(&I) If a in A, b in B, then <a,b> in

A&B.
(&E) If c in A &B, then (lst c¢) in A, (2nd
c) in B.

(> I) If b in B, x a variable in A, then
(A x in A. b) in A = B.

(®E) If ¢ in A=3>B and a in A, then
c(a) in B.

Conversions include the following:

(& beta) lst<a,b> = a, 2nd<a.b> = b.
(& eta) c¢ = <Ist c, 2nd c>.

(See below why = appears here instead of ==.)

(® beta) (A x in A. b) (a) == b[x:=a].
(2eta) ¢ => A x in A. c(x) . (where x not
free in c).

2.2 LAMBDA is defined as outlined in the
introduction: objects are types, morphisms
a: B— A are terms of type A with exactly one
free variable x of type B, and a 2-cell
between such morphisms is a composition of
conversions (a '"reduction” -- I shall use this
term even though it may seem inappropriate for the
increasing eta conversions.)

2.3 I shall treat alpha conversions as
identities. Furthermore, for simplicity, I shall
concentrate solely on , and thus shall collapse
the 2-categorical structure dealing only with &
by regarding (& beta) and (& eta) as
identities also. This could be avoided by
dropping all reference to &, and generalising
the categorical structure to allow morphisms
A,B, C,... — Z with finite sequences of
objects as domains: such a morphism should be
thought of as an ordinary morphism A & B & C &...
— Z, or equivalently, A—B=>C=> ... 3 Z.

Such notions have been considered by others, but I
think that cartesian closed categories are so much
more natural that it would be a mistake to omit
finite products, (or even a terminal object., for
that matter.)

A consequence of this will be that we shall
frequently use ordered pairs <xA,yB> to denote

variables of type A & B.

2.4 It is straightforward to check that LAMBDA is
in fact a 2-category; most of the details are
either implicitly or explicitly in LAMBEK-SCOTT
[1986]. Only the interchange law needs comment:
in effect we just assume it to be true,
introducing an equivalence on reductions. {The
validity of this may be checked by considering the
corresponding situation in the & 3 fragment of
first order logic, via the Curry-Howard "types as
formulae" isomorphism, where interchange is valid;
see SEELY [1979].) The key to the interchange law
is this:

2.5 Definition/"Lemma': For p:a = b:B — A,
r:d = e:C — B (as in the introduction), the
following reduction sequences are the same:

pld] b[r]
a[x:=d] == b[x:=d] == b[x:=e]
alr] ple]

a[x:=d] == a[xi=e] == b[x:=e].
The common composite is p¥r.

2.6 Remark: Notice that the associativity of
composition of morphisms is equivalent to the
equality

a[xp:=b][y:=c] = a[xy:=bly :=c]]

for terms D—E—bCL»Bi»A.

3. Laxity

3.1 Definition: Given two 2-categories A
and B, by a lax functor F: A —> B we mean a
function that sends objects, morphisms, 2-cells of
A to, respectively, objects, morphisms, 2-cells
of B, which is strictly functorial on 2-cells:
instead of functorality for morphisms, we have
"comparison 2-cells" as follows:

if a: B— A, b: C — B in A, there are
2-cells in B

v(F; a,b): F(a)F(b) = F(ab)
¢(F; A): id(FA) = F(idA)

(Coherence conditions for these will be discussed
in the appendix.)

3.2 Example: Fix a type E:
induces a lax functor

then this

G: LAMBDA —— LAMBDA, G(A) = (E > A).

(Exercise: define G on morphisms and 2-cells.
Then show that in this case ~ is (2 beta) and
t is (D eta) .)

3.3 Definition: Given two lax functors
F:A— B , G: B — A, by a lax semantic
adjunction F — G we mean there is a pair of
lax 2-natural transformations

K:B(F-,~) —> A(-.G-) and L:A(-,G-) —> B(F-,-)

so that L 1is weakly left adjoint to K; this
means the following:

(i) (laxity of K,L} Instead of strict naturality
of K,L, there are comparison 2-cells. For

morphisms a:A1—>A in A, b:B-—B, in B.

there are natural transformations (2-cells in CAT)

Proceedings of the Symposium on Logic in Computer Science, 1987
(Computer Society of the IEEE 1987) 65-71

