The main purpose of this paper is to introduce
2-categories to computer scientists as a suitable
framework for certain types of semantics. Hence a
few words of introduction about 2-categories might
be suitable. A 2-category is a category enriched
with some extra structure: the hom-sets are
themselves categories. (This generalises the
familiar context in which one has a category, e.g
of domains, in which each hom-set inherits a
partial order from the orders on the domains.
Since a poset is a category, every such category
of domains is in fact a 2-category.) The
morphisms between morphisms are called "2-cells”.
There are various axioms which guarantee that the
categorical structures on the hom-sets "mesh" well
with the original categorical structure (of
objects and morphisms). Of course it is my point
that the general flavour of this may be gleaned
from considering the (typed) lambda calculus:
thinking of types as "objects", it is easy to see
how a term a of type A with exactly one free
variable x of type B may be considered as a
map ("morphism”) B — A. Given another term b
of type A with exactly one free variable x of
type B, so b: B — A also, then a "2-cell”
p: a = b would be a reduction from a to b.
(Notice that p does not affect A, B, though
A, B are implicit in any description of p : p
only acts on a to produce b.)

There is an identity reduction a == a for any
term a, and one can compose reductions, in fact
in two ways: given terms

a,b,c : B— A and d,e : C — B

and given reductions

p:a=b,q: b=c, and T : d =>e

there are evident compositions

gp : a =>c (between terms B — A), and
pr : ad = be (between terms C — A),

where ad and be are defined by composition in
the category of types and terms -—-— ie. by
substitution:

ad = a[x:=d] and be = b[x:i=e].

The main axiom of 2-categories is the "interchange
law”, which asserts that these two kinds of
composition must commute with each other.

A final remark: 1initially we shall suppose that
eta conversion 1is decreasing, rather than
increasing. This follows the proof theorist’s
view that eta conversion is an expansion:

a ¢ (A x in A. a(x)) (for x mnot free in a)
rather than a reduction. As indicated above, this

will allow us to regard beta and eta conversions
as defining a (lax) adjunction in a fairly

standard way. Later, we shall consider the effect
of reversing the sense of eta conversion; this
allows a different formulation of lax adjunction,
but the notion of lax functor becomes less
satisfactory.

Acknowledgement: As stated above, this paper is
primarily intended as propdganda - 2-categories
occur naturally as structures in computer science.
(The interested reader should pursue this in more
mathematically serious works in "2-categorical
logic”, particularly those from the "Australian
school”; some references are given here.) I have
not used the heading "Theorem”, but rather
"Example”, since there are in fact no particularly
new ideas or theorems here; this paper is based on
SEELY [1979], which gives a similar analysis of
first order logic. The main difference between
that paper and this, is that in [1979],
implication is not successfully treated, whereas
here, by concentrating only on implication, those
difficulties are avoided.

This work was completed with partial support from
Fonds F.C.A.R., Québec.

1. 2-categorical preliminaries

We summarise here the basic notions we need from
the general body of 2-category theory; a more
comprehensive introduction may be found in
KELLY-STREET [1974].

1.1 Definition:
following structure:

A 2-category A has the

(1) a collection Ob(A) of objects, or
O-cells: A,B, etc.
(ii) a collection Mor(A) of morphisms, or

arrows or l-cells: a: B — A, etc.

(iii) a collection Cell(A) of 2-cells:
p:a=—>b : B— A, etc.
also denoted

The objects and morphisms form a category Ao,

the "underlying category of A". For fixed A,B,
the morphisms B — A and the 2-cells between
them form a category Hom(B,A), also denoted
A(B,A). Composition in this category is known as
"vertical composition’:

s Tl %,
N

[+

This composite is denoted q*p, or qp if no
confusion results. Furthermore, given 2-cells

Proceedings of the Symposium on Logic in Computer Science, 1987
{Camnntar Sariatv nf the TRER 10R7) AR—71



