result is just the analogue of the classical result concerning bifunctors. 
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2.4, Storage in context categories 

Suggestively we shall adopt the convention, in any context category, of writing 

T(X) = X0 T. Notice that we have: 

T(X) -5 
-- 
!(!(X)) =X0T - 1°” X0(T0T) =+ (X0T)0T 

and 
read 

?(X)&X=X0T-X. 

Lemma 2.11. In any context category (T(_),&,S) is a cotriple. 

Proof. We must show that 6;f(s) = 6;s = 1 and 6; 6 = S;?(S). 
The first counit identity &f(a) = 1 is (when translated) (5) above. 
For the second counit identity we have: 

where the left triangle is (4) and the right triangle commutes as read is strong - (14) 

above. 
Finally for the associativity of comultiplication we have: 

X0T 
10lift .XBT(T) a0 

-- 
-!(!(X)) 

(4 

lB(10lift) 
(B) 10lifI 

T 7 
X0(T0?(T))a?(X)0?(T) 

a0 a,01 

a,01 

(0) 
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where the cell (A) commutes using the natural@ of lift to obtain the equality: 

lift; lift = lift; 10lift 

and the fact that lift is strong (13) which says lift; a 8 = lift0 1; these allow 

lift; 10 lift; u 0 = lift; lift; a 0 

= lift; lift 0 1 

Squares (B) and (C) commute by naturality, (D) uses the associativity pentagon 
(19). 0 

We note that the storage cotriple gives rise to a module for the Eilenberg-Moore 
coalgebras. 

In a strong sense the empty context is a vestige of a missing tensor structure. 
We now consider how such structure may be added. We shall identify the tensor 
unit and the empty context. Clearly this and the tensor product 0 must be con- 
textually strong as functors. This means we must have the following strength 
maps: 

OT :X@T -+ T 

The first map has to coincide with the elimination map eX,T (in order to satisfy 
the “elimination strength” diagram). We may break the second map into two com- 
ponents: 

fst, = e_@,z:x0(Y @Zz) + (X@Y)@Z 

snd@ = Or@_ :X0(Y 0 Z) + Y 0 (X0Z) 

We require that the tensor unit isomorphisms and the tensor associativity isomor- 
phism aa be strong. So, the following diagrams must commute: 

10uR, 
XBY--X@(Y@T) 

lQu& 
X0 Y--x0(-r ~3 Y) 

\ % 

. 

\ snd, 

v 
(X0Y)@T Tc3(X0Y) 
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A0(X@((BciQY)) 10ag -A0((X@B)c3 Y) 

snd@ I I fsta 

Xc3(-40(B@Y)) (A0(Xc3B))cG Y 

1 @fstm I I snd@ 81 

x e3 ((A0B) @ Y) L?--.+ (Xc3(A0B))@Y 

“; = 10U;;fst@ (24) 

z& = 10&;sndB (25) 

1 OaB; fst@; snd@ 0 1 = snd@; 10 fst@,; a8 (26) 

With this equipment we arrive at a contextual monoidal category. It is worth noting 
that if we make the single argument (linear) components of the strength of the tensor 
(that is, fst and snd) isomorphisms, then we will turn the structural action into a 
monoidal structural action, for then 

1 s&-' fstm 

x0Y ------Xs(T@Y)- TX@Y 

is a natural isomorphism. The next result shows T- is always a commutative comonoid. 

Recall from the discussion preceding Lemma 1.3 the notion of a fnnctor being a 
comonoid. 

Proposition 2.12. In any contextual monoidal category X, if(Y, A, 1) is a commutative 
comonoid (where Y is an object), then 

(_0Y:X+X, 10A;&,,e;z) 

is a commutative comonoid. 

In other words the category of (commutative) comonoids of a contextual mono&l 
category is a module: picking a particular comonoid allows one to obtain a line of 
comonoids. 

Proof. Define the comultiplication by 

X0Y -5 (X0Y)0(X0Y)=X0Y ZX0(Y@Y) e-0- - (X0Y)@(X0Y) 

and the counit by 
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That A’; 1 8 e’ = (u”,)-’ and A; e’ @ 1 = (z&-l follows directly from the strength of 

4 and u&. It remains to check the coassociativity but this is a direct consequence of 
the strength of a@. 

Finally, the preservation of commutativity is given by the fact that context duplication 
is “commutative”, using the single argument (linear) strengths of the symmetry map 
for the tensor. 0 

Clearly (u@)-’ : T -+ TIZ T is always a (commutative) comonoid, thus ?x = X0 T 
is naturally a comonoid. It is interesting to note even when the monoidal category is 
not symmetric, there will be a sense in which ?x is a commutative comonoid. 

Corollary 2.13. In any contextual symmetric monoidal category, IX is a commuta- 

tive comonoid 

This observation is of some interest as it explains why bang functors should be ex- 
pected to have a comonoid structure. Further given these observations it is reasonable 
to conjecture that a MELL category is, up to equivalence, the special case of a contex- 
tual symmetric monoidal category in which the structural action is made monoidal by 
demanding fst and snd be isomorphisms. We can see no obvious obstacle to verifying 
this, apart from the number of diagrams that must be checked. We leave this as a 
conjecture for the moment, delaying the proof to the sequel where proof circuits will 
make such proofs more transparent. 

3. Structural bimodules and cocontext 

The structure so far is the basis for our proposal to rest such notions as “computation 
in context” and “resource management” upon the fundamental notion of a strong action 
of a category upon itself. However, so far we have only enough structure to handle 
context in the hypothesis of a computation, or to handle “classical resource manage- 
ment” in the hypothesis. To achieve the symmetrical situation one might expect (say, 
upon viewing Girard’s unified logic), we must dualize our structure, so introducing 
the notion of cocontext. For the most part, this is straightforward, and we will content 
ourselves with a quicker summary than was done for context, leaving the emphasis 
for those places where the unexpected may occur. In the following section, whenever 
we refer to “the evident diagrams”, the reader ought to look for the corresponding 
diagrams above and dualize them. 

3.1. Cocontext 

Suppose we have a category X acting on categories Y, Y’ via l?mctors 

&l:YxX-+Y Q:Y’xX_,Y’ 
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(we shall not distinguish between the actions, since it is generally obvious which action 
is relevant in any situation). Then a functor F : Y --) Y’ is costrong if there is a natural 
transformation 

O:F(Y@X) -+ F(Y)@X 

called a costrength. A costrong natural transformation between costrong fimctors is 
an ordinary natural transformation satisfying the evident diagram. 

An action 8 is costructural if the fimctor -8 X is a triple for each X; this will 
induce these natural transformations (“contraction” and “introduction”): 

b:(Y8Z)@Z + YQZ 

i:Y+YQZ 

satisfying the evident diagrams. In the obvious manner we extend the notion of 
a costrong functor to a costructural functor by adding the evident commutativity 
requirements. 

Again, the situation where a category has a costrong costructural action on itself is 
of particular importance. We shall say a cocontext category is a category X equipped 
with costructural action 

@:XxX-+X 

and an empty cocontext J- and natural transformations 

a@ :XQ(Y@Z) + (XQY)QZ 

CQ :(X8Y)QZ+(XQZ)QY 

colift:X81 -+X 

coread:X + 18X 

satisfying the evident commutativity diagrams. We can generalize this to the notion of 
an X-comodule, which is an action equipped with contraction, introduction, associativ- 
ity, symmetry, and colift, but not coread. 

3.2. Bimodules 

A structural (X,Z)-bimodule, Y, is given by a structural action of X on Y (written 
X 0 Y) and a costructural action Z on Y (written Y 8 Z) such that in the Y coordinate 
each action is, respectively, costructurally costrong and structurally strong with respect 
to the other through the same natural transformation: 

S,L:X0(Yk%Z) --t (X0Y)CJZ 

which we shall call a cut distribution. 
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Notice that this strength/costrength requirement only makes sense on the bimodule 

coordinate as only on that coordinate are both actions defined. Later we consider the 

situation where the actions are defined on both arguments and this will lead to further 

strength/costrength cut distributions. 

The natural transformations of the action must be strong or costrong as appropriate 

on their Y arguments. An example of a coherence diagram implied by the requirement 

that transformations be (co)structurally (co)strong is the following for contraction: 

xs((Ysz)sz> 
18b 

-XS(YBz) 

6,” 

(27) 

Now if X is a context category and Z is a cocontext category we may strengthen 

the notion of a bimodule appropriately to mean a contextual action on the left and 

a cocontextual action on the right connected by a simultaneous contextual strength 

and cocontextual costrength transformation 6,. L This we will call a (X, Z)-contextual 
bimodule. 

3.3. Fibrational forks and bimodules 

The main result of this section is that structural, and therefore contextual, bimodules 

give rise to fibrational forks. Note that as any contextual bimodule is a structural 

bimodule anything we establish for structural bimodules will be true for contextual 

bimodules. 

We first define what will be the total category for this fibration. 

Definition 3.1. Suppose Y is a structural (X, Z)-bimodule. StrBi(Y) is the category 

which is defined as follows: 

Objects: These are triplets (X, Y,Z) of objects from X,Y, Z respectively, where X 

is referred to as the context, Z as the cocontext and Y as the active type. 

Maps: Maps are triplets (f, a, g) : (X, Y, Z) ---f (X’, Y’, Z’) such that f :X ---f X’ is 

a map of contexts, g : Z ---t Z’ is a map of cocontexts, and a :X 0 Y + Y’ 8 Z’ is a 

morphism of Y. 

Identities: The identity maps are given by (1, e; i, 1) : (X, Y,Z) -+ (X, Y,Z). 
Composition: Composition is given as follows: (f, a, g); (f’, a’, g’) = (f; f ‘, p, g; g’) 

where fl = d; (f 0 c(); ~5;; (cc’ 8 g’); b. 
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It is not obvious that this is a category: we must verify that the identity maps and 

composition behave in the correct manner. 

Proposition 3.2. StrBi(Y) as dejined above is a category. 

Proof. For the identity laws we have (1, e; i, 1); (f, a, g) whose middle component is: 

d;(l0(e;i));6~;(a@g);b=d;(10e);(l0i);~~;(a@g);b 

=(10i);@;(a@g);b 

=i;(a@g);b 

=a;i;b 

=a 

and for the identity on the other side a dual argument. Note we have used the strength 

of the contraction transformation. 

For the associativity of composition we consider 

((fo,a0,90);(fi,a~,gl));(f2,a2,92) = (fo,a0,90);((fital,gl);(fi,a2,@2)). 

The calculation for the middle map is as follows: 

4 ((fo; fi) 0 (6 ($10 ao); 8;; (al 8 91); b)); 6:; (a2 8 92); b 

= d;(l0d);((h;f~)0(fo0ao));(l 0@);(10(q @@I));(1 0b);@;(a28g2);b 

= d; d; ((51; .fi) 0 (AI 0 ao)); (10 S,“); (10 (a1 8 @I>); (10 b); 8;; (a2 8 92); b 

= d; (h 0 ao);d; (h 0 8,“); (10 (aI 8 91)); (10 b); 8:; (~(2 8g2); b 

= d; (fo 0 ao);d; (fi 0 a,“); (10 (a1 8 91)); 8:; (6,” 8 1); b; (a2 8 92); b 

=d;(fo0ao);d;(fi0~~);~~;((10a~)~g~);(~~LLl);b;(a~~g2);b 

= d;(h0ao);d;(fl 0@);8~;((10a1)8gl);(6~@ l);((a,@g2)@gAb;b 

=d;(fo0ao);d;(fi0~~);~~;((10a~)81);(6~~1);((a2~g2)~(g~;g2));b~l;b 

=d;(fo0ao);d;(10~~);S~;((f~0a~)~l);(8~~1);((a2~ggZ)~1);(big(gl;gZ));b 

=d;(fo0ao);~~;(dC3l);((f~0a~)~l);(~~~1);((a2~g2)~1);(b~(gl;g2));b 

= d; (510 ao); 6:; ((d; (.A 0 a1 ); 8,“; (~2 8 92); b) 8 (gl; 92)); b 

Note that the costrength of the duplication and the strength of the contraction transfor- 

mation are fundamental to this proof as is the fact that 6; provides both. 0 

There are two obvious fimctors 

3, : StrBi(Y) ---t X; (f, a,g) H f 
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8 8 : StrBi(Y) + Z; (f, a, g) t-t g 

Our main observation is that these functors form a fibrational fork. 6 

Definition 3.3. A jibrational fork is given by a fibration 8 : E -+ B together with a 
cofibration a’ : E -+ B’ such that 
l Each u : B -t d(E) in B has a Cartesian lifting which is a’-vertical. Each u : a’(E) 4 

B’ in B’ has a cocartesian lifting which is &vertical. 
l In a commuting square in E, 

f 
X-Y 

h I I k 

9 u-v 
where f, g are a’-vertical, h, k are &vertical, if f ,g are &Cartesian and k is a’- 
cocartesian then h is cocartesian. 

The last bullet of the definition could have equivalently be expressed by requiring 
that for appropriately vertical arrows, the facts f is Cartesian and h and k are cocartesian 
imply that g is Cartesian. This says the Cartesian substitution functors on the “Cartesian 
fibres” are morphisms of the cofibration and conversely the cocartesian cosubstitution 
functors on the “cocartesian fibres” are morphisms of the fibration. A fibrational fork 
thus corresponds to a mnctor (in general a pseudo-Cmctor) Bq x B’ --) Cat. 

We shall prove for StrBi(Y) that given any f : X + X’ and g : 2 --) Z’ and 
(X’, Y’,Z’) E StrBi(Y), the following identity holds f *; g* = g*; f * (in general it 
suffices that there be a mediating isomorphism). This is suthcient to establish that 
we have a fibrational fork when the conditions of the first bullet hold, for the first 
bullet guarantees that considering fibres makes BoP x B’ + Cat (pseudo)functorial in 
each component, and the “interchange” identity f *; g* = g*; f * makes the map a 
(pseudo)functor of two variables. 

Proposition 3.4. 8, : StrBi(Y) --) X, 8 a : StrBi(Y) --) Z is a jibrational fork. 

Proof. (i) 8, is a fibration: The Cartesian map over f :X+X’ is (f, e; i, 1) : (X, Y, Z) 
+ (X’, Y, Z). To establish this suppose (g; f, CC, h) : (X0, Yo, ZO) -+ (X’, Y,Z); then 

u = d; e; cc; i; b 

=d;(g@a);e;i;b 

6 The definition of a jibrational fork is due to Benabou: we leamt of it through Bart Jacobs. 
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=d;(g0a);6i;(eQ 1);i;b 

=d;(g0a);$;(eQ l);(i8 1);b 

=d;(g0a);6f;((e;i)Q l>;b 

showing this map can be factorized and is uniquely determined by the factor. 

Note also that it is a vertical map of 8,. 

(ii) 8 8 is a cofibration: By a dual argument the cocartesian map over g : Z + Z’ 

is (1, e; i, g) : (X, Y, Z) + (X, Y, Z’). This is always a vertical map for 8,. 

(iii) These give a fibrational fork: we must show S*; g* = g*; f * for this we have: 

d;(f s(e;i));6LL;((e;i)8g);b=d;(lse);(f 0i);6i;(eQg);(i@l);b 

=(f 0i);@;(e@g) 

=(f 0 1);(10i);@;(eQ l);(l@g) 

=(f 01);(10i>;e;(lQg) 

=(f 0 l);e;i;(l Sg) 

= e; i 

= d; (10 (e; i)); 6;; ((e; i) 8 1); b 

where the last step is obtained by reversing the steps above but substituting identities 

for f and g. 0 

3.4. Morphisms of bimodules 

Given two (X,Z)-bimodules Y and Y’, we shall say a functor F: Y -+ Y’ is a 

morphism of bimodules in case F has a strength 8 and costrength C$ such that: 

X0F(Y SZ) 
‘0dJ 

---+X0(F(Y)BZ) - a: (XM(Y))@Z 

e I 081 

F(X0(Y@Z)) 
F(%) 4 i 

- F((X0Y)8Z) - F(X0Y)QZ 

commutes. A natural transformation is a transformation of bimodule morphisms if it 

is strong and costrong in each variable. The reader may check that both structural 

and contextual bimodules, with morphisms of bimodules and transformations, form 

a 2-category. Notice that the appropriate notion of strength must be used in each case. 

A morphism of (X, Z)-bimodules, F : Y + Y’, induces a morphism of the fibrational 

fork: 

P : StrBi(Y) + StrBi(Y’); (f, cc, g) H (f, 8; F(a); c$, g). 

A morphism of fibrational forks is a l-cell in the 2-category of (product) cones over 

X and Z such that both the Cartesian arrows and cocartesian arrows are preserved. 
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Lemma 3.5. If F : Y -+ Y’ is a morphism of structural bimodules then E : StrBi(Y) -+ 

StrBi(Y’), as defined above is a morphism of fibrational forks. 

Proof. We must actually verify that E is a functor: the fact that E preserves identities 

can, in fact, be easily seen from the fact that it preserves Cartesian and cocartesian 

arrows: 

E(f,e;i,g)=(f,e;F(e);F(i);~,g) 

= (f, e; i, 9). 

Setting g to the identity shows Cartesian arrows are preserved, setting f to the identity 

shows cocartesian arrows are preserved, and setting both to the identity shows identities 

are preserved. 

It remains to show that composition is preserved: 

R(f > 4 9); (f ‘7 a’, 9’)) 

=E(f; f’,d; f 0a;d~;a’Qg’;b,g;g’) 

= (f; f’,O;F(d; f 0a;6,L;a’~g’;b);~,g;g’) 

= (f; f’,d; 10O;O;F(f 0a;6~;a’Qg’);&4f3 l;b,g;g’) 

= (f; f’,d; f 0O;&F(10a;&a’Q l);&+sg’;b,g;g’) 

= (f; f’,d; f 08; lBF(a);e;F(6,L);~;F(a’)8 1;48g’;b,g;g’) 

= (f;f’,d;f s(e;F(a));e;F(6,L);~;(F(a’);~)8g’;b,g;g’) 

=(f;f’,d;f0(8;F(a));10~;6,L;e.l;(F(a’);~).g’;b,g;g’) 

= (f; f’,d; f s(Q; F(a); $); @; (0; F(a’); 4) 8 9’; b, 9; s’) 

=~(f,a,g);~(f’,a’,g’) q 

To extract such an F from a morphism of fibrational forks requires that we use, 

as discussed for structural actions, the 2-category of fibrational forks with a morphism 

from a constant fibrational fork. This allows the reconstruction of the mere functor. 

To recover the strength and costrength, the structural and costructural fibrations must 

also be embedded constantly into the fibrational fork. A fibration over H: T + X 

can be lifted constantly in Z to a (X,Z)-fibrational fork by forming the product with 

Z, H x 1 : T x Z -+ X x Z. These constantly lifted fibrations can be embedded into 

the fibrational fork by assuming that the appropriate side of the map in context and 

cocontext is trivial (using e and i). 
The fact that it must be a morphism of bimodules (i.e. that it satisfies the above 

coherence diagram) can then be extracted from the preservation of the composition of 

(l,e,l):(X,Y@Z,Z) --) (X,Y,Z) with (l,i,l):(X,Y,Z) ---) (X,X@Y,Z). 

In a contextual bimodule, as for contextual modules, the action and the coaction 

themselves give rise to, respectively a fibred action and a cofibred coaction. This 

gives the contextual strength of the appropriate transformations but fails to secure the 
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costrength at the bimodule argument. Thus, we strengthen the standard fibred action 
so that it acts constantly in each 2 E Z. The action then must give a morphism of 
fibrational forks: 

_0-: (StrAct(X) x Z) X(X,Z) StrBi(Y) -+ StrBi(Y) 

where x(x,z) is the product in the category of fibrational forks over (X, Z). This 
secures the bistrength of the bimodule argument for all the natural transformations. 

This trick of strengthening and costrengthening the actions by ensuring that they are 
appropriately fibred will be applied again in the next section. 

3.5. Bicontext categories 

We now understand contextual modules, cocontextual comodules and contextual bi- 
modules. The final step is to introduce simultaneously contextual and cocontextual 
notions. An (X,Z)-bicontextual bimodule Y consists of a Z-cocontextual comodule 
X which is a (Z-costrong) context category with a (Z-costrong) contextual action 
on Y and a X-contextual module Z which is a (X-strong) cocontext category with 
a (X-strong) coaction on Y. 

A bicontextual bimodule gives rise to a fibrational fork just as a bimodule does. 
However, what is new is that the context category X and the cocontext category Z 
are themselves (X, Z)-bimodules and generate fibrational forks. The action and co- 
action is then structure in the 2-category of fibrational forks. The fact that the actions 
are fibrational in this manner forces all the defining structure to be bistrong, that is, 
both contextually strong and cocontextually costrong with these strengths interacting 
appropriately. 

All this is a bit of a mouthful and so we shall actually concentrate on the case when 
X = Z where the identification makes X a bicontext category, as explained below. We 
shall then refer to an (X,X)-bicontextual bimodule, where X is a bicontext category, 
as an X-bicontext bimodule. 

Unwinding these ideas, a bicontext category is a category endowed with both con- 
text and cocontext structure. These structures must be linked with the following cut 
distributions, that is strength/costrength transformations: 

where Si (as already encountered) is the strength of the functor _8Z, and simultane- 
ously the costrength of the functor X 8 _ ; 6; is the strength of the functor Y 8 _ ; and 
~5; is the costrength of the functor -@Z. 

These must satisfy the coherence diagrams for bistrength (discussed below) in order 
to secure the fibrational enrichment. 
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Remark 3.6 (Cut distributions). It is tempting to suppose that there should be another 
cut distribution 6: : (X 8 Y) 02 --+ X 8 (Y 0 Z). However, it is immediately obvious 
that this makes no sense as a strength/costrength transformation. We will shortly see 
that the cut distributions, as their name suggests, correspond to cut rules in the sequent 
calculus we call the context calculus and which is the essence of Girard’s unified logic. 

This suggests that there should be a corresponding “nonsense” cut rule missing from 
that system. This is indeed the case: to quote Girard [12] “there is no possibility 
of defining a cut between two occurrences of A with a classical maintenance” in 
unified logic. 

To extract the coherence conditions of a bicontext category it is expedient to develop 
in parallel the notion of bistrength in bicontextual bimodules or, more specifically, in 
bicontext bimodules. Let X be a bicontext category, an X-bicontext bimodule is a cat- 
egory Z on which X has both an X-contextual action and an X-cocontextual coaction. 
This we call an X-biaction and must come equipped (as indeed must any bicontextual 
action-coaction pair) with the above cut distributions (notice that they are all cor- 
rectly typed) which serve simultaneously as (contextual) strengths and (cocontextual) 
costrengths. 

A morphism of (bicontext) bimodules F : Z -+ Z’ is a functor F equipped with a 

bistrength, that is a (contextual) strength 6 and a (cocontextual) costrength C$ satisfying 
the coherence condition already discussed for structural bimodules and, in addition, two 
extra coherence conditions: the following and its dual for 6;. 

(X8 Y) 0 F(A) 
6,” 

,(XBF(A))BY 

I I 
0 I I 081 

F((X8 Y) 0 A) - ‘@‘) F((((X0A)Q Y) ’ -F(XBA)BY 

A natural transformation is bistrong in case it is both (contextually) strong and 
(cocontextually) costrong. The reader may check that bicontext bimodules, bistrong 
fimctors and bistrong transformations form a 2-category. 

Now to complete the definition of a bicontext category we require that all the functors 
and transformations be bistrong. In fact, by requiring the category to be both context 
and cocontext, we already have that the transformations associated with 0 are strong 
and that those related to 8 are costrong. The coherence conditions which remain are 
those which assert the costrength of -0 _-) the strength of _ 8 _, the costrength of the 0 
related transformations, and the strength of the 8 related transformations. In all these 
the cut distributions play an important role. We shall illustrate some of these diagrams, 
leaving an enumeration to a sequel, although the recipe given already s&ices to allow 
the reader to generate such an enumeration. 
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Using Proposition 2.9 we may express the strength of _ 8 _ in terms of the cut dis- 

tributions. However, this implies the requirement that the following diagram commutes 

(likewise its dual involving 6; whose equation we provide): 

1 4 
Y0(X0@8B))- lab: Ys((~0~)sa)~(xsA)s(YsB) 

lss;&=c@;10B~$; (28) 

B;.b;Q 1 = @&I 1.c , , 3 8 (29) 

Finally we have to add coherence diagrams which arise from the requirement that the 

transformations bistrong. We shall illustrate these with one example: the requirement 

that b be strong. One requirement (Eq. (27)) has already been described, as this arises 

in structural bimodules. The additional requirement arises from moving the context 

onto the second argument, which only makes sense for bicontext bimodules. Explicitly 

it is that the following diagram commutes: 

d 

10b.dL =d-1@6L.6L.6L.b 
rR ’ RY L, R, 

DZ) 

(30) 

xs((Y~z)sz) 
l@b 

----x0(Ysz) 

3.6. Bicontextual weakly distributive categories 

The final additional structure considered in this paper is that of a tensor and cotensor 

(“par”). This, in greatest generality, will give a weakly distributive (X,Z)-bicontextual 

bimodule Y. From the fibrational view, this is a weakly distributive category in the 

2-category of fibrational forks. We shall concentrate as above, however, on the case 

X = Y = Z to obtain a bicontextual weakly distributive category. 
It should be pointed out that one can add in a modular fashion the further operators 

of linear logic to the basic structure of a weakly distributive category. This is described 
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in our previous papers [5, 6, 9, lo]. Thus we may also build, in a modular fashion, 

on bicontextual weakly distributive categories to interpret other structure associated 

with linear logic settings. For example, one may add negation to obtain a bicontextual 

*-autonomous category by following the recipe in [9]. Thus, the structure we outline 

here provides the heart of the matter, and avoids excessive use of symmetry, negation, 

or closed structure. 

We have already seen, in Subsection 2.4, how to add a contextually strong tensor 

product 8. But we should remind the reader of an issue we mentioned then: namely 

whether we want the single argument (or linear) strengths fst and snd for the tensor 

to be isomorphisms. We saw that this requirement will lead us to a system that is 

essentially the usual @-! logic. Similarly when cocontext and cotensor are added, this 

will lead to the full strength of weakly distributive categories with storage, in short, to 

the tensor-par- ! -? fragment of linear logic. However, from the point of view of this 

paper, from a strength-driven perspective, this requirement is not necessary nor indeed 

particularly natural. Despite this, from now on we will give more emphasis to the more 

familiar logic which is a fragment of Girard’s system. We think that the more general 

system is of significant interest, and probably in the long run of greater importance, 

so we shall point out as we proceed the changes necessary to obtain the more general 

system. 

This means we must have these linear strength maps: 

fst@ = 8_@2:X0(Y@z) + (X0Y)@Z 

snd @ = Br@L:X0(Y @Z) --t Y @(X0Z) 

together with their inverses 

fst$‘:(X0Y)C33 +X0(Y @Z) 

snd;,’ : Y @ (X0Z) 4 X0(Y C3 Z) 

As before, we require that @ be strong, but in addition it must be costrong (with 

respect to 8 ), which gives two more natural transformations C$T, c#J@, as well as the 

induced fstk, snd;, as listed in Table 1, and we require that ~3 be bistrong, which 

imposes more coherence conditions. 

Next we add the cotensor (or “par”) $; of course we then require that $ be bistrong, 

giving morphisms and diagrams dual to those above. In addition, we shall require 

that @,@ have the structure of a weakly distributive category, adding the appropriate 

distributivities and commuting diagrams. Furthermore, the weak distributivities must be 

bistrong. 

At this point, it seems worthwhile to summarize all the natural transformations we 

have required; these may be found in Table 1. Of course, the various coherence con- 

ditions must be added, as outlined so far in this paper. 

Remark 3.7 (Equivalence to ! and ?). It seems quite clear to us that the doctrine of 

bicontextual weakly distributive categories (as defined above, with isomorphisms for 
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Table 1 
Summary of required natural transformations 

d:X0Y +X0(X0Y) b:(XQY)@Y -+xQY 
e:X0Y -+ Y i:X-+XQY 

a@ :X0(Y0Z) * (X0Y)0Z 
C@ :X0(Y0Z) + Y0(X0Z) 
lifi:X -+ T0X 
read:X0T +X 

a@ :XQ(YCJZ) --t (X8Y)QZ 
c&l :(XQY)@Z + (XSZ)S Y 
colift:XQ_L +X 

coread:X -+ _L@X 

s,l:xs(Ysz) + (X0Y)8Z 

&:XS(YBZ)-, YQ(X0Z) 

S,R:(X@Y)0Z -+ (X0Z)QY 

&- :X0T --) T 
& :X0@ @B) + (X0A) 63 (X0e) 
fstB:XO(A@B) --t (X0A)BB 
snd~:XB(A@B)+A@(X0B) 
fst&(X0A)@B+XX(A@B) 

snd~‘:A@(X0B)+X0(A@B) 

4I :x01 --+ _L 

& :X0(A @B) -+ (X0A) CE (X0B) 
fst;g:X0(A@B)+(X0A)$B 
snd~:X0(A@B)-+A$(X0B) 

el:J_+18x 

e,:(A8X)~(B8X)-+(A~B)8X 
fst$:A@(B@X)+(AC3B)8X 
snde:(AQX)$B-+(A$B)QX 
fst$(A$B)QX+A$(BQX) 
snd&‘:(A$B)QX + (AQX)$B 

&:T-+T@X 
~,:(A8X)~((B8X)~(A~~)8X 
fst&:A@((B@X)+(A@B)QX 
snd&:(AQX)@B+((A@B)QX 

the strength of tensor and the costrength of cotensor) is equivalent to the doctrine 
of weakly distributive categories with storage [6]. As with our conjecture concerning 
MELL, the only obstacle to verifying this is the number of diagrams that must be 
checked, each involving a routine diagram-chase. What is obvious is that the two 
constructions, of ! and ? from 0 and 8, and vice versa, are inverse. However, there 
are numerous coherence conditions to be checked and we are content, in this paper, to 
leave this as a conjecture. The main objective has been to describe the construction of 
the setting from the perspective of strength. We do intend to return to these issues in 
a sequel when the proof circuits are introduced. 

4. The context calculus 

It must be obvious by now that the structures we have been studying are very similar 
to Girard’s approach to unifying classical and linear logic [12]: context and cocontext 
variables are “classical” and general variables are “linear”. This is represented by a 
morphism C 0 G + H 8D; the position C before the 0 is “classical”, while the 
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Table 2 
Sequent rules for the context calculus - I 

Axioms: 

; A t- A; (id) 

Structure Rules: 
r,A,A,l+;ntZ;A 

(8 con@) 
r; ll t C; A, A, A, A’ 

1-,A,r’;l7tZ;A r;ZZtZ;A,A,A’ 
(8 con@) 

[~~~~~$A (0 thin) 
r;ll t Z;A, A' 

r;l7t Z;A,A, A’ 
(8 thin) 

~~~~~,~j;~~~;~ (0 exch) 
I-;ZZtC;A,A,B, A’ 

r;lItZc;A,B, A,A’ 
(8 exch) 

l-;A,IZtC;A 

r,A;IItC;A (‘der) 

r;Il t C,A; A 

r;l7tZ;A,A ( der) 

Cut rules: 
rl;I7, t Cl,A,Z;;A, r2;n2,A,n; t &;A2 

r2,fi;n2,nl,n; t &,~2,q;A2,Al 
(Ucut )+ 

+where either Cl = 0 or 112 = 0 and either Ci = 0 or l7; = 0 

rl;l7l t &,A,C;;A, rz;I&,A,n; t .&;A2 
r2,n2,ww7; t cl,~z,q;A2,A1 

(zlcuty 

bwhere ZI2 # 0 and either C{ = 0 or l7; = 0 

rl;ZI, t &,A,C;;Al r2;n2,A,n; t &;A2 
r2,rl;n2,n1,n; t&,CZ;A2,C;, AI 

(Llcut)’ 

“where Cl # 0 and either CI = 0 or L5 = 0 

r,;n, t zl;dl,~,A', r2;n2,A t &;A2 
r2,n2,rl;n1 t cl;Al, z2, A2, A; 

(clcut) 

rl;nl t~,z,;A~ r2,A,r;;n2 t z2;~2 

r2,wh,r;;n2 t .z2;A2, zl, Al 
(Iccut) 

position G after 0 is “linear”; dually, the H before the 8 is “linear” and the D after is 

“classical”. In the remainder of this paper we shall develop this idea, representing it by 

sequents r; Zl t C; A, where r, n, Z, A are finite (including possibly empty) sequences 

of formulas. Note that in a sense the role of 0, 8 is taken by the semicolon in 

the sequent, before or after the turnstile, as appropriate. We shall present the sequent 

calculus, outline the cut elimination theorem for it, and sketch the interpretation of the 

calculus in context categories. 

4.1. Sequent rules 

We begin with the sequent calculus - as suggested above, this is a fragment of 

unified logic, and is intended to illustrate the way in which context categories handle 

the features of ! and ?, and how they handle the interaction of classical and linear 

behaviour. The sequent rules are listed in Tables 2 and 3. 7 

‘We call this “the context calculus”, a shorter name than “the bicontextual weakly distributive calculus”. 
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Table 3 
Sequent rules for the context calculus - II 

r,;II,,A,lI; kC,;A1rz;Bl-Z2;42 

r,,rz;17,,A8B,nltc,;A,,Cz,A2 
(8 L) rr$;2;&;; ;,;; ( 8 RI 

r,;n, t CI,A; Alr2;IZ2 FB, Z2;42 

r,,r2;nl,n2 kCl,A@B, C2;&A2 
(@RR) 

r;ZIkZ,A,B, C’;A (OR) 

r;ZZr-Z,A@B, Z’;A 

There are some subtleties we should discuss before proceeding to the categorical 

definitions. The structure rules are fairly straightforward - the “classical” rules of con- 

traction, thinning, and exchange are restricted to the “classical” part of the sequent. 

Dereliction allows a formula used “linearly” to move into the “classical” part of the 

sequent. 

The three cut rules correspond to the strengths and costrengths of each action over 

the other, that is, to the 6 transformations. Consider these instances of the various types 

of cut: 

;YBZk Y;Z X;Y kX0Y; 

X;Y8ZkX0Y;Z 
(kut) 

; Y a;.;‘,;; y&0”; (clcut> 

9 3 

mm& yt yzyyxOz; (lccut) 

> 7 

Now, A; B t A0B; is easily derivable ’ using (0 R) and ; A 8 B k A; B is easily 

derivable using ( 8 L). So the three derivations above yield the three 6 transformations 

8 More generally, the reader can readily derive XI ,...,&;YI,...,Ym t--x,0(,.. 0(x,0(Yl@(~~~@Ym)))); 
and its dual. 
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The (Ilcut) rule has the usual “planarity” condition, as in [9] for instance. We can 

relax this condition, at the cost of introducing some dereliction; the variants (Ecut) 

and (Llcut) are the results. These rules may be derived, but for the purposes of cut 

elimination it is convenient to include them as bona jide rules in their own right. In 

the “mixed” cuts, (Iccut),(clcut), we have also built in some instances of dereliction, 

which gives them an apparently greater generality than the corresponding rules given 

by Girard. One can easily check they are equivalent; however, in these two “mixed” 

cut rules there is a crucial use of this dereliction in deriving Sfi,@, as may be verified 

above. As we are taking strength as our primary notion in this paper, these versions 

of cut seem more appropriate. 

There is a “missing” (cccut) rule, both in our system and in Girard’s, corresponding 

to the “missing” 8; distributivity mentioned above. 

Next we shall consider the (0 L) rule. In the form presented here, this rule is 

equivalent (in the presence of the cut rules) to the following axioms, corresponding to 

the inverses of the linear strengths of 0: 

If we took the path of not requiring these inverses in our categorical semantics, then 

we would have to content ourselves with a much more restricted (0 L) rule: 

r,A;Bt-C;A 

I’;A0Bt-Z;A 
(0 1) 

Similar remarks apply to (8 R), where dropping the inverses to fst,, snd@ would 

require a restricted sequent rule. 

The linear strengths of 0, viz. the “inverses” of these axioms, are also derivable, 

using (Ilcut). We shall illustrate this with these instances of (I/cut): 

X;Z t-x02; r; r,xszn t WV; (Ilcut) 
r,x; Y,Z,II t w; 

x;ytx0y; cxsym t w; cllcutj 
r,x;y,z,n t w 

Now, A; B t A0 B; is derivable, so letting r, II be empty, and making a suitable 

choice for W above will give the desired axioms: 

X0(Y @z)t(X0Y)c3Z 

X0(Y@Z)t-Y@(X0Z) 

More generally, we have this derived rule, which combines the two above: 

r;x0 r,x0z,n t W; 

r,x; r,z,n t W; 
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which is easily proved thus: 

which induces the general strength transformation for 0: 

X0(Y 0Z) + (X0Y) 0 (X0Z) 

The (0 R) rule has an essential instance of dereliction, at ZIl, which is necessary 

for the rule to be able to generate the sequent A; B t- A OB;. We could add another 

instance of dereliction if needed, adding a Cl, after the A, but the form we have given 

seems most useful for our purposes. Note the role of the & however; it essentially 

expresses the strength of $: 

;AtA; ;C@BkC,B; 

A;C@BkC,ABB; (0R) 

giving the entailment A 0 (C @ B) -+ C @ (A0 B). Dually, the Ci generates the other 

linear strength transformation of @. 

;AtA; ;B$CkB,C; 

A;B$C’rAAB,C; (0R) 

A corresponding Cl before the A would invoke a notion dual to the strength of ~3, (an 

“opstrength”, as opposed to costrength) and so we do not have any such nonempty list 

in front of the A. Likewise an underelicted Cl, after the A is not desirable. 

The costrengths of $ and 0 explain the 8 rules in a dual manner. 

The unit rules essentially amount to making the constant T cany the structure of an 

empty linear formula, that is, an empty formula after the semicolon on the left of the 

turnstile, and dually I corresponds to an empty linear formula on the right. In other 

words, the constants T, I are the units for the 0, $ respectively, which correspond to 

the “commas” in the linear part of the sequents. Note that T is not the unit for the 0, 

which would require a constant carrying the structure of an empty classical formula, 

that is, an empty formula before the semicolon, nor is I the unit for 8. The tensor 

rules are fairly self-explanatory, and agree with Girard’s rules in essence - we have 

merely been more careful not to assume symmetry in the “linear” parts of the sequent. 

To summarize, all the structure we have imposed on our categorical semantics is 

supported by this sequent calculus. 

Proposition 4.1. Entailments corresponding to all the transformations of Table 1 are 
derivable in the context calculus. 

Proof (sketch). Some of this has already been done above. We shall just illustrate 

the highlights of the remainder. d and b are given by contraction, e and i by thinning. 
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a and c use the context rules; here is the key part of the derivation of c0 for 

example. 

; Y t Y; x;z tx0z; 

Y,X;Z k Y0(X0Z) 
(@R) 

XY;Z t Y0(X0Z> 
(0 exch) 

X;Y0Z I- YeJ(X0Z) 

(0 ~) 

read is given by thinning and dereliction; lift by a cut: 

and dually for coread and colift. 

We have seen the 6’s and the 8’s above (6~ is given by thinning), including fst, snd 

and their inverses. ~$1 is given by thinning, and &, by (6~ L) and ( 0 con@); the 

other 4’s are dual. The tensor weak distributivities are simple (IZcut)‘s; here is 8 for 

example. 

;Y@ztY,z; ;x,rtxc3r; 

;X,Y@Zt-X@Y,Z; 
(ZZcut) 

Finally, the tensor associativities follow from (0 R) and the tensor unit isomorphisms 

follow from the (T L) rule; the cotensor isomorphisms are dual. 0 

4.2. Interpretation 

Aswesaidabove,weinterpretasequentGt ,..., G,,;PI ,..., P,,,‘rSl,..., Sk;Dl,..., DI 

as a morphism Gl 0 (. . . S(G, 0 (PI C3 (. . . 63 Pm)))) + ((Sl @ (. e . @ Sk) 8 01). . .) 
8 DI. If a “classical” part of the sequent is empty, we just ignore the missing term, and 

if a “linear” part of the sequent is empty, we use the appropriate unit T or J- in that 

position. So, e.g. ; P t; D would be interpreted as a morphism P -+ IQ D. In this way 

then, the (id) axiom is just the identity morphism A -+ A. The structure rules are given 

by the defining natural transformations for bicontext categories: for example, 0 con- 

traction is induced by the duplication natural transformation d :X 0 Y -+ X 0 (X 0 Y); 

0 thinning is induced by the elimination natural transformation e :X 0 Y -+ Y; 0 ex- 

change is induced by CQ :X0(Y 0Z) 4 Y 0 (X 0 Z); and 0 dereliction is induced 

by read :X 0 T + X. We illustrate this with an example of dereliction. First note that 

there is a derived natural transformation A : A0 P -+ A ~3 P, which is the essence of 

dereliction: 

A:A@P - 
fste 

10’-’ A0(T@P) - (A0T)@P 2 A@P 

10A 
Then, given f : G 0(A 8 P) -+ W, we get the derelicted morphism G0 (A0P) ---+ 

G0(A@P) L W. 
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The 8 rules are dual; generally we shall not refer to the Q cases, leaving the reader 
to do the appropriate dualization. But we do draw attention to the transformation dual 
to A, namely V :A @X + A QX, V = 1 ~3 coread; fst@; ZQ 8 1. 

There are several cases of cut to verify. We shall illustrate (I/cut), (Zccut) with the 
derelictions, but shall take a shortcut for (clcut), dropping them. We leave (Ecut) and 
(Llcut) as exercises, since they may be derived from (Ilcut) and dereliction. In the 
following examples, we suppose the sequences in the cut rules are all single formulas; 
the reader can derive the nullary and n-ary cases. Suppose f : Gl OP1 -+ (A@&) @Dl, 

g:G20(P2 @A) + S2QD2, p:G10P1 -+ (Sl @A)QD,, and q:G20(A @P2) + 

5’2 8 D2. Then (Ilcut)(f, g) is given as follows: 
1 OsndB 

Gz0(Gl0(P2 @PI)) - G20V’2 @(G10Pl)) 

1 @(l@f) 1 0 fst& 

- G20(P2@((A@S)8D1)+--+ G20(V’2 @(A @S))QDl) 

2 (G20(P2@(A@Sl)))@D 
(lsa)s 1 

l - (G20((P2 @4@S1))8Dl 
fst& 8 1 km1)@ 1 

- ((G20V2 @A))@S)QDl - ((~2QD2)@G)@Dl 

sndg 8 1 

- (V2 @S)8D2)8Dl 

and (Ilcut)(p, q) is given as follows: 
1 0 fst@ 

G20(G 0U’l @P2))- G20((Gl0P1)@P2) 

10(P@l) 10 snd’w 

- G20(((& @A)8D1)@3P2)- G20((@1 @A)@P2)8D1) 

ls(a’sl) 

’ G20((& @(A@P2))8D1) -% (G20(S1 @(A@P2)))8D1 
snd& 8 1 

’ (& @(G20(A@P2)))8D, u’q)81 h (SI CB (S2 8D2))QDl 
fst@ 8 1 

- ((81 @S2)QD2)QDl 

Next, given f:Gl0P1 --t(A@Sl)QDl and g:G20(A0(G~0P2))~sz8D2, then 

(lccut)(f, g) is given as 

G20(Gi 0(P, S(G;B&))) “0° ___t G20((Gi09)0(G;0Pz)) 

IG~~((((((A~S~)C~DI)~(G~~P*)) 
lS((V a I)Sl) 

+G20(((A 8 Sl) 8 Dl)0(G@P2)) 

- G20(((A 8 Sl)0(G;0Pz)) @DI) 

Is@; 8 1) 
.-----+G20(((A0(G;0pz)) @ sl) @Dl) 

5 (Gz 0((A 0(G; 0P2)) 8 Sl)) 8 D1 

s; 8 ’ 
+ ((G~~(A~(G;~Pz))) 8 s1) 6’Dl 
(98 1)s’ 
-((s2 8 D2) 8 S ) 8 Dl 
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The handling of dereliction for (clcut) is similar, so we illustrate (c/cut) with a 

dereliction-free case, essentially the cut rule as Girard gives it. Suppose f : G1 OP -+ 

(S 8 A) 8 DI and g : G20A -+ D2. Then (clcut)(f,g) is 

G~0(G10P)181:G20((S8A)~D, -%Gz0(SQA))@Di 

s”, 8 1 
-(ScQ(G20A))cJD* (18g)a1 -----(S 8 02) 8 DI 

The unit rules are trivial, and the reader may easily verify the claim made earlier that 

(0~5) is induced by fst,’ and snd;‘. The restricted (0 Z) rule (suitable in a calculus 

for the semantics where we do not require the linear tensor strengths fst and snd to 

be isomorphisms) is trivial; the conclusion has the same interpretation as the premise. 

To interpret ( 0 R), suppose we are given f : G1 0 PI ---f A 8 D1 and g : G2 0P2 -+ 

((S2 @ B) @ Sl> 8 D2; then (0 R)(f,g) is 

GI 0(p1 s(G20P2)) = (GI 0P1)0(G20Pz) 

~(A~D1)0(((S2~B)~S;)8Dz) 

~(A0(((S2~B)~s;)84))8D1 

s,L 8 1 

- ((A~((S~~B)~S~))~D~)~DI 

((10a@)8 l)B 1 
k ((A0(S2 @ (B CD $>>I 8 02) 8 DI 

(snd’& 8 1) 8 I 

,((S~~(A~(B~S~)))~D~)~DI 

Kl@fst&) 8 1) 8 1 

‘(692 CO ((A0W @ S;)) 8 D2) 8 DI 
cog3 8 1) 8 1 

The tensor rule (8 L) is just a matter of tensor associativity; the rule (8 R) involves 

composites much like those we have seen above, to move the pieces into the right 

places. But just as (0 R) essentially is just the functoriality of 0, so too is (~2 R) 

essentially the ftmctoriality of 8. Suppose f : G10P1 + (S CI+ A) 8 D1 and g : 

G20P2 ---f (BfBS2) 8 02; then (8 R)(f,g) is 

GI 0(G20(P1 @‘p2)) - ‘Os”d@ GI 0(Pl c3 (G20P2)) 

fS$ 

-(Gl0Pl)@(G20J’2) 

~((S~A)~D1)~((B~Sz)84) 

fstl, 

-(((S~A)~D~)~(B~S~))~DZ 

~~(~~A)~(Bos,))~D,)*D2 

--------((S~(A~((B~S~)))~DI)~D~ 
((lcm’) 8 1) 8 1 

,((S~((A~B)~S~))~DI)~D~ 
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4.3. Cut elimination 

The context calculus admits cut elimination; indeed the cut elimination process is 
quite straightforward. For the most part, the only interesting cases in the usual induction 
occur when the cut formula is the formula introduced by either one of or both of the 
rules that produce the premises of the cut. The other cases involve a routine permutation 
of the cut. We shall illustrate a representative sample of the induction steps here. 

(Permuting (Zlcut) and (0 contr)): In this case, the cut formula cannot be the 
formula contracted, so this is a case where a simple permutation of the contraction 
past the cut is all that is required. We shall illustrate this in both the case where 
the contraction appears in the left premise of the cut, and the case where it appears 

on the right. 

rl,A,Ar,‘;17, t &,B,Z;; A, 

r,,A,r;;n, tZ,,B,Z;;A, r2;I12,B,lI; tZ2;A2 

r2,r,,A,r;;f12,m,q t ~,c~,.~;A~,A~ 

r,,A,A,r~;n,tcl,B,C’,;A, r2;l12,B,ll;tZ2;A2 

* 
r2,rl,A,A,r~;172,nl,~~ t w~,.~;A~,A~ 

r2,rl,A,r:;n2,nl,n: t .w2,-q;A2dh 

r2,44r2/;fl2,BJ; t C2;42 

r,;n, k C,,B,~;;A~ r2,A,r;;n2,B,n; t ~54~ 

r2,A,rgw2,m,q t w2,q;~2,~l 

=+ r2,A,A,r2/,r,;n2,nl,17: t- -w2,.q;A2,Al 
r2,4r2/,rl;f12,a,n; t- hc2,q;A2,4 

(Permuting (hut) and (0 contr)): The only cases where the contracted formula 
may be the cut formula occur when a (0 contr) appears on the right of a (hut), 
and the dual case where a ( CQ contr) appears on the left of a (clcut). We illustrate 
the former; note that permuting the contraction introduces a second cut, higher up. 
Note also the use of numerous instances of exchange and contraction indicated by 
the double lines. 

rz,A,A, r:; fl2 t C2; A2 

r,;fil kA,Cl;Al r2,4r2/;n2 k ~~74~ 

r2~rl,m,r:;~2 k ~~;~~,z,4 

r,;Il, tA,Z,;Al r2,A,A,r;;l12 tZ2;A2 

rl;fll tA,Cl;Al r2,rl,m,A,r;;n2 t c2d2,wl 

r2~rd5,rdw;m t ~2;~2,wl,wl 

* r2,rl,m-iW2 t ~~2; d2,.wl 
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l (Permuting (Zccut) and ( 0 thin)): Again, the only interesting case is when the cut 

formula is introduced by thinning, which can only occur with (Zccut) and ( 0 thin) 
or its dual (clcut) and ( 8 thin); we illustrate the former. Note the use of numerous 

instances of thinning indicated by the double line. 

W’,‘;fl, k C2;A2 

r,;IZ, I- A,Z1; A, r2,A,r;;l12 t .X2; A2 

~2,~l,~l,~;;~2 k c2;A2,cl,Al 

* 
r2,r;;n2 k c2;A2 

r2,rl,Zkr;;n2 t c2;A2,kAl 

l (Permuting cuts and (e&z)): These cases are completely analogous to the cases 

above. 

l (Permuting (Zlcut) and (0 der)): This case is almost a straightforward permutation; 

the only case that is notable is when a possible violation of the “planarity” condition 

forces us to use a (ZLcut) instead. For example 

rz;A,B,nz k C2;42 

rl;nl k zI,~;Al r2,A;B,l12 t z2;A2 

r2,A,rl;nl,n2 t- c1,z2;A2,Al 

=+ 
l-,;ZIl t CI,B; A, r2;A,B,U2 t Z2; A2 

r2,A,rl;nl,n2 k C~,&;A~,AI 

Note the point here is that the planarity restriction would be violated if we just 

did a standard permutation of the cut above the dereliction, so instead we use a 

(ZLcut) which has the dereliction built in. If the planarity restriction is not violated 

by permuting the cut above the dereliction this would not be necessary. 

l (Permuting (Zccut) and (0 der)): Here is an example where the cut formula is 

the derelicted formula; note again the use of an (Llcut) in the rewrite to avoid a 

violation of the planarity condition; note also the numerous instances of dereliction 

indicated by the double line. 

rz;A,nz t- C2; A2 
r,; II, t A, C,; A, r2,A; II2 I- Cz; A2 

r2,rl,nl;n2 k c2;A2,cl,Al 

=+ 
r2,rl;~l,~2 k &;&Cl,Al 

fi,rl,mn2 I- z2;A2,zl,Al 

l (Permuting (Zlcut) and T): The interesting case is when T is the cut formula, 

introduced on both sides by the T rules. The I case is dual. 

r2;n2,n; I- Z2;42 

; t-T; rz;&,T,n; 1 C2;42 
r2;n2,q k C2;A2 

* r2;n2,n: F C2; A2 
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l (Permuting (Ilcut) and 0): Again, the interesting case is when the operator intro- 

duced in the premises of the cut rule is the cut formula. We illustrate this in the 0 

case. 

=+ 
rl2; fl12 k C12,B, C:,; 412 fiJll,nll;n,,B,fl; I- C2;42,A1l 

r2,rll,n11,r12;~2,~12,n~ t- C12,C2,C:2;A2,A~~,A12 

Note that this has eliminated the use of the 0 and introduced two cuts, (Ilcut) 

and (Zccut). The planarity restrictions are equivalent in the (l/cut) before and after 

the rewrite. There is an alternative possible rewrite, with the (Zlcut) on B above 

the (hut) on A, and some instances of exchange to get the “classical” parts of 

the sequent in the right order; since one can easily permute cuts, this is essentially 

equivalent to what we have above. 

l (Permuting (l/cut) and @): We illustrate the @ case, where the cut formula is 

introduced in the premises. 

rll;nl, k Cl1,4All rl2;nl2 t-&Cl2;Al2 fi;n2,MW; t- C2;A2 

I’ll,rl2;flll,nl, t- zll,A @B,z12;All,Al2 r2;D2,AcWB,n; k Z2; A2 

r2,rll,r12;n2,nll,n12,n~ t C11,~2,C12;A2,A11,A12 

Note that although the planarity conditions for these two derivations are not equiva- 

lent, the one for the first does imply the one for the second, so that if the first is a 

well-formed derivation, so is the second. We leave the variants involving the variant 

linear-linear cuts to the reader (in this and other cases). And so we conclude our 

selection from the proof of cut elimination. 

Cut elimination induces a notion of equivalence of derivations in the usual manner; 

we would expect that this is reflected in our semantics given by bicontextual weakly 

distributive categories, in other words, that cut elimination is modelled soundly in any 

such category. This means that we have some rather large commutative diagrams to 

verify. 

To make the statement of categorical cut elimination accessible, it may be thought 

desirable to give an explicit list of the commuting diagrams required of bicontextual 

weakly distributive categories. We have provided, instead, a recipe which does allow 

the reader to generate them all. Despite this, we do feel we are in a position to claim 

the following theorem. 
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Theorem 4.2. Cut elimination is modelled soundly in any bicontextual weakly dis- 
tributive category. 

The proof of this is quite an intimidating exercise in diagram chasing - some cases 
involve several dozen cells in their decomposition. We believe this will become much 
simpler with the development of a suitable notion of proof nets for the context calculus. 
We plan to explore proof nets for the context calculus in a sequel, and that would be 
a more suitable place to present the details of a proof of this result. 

That said, we have in fact checked the direct diagram-chase proof in detail. We shall 
illustrate the diagram-chase proof with one simple example. Permuting (lccut) and 
(8 thin) amounts to the commutativity of the outer paths of the following diagram; 
the inner cells prove its commutativity. We are starting with morphisms f : G10Pl -+ 

A 8 D and g : GZ 0(Gi 0 Pz) --) W; g may be ignored as it is the last arrow composed 
in both sides. 

The key cell in this diagram is the costrength of e: 

GWG;G;))W 
(10e)Ql 

,(G,BG;)BD 
t 

G,0KAh;W) 10(e@l) 
* G2s0(& OD) 

106,” 
t 

10i 
I 

(A@D)0G; ‘--G; q 
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