of A, b: B ——-—-)Bl of B. there are 2-cells
n(a) : FG(a)-a(Al) = a(A)-a

e(b) : B(Bl)°FG(b) = b+B(B) .

Furthermore, there are (lax) modifications

p : PBF*Fa == id(F)
o : GB+aG = 1d(G)

so that

tGpea = (oF+a)(GBF+nx) : GBF+GFa* a => a
and

B-Fo = (BpG)(eB-FaG) : B-FGB-FaG =5 B .

(Again, coherence is discussed in the appendix.)

4.3 Remark: This situation is somewhat
irregular, in that one would expect p, o to have
opposite senses. (Indeed, if one were interested
in setting up equivalent semantic and syntactic
notions of adjunction, in the notations of 3.3 and
4.2, one would expect a, B to correspond to K,
L; n, e to correspond to k, 1; p, © to
correspond to n, €; and the triangle identities
to correspond to each other. So in this sense,
p, 0 ought to be unit and counit, and p ought
to be reversed.) However, for the structure of
LAMBDA, this simply is not the case. (However,
the above correspondances are more or less
correct, and give rise to Table 2.)

4.4 Example: As in 3.4, if F(A) = (A & E),
G(A) = (E 2 A), then F —iI G. Again, the
details are but summarized, in Table 2. It seems
this formulation is less perspicuous, as may be
seen by considering p and o; (part of the
"problem” is that in 3.4, our objects are terms,
since we are working with hom-categories, whereas
here the objects are types.)

Given object A, pB(F(A)):F(a(A)) = (A z' in E.
Xy z‘>)(zE) and 1id(F(A)) 1is xy. oz p(A)

is the beta conversion

(A z' in E. <XA' z'>)(zE) = <xA. ZE>.

Given object B, G(B(B))+a(G(B)) = Az 1in E.
(1st(Az' in E.<y.z'>)(z))(2nd(Az'in E.<y.z'>)(z)).
where y is of type E =2 B, so that id(G(B)) = y:
a(B) is the reduction: beta applied to each
occurrence of (A z' in E. <y,z'>)(z) to produce
A z in E.y(z). (note that (& beta) is also
used), and then eta conversion to yield y.

a: (&I, 2 1) e : (& beta, = beta)

B : (&, 2 E) p : (& beta, 3 beta,)
& eta

n : (& beta, ® beta) o : (& beta, 3 beta,)
D eta

TABLE 2

5. Higher order lambda calculus

The structure discussed in sections 3,4 also
applies to higher order (polymorphic) lambda
calculus. The following brief outline shows how
this works for second order lambda calculus.

Types also include indeterminates (variable types)
and FORALL t. A.

Terms are also closed under

(FORALL I) If a in A, t not free in the
type of a free variable of a,
then (A t. a) in (FORALL t. A).

(FORALL E) If ¢ in (FORALL t. A), B a
type, then c(B) in A[t:=B].

Conversions include

(FORALL beta) (A t. a)(B) == a[t:=B].
(FORALL eta) c == A t. c(t).

We then define an indexed 2-category POLYLAMBDA,
along the lines of the PL categories of SEELY
[1986]: now each "fibre"” will be a 2-category
like LAMBDA in section 2 above. The base category
will consist, as in SEELY [1986], of "orders" (ie.
"kinds" ~- in the second order case, Jjust finite
powers of TYPE) and "operators” (ie.
"constructors’). Over a kind (e.g. TYPE) will be
the 2-category of types with the appropriate free
indeterminates (eg. exactly one, over TYPE),
terms, and reductions.

In such a context, FORALL t.() defines a lax
functor between fibres (ie. from the fibre over
K x TYPE to the fibre over K, for any kind K.)
This functor has a lax left adjoint (strict).
functor, viz. "add a dummy indeterminate"”, (this

is essentially the K-combinator, as discussed in

SEELY [1986].)
APPENDIX (Coherence considerations)

A.l It is usual, when considering "lax"
concepts, to require a host of coherence
conditions for the various comparison 2-cells.
Without being too precise, it turns out that
insofar as LAMBDA is concerned, these can
generally be subsumed under two principles:
(BETA) of 3.4, and:

(beta comm) Beta conversions applied to
different occurrences of logical symbols commute,
(ie. it doesn't matter what order the beta
conversions are done.)

Proceedings of the Symposium on Logic in Computer Science, 1987
(Computer Society of the IEEE 1987) 65-71

