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• An extension of an idea from a paper [Blute, Cockett, Seely;

MSCS 2002]

– Modal logic given by a linear functor (a special case of

“the logic of linear functors”)

• Based on an “abandoned” project [Sadrzadeh, Cockett, Seely,

2009–2010, intended for MFPS 2010]

– Adjoint modal pairs (think two varieties of “possibly” and

“necessarily”) (as given in “positive tense logic” of Prior)

– Relational models of such modal logic (using some ideas

of Hermida, IMLA 2002)
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A linearly distributive category is a category X with two as-

sociative tensors ⊗,⊕ (and their units >,⊥) which are strong

(costrong) with respect to each other, as indicated by these

natural transformations:

δL:A⊗ (B ⊕ C) −→ (A⊗B)⊕ C and

δR: (A⊕B)⊗ C −→ A⊕ (B ⊗ C)

subject to “obvious” coherence conditions (as is usual for tenso-

rial strength, we want these strengths/linear distributions to be

well-behaved with respect to the unit and associativity isos, as

well as with each other):
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A⊗ (B ⊕⊥)
1⊗uR

⊕ //

δL

��

A⊗B

(A⊗B)⊕⊥

uR
⊕

77ppppppppppppppppppppppppp

(A⊗B)⊗ (C ⊕D)
a⊗ //

δL

��

A⊗ (B ⊗ (C ⊕D))

1⊗δL

��

A⊗ ((B ⊗ C)⊕D)

δL

��

((A⊗B)⊗ C)⊕D
a⊗⊕1

// (A⊗ (B ⊗ C))⊕D

(A⊗ (B ⊕ C))⊗D
a⊗ //

δL⊗1

��

A⊗ ((B ⊕ C)⊗D)

1⊗δR

��

((A⊗B)⊕ C)⊗D

δR
((QQQQQQQQQQQQQQQQQQQQQQQQQQQQ

A⊗ (B ⊕ (C ⊗D))

δL
vvmmmmmmmmmmmmmmmmmmmmmmmmmmmm

(A⊗B)⊕ (C ⊗D)
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Given linearly distributive categories X, Y, a linear functor

F :X −→ Y consists of:

• a pair of functors F�, F�:X −→ Y so that F� is monoidal with

respect to ⊗, and F� is comonoidal with respect to ⊕:

m>:> −→ F�(>) m�:F�(A)⊗ F�(B) −→ F�(A⊗B)

n⊥:F�(⊥) −→ ⊥ n�:F�(A⊕B) −→ F�(A)⊕ F�(B)

• natural transformations (called “linear strengths”):

νR
�
:F�(A⊕B) −→ F�(A)⊕ F�(B)

νL
�
:F�(A⊕B) −→ F�(A)⊕ F�(B)

νR
�
:F�(A)⊗ F�(B) −→ F�(A⊗B)

νL
�
:F�(A)⊗ F�(B) −→ F�(A⊗B)

satisfying the following coherence conditions:
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F�(⊥⊕A)

νR
⊗

��

F�(uL
⊕) // F�(A)

F�(⊥)⊕ F�(A)
n⊥⊕1

//⊥⊕ F�(A)

uL
⊕

OO

F�((A⊕B)⊕ C)
F�(a⊕) //

νR
⊗

��

F�(A⊕ (B ⊕ C))

νR
⊗

��

F�(A⊕B)⊕ F�(C)

n⊕⊕1

��

F�(A)⊕ F�(B ⊕ C)

1⊕νR
⊗

��

(F�(A)⊕ F�(B))⊕ F�(C) a⊕
// F�(A)⊕ (F�(B)⊕ F�(C))
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F�((A⊕B)⊕ C)
F�(a⊕) //

νL
⊗

��

F�(A⊕ (B ⊕ C))

νR
⊗

��

F�(A⊕B)⊕ F�(C)

νR
⊗⊕1

��

F�(A)⊕ F�(B ⊕ C)

1⊕νL
⊗

��

(F�(A)⊕ F�(B))⊕ F�(C) a⊕
// F�(A)⊕ (F�(B)⊕ F�(C))

F�(A)⊗ F�(B ⊕ C)
1⊗νR

⊗ //

m⊗

��

F�(A)⊗ (F�(B)⊕ F�(C))

δL

��

F�(A⊗ (B ⊕ C))

F�(δL)

��

(F�(A)⊗ F�(B))⊕ F�(C)

νR
⊕⊕1

��

F�((A⊗B)⊕ C)
νR
⊗

// F�(A⊗B)⊕ F�(C)

7

F�(A)⊗ F�(B ⊕ C)
1⊗νL

⊗ //

m⊗

��

F�(A)⊗ (F�(B)⊕ F�(C))

δL

��

F�(A⊗ (B ⊕ C))

F�(δL)

��

(F�(A)⊗ F�(B))⊕ F�(C)

m⊗⊕1

��

F�((A⊗B)⊕ C)
νL
⊗

// F�(A⊗B)⊕ F�(C)

Of course, all this is much easier to “see” using a graphical calculus with

“linear functor boxes”, but for a change (!) I won’t use them in this talk . . .
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Given linear functors F, G:X −→ Y, a linear transformation

α:F −→ G consists of a pair:

• α�, a monoidal natural transformation F� −→ G�

• α�, a comonoidal natural transformation G� −→ F�.

These must satisfy the “obvious” coherence conditions:

F�(A⊕B)
α⊗ //

νR
�

��

G�(A⊕B)

νR
�

��

F�(A)⊕ F�(B)

1⊕α�

&&NNNNNNNNNNNNNNNNNNNNNNN

G�(A)⊕G�(B)

α�⊕1
wwpppppppppppppppppppppppp

F�(A)⊕G�(B)

(and dual conditions)
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Key example: Basic linear modal logic

Consider a linear functor F :X −→ X; we’ll write @ for F� and ♦

for F�. A complete description of the modal logic one obtains

from this is in [BCS 2002], but here are some highlights:

νL
�
:@(A⊕B) −→ @A⊕♦B

m�:@A⊗ @B −→ @(A⊗B)

In a classical setting, these would be equivalent to

@(A⇒ B) −→ (@A⇒ @B)

@A ∧ @B −→ @(A ∧B)

the first being “normality” of the logic, and the second being

one half (the linear half!) of the standard isomorphism

@A ∧ @B ←→ @(A ∧ B)

10

In “the” process calculus (e.g. Hennessy & Milner 1985), the

following rule is basic:

A1, A2, · · · , Am, B ` C1, C2, · · · , Cn
@A1, @A2, · · · , @Am,♦B ` ♦C1,♦C2, · · · ,♦Cn

This rule holds in basic linear modal logic.

Our intention now is to generalize this logic, to include a second

pair of modalities, �, �, corresponding to a second linear functor

G:X −→ X, G� = �, G� = �. (In fact, we could generalise the

situation to F :X −→ Y and G:Y −→ X, but for simplicity, we

shall not do that now.)

The key idea is that of a linear adjunction: Given two linear

functors F :X −→ Y and G:Y −→ X

we say that F is left linear adjoint to G, F a G if this is so in the

2-categorical sense, in the 2-category Lin of linearly distributive

categories, linear functors, and linear transformations.
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In essence this means we have (ordinary) natural transformations

η�:A −→ G�F�(A) and ε�:F�G�(A) −→ A

η�:G�F�(A) −→ A and ε�:A −→ F�G�(A)

plus coherence conditions such as

A⊕B
η� //

1⊕η�

��

G�F�(A⊕B)

G�(νR
�
)

��

A⊕G�F�(B)
gg

η�⊕1
PPPPPPPPPPPPPPPPPPPPPPPPPP

G�(F�(A)⊕ F�(B))

νR
�

uullllllllllllllllllllllllllllll

G�F�(A)⊕G�F�(B)

In other words, we have ordinary adjunctions F� a G� and G� a F�

which are “coherent” with respect to one another.
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In terms of our modal logic, this gives us a logical structure with

4 modalities
@ a � and � a ♦

which have (among others) the following derivations:

Monoidal: @ A,@B −→ @(A⊗B) > −→ @>
and duals like: �A, �B −→ �(A⊗B) > −→ �>

♦(A⊕B) −→ ♦A,♦B ♦⊥ −→ ⊥
�(A⊕B) −→ �A, �B �⊥ −→ ⊥

Strength: @ (A⊕B) −→ ♦A,@B �A, �B −→ �(A⊗B) (etc)

Adjoints: A −→ � @ A @�A −→ A
�♦A −→ A A −→ ♦�A

All together: @ (�A⊗ �B) −→ A⊗B A⊕B −→ �(♦A⊕♦B)

�(♦A⊗ @B) −→ A⊗B A⊕B −→ �(♦A⊕♦B)

> ←→ @> ⊥ ←→ �⊥ (not iso)
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Now - this is not what Mehrnoosh had in mind . . .

She wanted to find a semantics for positive tense logic, which

required something like the following “twisted” adjoints:

Given a linear functor G, we can construct Gop, which has the

same objects and arrows (but regarded in the opposite direction),

and which switches the ⊗ and ⊕, including such things as G� and

G� (so Gop
� = G� and Gop

� = G�). Then what is now wanted is

that Gop be left linear adjoint to F , so that G� a F� and F� a G�,

or in terms of the usual modal operators, that

� a @ and ♦ a �

(There are some sticky “issues” with this, as one can see if one tries to insert

this structure in the 2-category Lin. But we’ll pass over this in silence for

now . . . )
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“Recall” that a linear bicategory (Cockett, Koslowski, Seely,

MSCS 2000) is a bicategory whose 1- and 2-cells have linearly

distributive structure “typed” by the 0-cells (so a 1-object linear

bicategory is just a LDC). A ∗-linear bicategory is a linear bicat-

egory which has a “nice” duality (this is actually a surprisingly

subtle matter, and anyone interested in it should look up the

CKS paper for the details).

In a linear bicategory, a linear adjunction between 1-cells: A a B

for A:X −→ Y, B:Y −→ X, is given by 2-cells >X −→ A ⊕ B and

B ⊗A −→ ⊥Y , satisfying obvious (“triangle”) identities.
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The *-linear bicategory we’ll use is Rel, consisting of sets, rela-

tions (where tensor is relational composition, and par its deMor-

gan dual), ordered by inclusion. (This could be generalized, of

course.)

In Rel, every 1-cell A has a 2-sided linear adjoint, which (today)

we’ll denote by A∗.
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We recall the “subobject” fibration P (over Sets) of predicates

ϕ(x) over sets X (i.e. subsets of X). In a canonical way, this

extends to a fibration P over Rel: for a set X, the fibres are still

X-predicates; for a relation R:X −→| Y , i.e. X
π
←−− R

π′
−−→ Y , the

“inverse image” map is π′∗;Σπ:P(Y ) −→ P(R) −→ P(X).

This takes a predicate ϕ(y) over Y to the predicate ∃y[xRy∧ϕ(y)]

over X.
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Following Hermida, we’ll denote ∃y[xRy ∧ ϕ(y)] over X by 〈R〉ϕ.

There is a dual operation [R]ϕ = ∀y[xRy −→ ϕ(y)]. This may be

presented as π′∗; Ππ:P(Y ) −→ P(R) −→ P(X).

In addition, we may do this with the converse relation R◦ (xR◦y

iff yRx) obtaining 〈R◦〉, [R◦]:P(X) −→ P(Y ).

[Here’s an interpretation of these operators, in terms of a Kripke-style “pos-
sible worlds” semantics:]

〈R〉ϕ ≡ ϕ will someday be true [R]ϕ ≡ ϕ will always be true
〈R◦〉ϕ ≡ ϕ was once true [R◦]ϕ ≡ ϕ was always true
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One can make this a bit more “concrete” as follows:

Note first that given a relation R:X −→| Y we can define its

“lifting” to a function R̃:PX −→ PY :A 7→ {y ∈ Y | ∃a ∈ A aRy}

Then, we can identify ♦ = 〈R〉 with R̃, and @ = [R] with

its“Galois right adjoint”. This is easily seen to exist; it is given

by [R](B) =
⋃
{A ⊆ X | R̃(A) ⊆ B}.

Similarly, we can identify � = 〈R◦〉 with R̃◦, � = [R◦] with its

Galois right adjoint (ditto).
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It might be of interest to see what these operations are when

R is a partial function f (so dom(f) ⊂ X and f : dom(f) −→ Y ).

Then

(〈f〉ϕ)(x) ≡ x ∈ dom(f) ∧ ϕ(f(x))

i.e. “ϕ(f(x)) if x ∈ dom(f) and ⊥ otherwise”.

(The Scott-Fourman partial term substitution operator)

Similarly,

([f ]ϕ)(x) ≡ x ∈ dom(f) −→ ϕ(f(x))

i.e. “x /∈ dom(f) or ϕ(f(x))”.

(The Hoare weakest precondition operator)
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The point? For any relation R, we have these adjunctions of

modal operators:

〈R〉 a [R◦] and 〈R◦〉 a [R]

and so it makes sense to make these identifications:

〈R〉 with ♦, [R] with @, � with 〈R◦〉 and � with [R◦]

so ♦ a � and � a @ (as is wanted for tense logic).

Why? This basically boils down to these facts:

> −→ R∗ ⊕R i.e. x = y −→ ∀z(¬zRx ∨ zRy)

and R⊗R∗ −→ ⊥ i.e. ∃z(xRz ∧ ¬yRz) −→ x 6= y

(where xR∗y iff ¬yRx; x¬Ry iff ¬xRy, so R∗ = ¬R◦)
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So R∗ a R, which is the essence of 〈R〉 a [R◦] in view of the

following observation:

〈R〉 = R⊗− [R◦] = ¬R◦ ⊕−
and similarly: 〈R◦〉 = R◦ ⊗− [R] = ¬R⊕−

which is the clue as to how to generalize this to other ∗-linear

bicategories.

But first, we note that there is a modification to what we have

done, using structure less specific to Rel: since the operation

“converse” R◦ is not generally available in ∗-linear bicategories,

we notice that we could have also used the linear adjoints R∗

instead. (This gives a slightly different “twisted” modal pair.)
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So, there are two ways we could generalize our construction.

First, we could build relational models on categories other than

Sets. The construction above certainly extends to relations on

a topos (though actually less is needed), as shown by Hermida.

But we can also use other ∗-linear bicategories than Rel(S) (for

e.g. a topos S), if we slightly re-jig our example (using R and

R∗ as suggested above).

So for a ∗-linear bicategory B, and for any 1-cell A we can define

modalities 〈A〉 = A⊗− and [A] = A⊕−. The key point then is

that if A has a 2-sided adjoint A∗ then 〈A〉 a [A∗] and 〈A∗〉 a [A].
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Why? For the same reason as before, with Rel: we want a unit

I −→ [A∗]〈A〉, which for arbitrary X gives X −→ A∗ ⊕ (A ⊗X) as

follows:

X −→ >⊗X −→ (A∗ ⊕A)⊗X −→ A∗ ⊕ (A⊗X)

using the unit of the linear adjunction (and linear distributivity).

Dually, we have the counit of the adjunction from the counit of

the linear adjunction:

A⊗ (A∗ ⊕X) −→ (A⊗A∗)⊕X −→ ⊥⊕X −→ X

[Coherence? An exercise for the audience . . . ]

So there should be lots of examples of such “twisted” modal

pairs, coming from linearly adjoint 1-cells in ∗-linear bicategories.
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