Although a related notion 1is considered in
BARENDREGT [1981], from our point of view this
principle seems rather more dubious than, say.
(BETA): surely one ought to distinguish the order
of steps in making a computation, and not merely
the steps themselves. However, all the various
naturality and coherence conditions suitable for
sections 3,4 do seem to require (beta comm).

A2 For the record, the coherence conditions
referred to are the following. We suppose L
decreasing, as in section 3, and use the notation
there for objects, morphisms, and 2-cells.

(For ~,¢):
v(id(A).a)(A)F(a) id(F(a))
v(a,id(B))+F(a)¢(B) id(F(a))

v(ab,c)+*v(a,b)F(c)
v(a’,b")*F(p)F(r)

(and similarly for

v(a.bc)+F(a)v(b,c)
F(pr):v(a.b)

-)
(For k): k(A.id(B))-A(A, (B))K(A.B) = K(A.B)

Q

k(A.b'b)-A(A.7(b'.b))K(A,B,) =
k(A,b')B(FA,b)+A(A.Gb' )k(A.b)

k(A,b')-A(A.G(p))K(A.B) =
K(A.B)B(FA.p)-k(A,b)

(and similarly for 1.)

(For m): k(A,b)L(A,B)+A(A.Cb)n(A,B) =
K(A.B,)1(A.b)-n(A,B,)A(A.Gb)

(and similarly for €; these give the "laxity"” of
the modifications n,€.)

A.3 Similar conditions apply for the situation
of section 4, with increasing .

(For e): e(id(B)) = B(B)(B)
e(b'b)°B(Bz)7(b',b) = b'e(b)+e(b’ )FG(b)

pB(B)-e(b) = e(b')+B(B,)FG(p)

(and similarly for n: note the similarity with

the conditions for k.,1.)

(for p): p(A)F(a):B(F(A))F(n(a)) =
F(a)p(A,)-e(F(a))F(a(A)))

{(and similarly for o; these give the "laxity"” of
the modifications p,0.)
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