k,1 as shown in figure 1.

(Note that K and L are strict in their first
coordinate, lax only in the second.)

L

K
B(FA.B) ___A_L__. AAcB) ——2 L praB)
B(Fa.B) l A(a.GB) ! lg(h.n)

AB
B(FA,.B) A(A1 e B(FA,.B)
B(FA,.b) l l Ala,. lg(nl.b)

B(FAIB)-—R—tA(A m)——r——-»nm :By)

Figure 1

(i1) (L — K) There are (lax) modifications

n : id(A(-. G-)) => KL
€ : LK = id (B(F-., -))

so that (K€)+*(rK) = K and (€L)+(Ln) =

(Again, coherence is relegated to the appendix,
where also the meaning of "lax modification” is
given.)

3.4 Example: Fix a type E. If G: LAMBDA —»
LAMBDA 1is the lax functor (E 2 A) of 3.2, and
if F: LAMBDA — LAMBDA is the (strict) functor
F(A) = (A &E), then F — G.

It is a pity, but setting out this structure in
full would take much too much space here; a
summary of the relevant ingredients is given in
Table 1. As an example, consider 7 and €:
Given objects (types) A,B and a morphism (term)
c: A — (E > B),

KABLAB(C) =Az in E. c[xA:= 1st<x,z>](2nd<x,z>)

= A z in E. ¢(z).

So ‘nAB(c) is the eta conversion
c =\ z in E. c(z).

(A &E) — B, with
is the beta

Similarly, for a term d:
free variable <xA, zE>, eAB(d)

conversion (A z in E. d) (z) = d.
The "triangle identities” are the following

principle, which may be viewed as an analogue to
beta conversion at the level of reductions:

(BETA) An eta conversion of an occurrence of a
logical symbol followed by beta conversion of the

same occurrence is an 1identity operation,
(provided the composite is an "endo-operation”, so
this makes sense.)

F: (- &E) k g (& beta)

G: (E=>-) kAb: (> beta)

e’ (® beta) laB: (& beta)

G (® eta) lAb: (® beta)

K: (&I, =I) n: (D eta)

L: (&E. =E) €: (= beta)
TABLE 1

3.5 Usually in defining a notion of adjunction,
it is expected that equivalent "semantic” and
"syntactic” formulations exist, (the former being
in terms of hom-sets, the latter of units and

counits.) For lax adjunctions the situation is
rather more complicated, and depends on the
precise details of the notion of "laxity”. In

particular, for the notion of 3.3, although no
doubt one could "fudge” an equivalent syntactic
formulation, what is striking is that the natural
such formulation fails. (Section 4 gives a
variant - see SEELY [1977] for a discussion of
this case.) Further, it is curious to note the
role eta conversion plays: for if we reverse the
sense of (® eta), then although LAMBDA is no
longer an example of 3.3, it gives nevertheless an
example of a natural notion of lax syntactic
adjunction (which has no natural semantic
equivalent.)

4. Reversing eta

4.1 In this section, we briefly consider the
situation when eta conversion is increasing. The
first remark, of course, is that we must alter the
definition (3.1) of lax functor by reversing

7 remains the same.

(It must be admitted that from a 2-categorical
viewpoint, this is highly unsatisfactory, in that
L and g are now going in reversed senses.
Indeed, on this observation could be based a
fairly convincing argument that this illustrates
just why eta ought not to be increasing.)

However, nevertheless, we can give a neat
description of the adjoint structure enjoyed by =
in this context as well.

4.2 Definition: Given two lax functors (as in
4.1) F: A— B , G: B—> A, by a lax syntactic
adjunction F —ll G, we mean that there are lax
2-natural transformations

a: id(A) —> GF and pB: FG — id(B)

lax in the sense that for morphisms a: Al — A
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