
Linear functors and modal logic

R.A.G. Seely

John Abbott College

& McGill University

1

• An extension of an idea from a paper [Blute, Cockett, Seely;

MSCS 2002]

– Modal logic given by a linear functor (a special case of

“the logic of linear functors”)

• Based on an “abandoned” project [Sadrzadeh, Cockett, Seely,

2009–2010, intended for MFPS 2010]

– Adjoint modal pairs (think two varieties of “possibly” and

“necessarily”) (as given in “positive tense logic” of Prior)

– Relational models of such modal logic (using some ideas

of Hermida, IMLA 2002)

2

A linearly distributive category is a category X with two as-

sociative tensors ⊗,⊕ (and their units >,⊥) which are strong

(costrong) with respect to each other, as indicated by these

natural transformations:

δL:A⊗ (B ⊕ C) −→ (A⊗B)⊕ C and

δR: (A⊕B)⊗ C −→ A⊕ (B ⊗ C)

subject to “obvious” coherence conditions (as is usual for tenso-

rial strength, we want these strengths/linear distributions to be

well-behaved with respect to the unit and associativity isos, as

well as with each other):

3

A⊗ (B ⊕⊥)
1⊗uR

⊕ //

δL

��

A⊗B

(A⊗B)⊕⊥

uR
⊕

77ppppppppppppppppppppppppp

(A⊗B)⊗ (C ⊕D)
a⊗ //

δL

��

A⊗ (B ⊗ (C ⊕D))

1⊗δL

��

A⊗ ((B ⊗ C)⊕D)

δL

��

((A⊗B)⊗ C)⊕D
a⊗⊕1

// (A⊗ (B ⊗ C))⊕D

(A⊗ (B ⊕ C))⊗D
a⊗ //

δL⊗1

��

A⊗ ((B ⊕ C)⊗D)

1⊗δR

��

((A⊗B)⊕ C)⊗D

δR
((QQQQQQQQQQQQQQQQQQQQQQQQQQQQ

A⊗ (B ⊕ (C ⊗D))

δL
vvmmmmmmmmmmmmmmmmmmmmmmmmmmmm

(A⊗B)⊕ (C ⊗D)

4



Given linearly distributive categories X, Y, a linear functor

F :X −→ Y consists of:

• a pair of functors F�, F�:X −→ Y so that F� is monoidal with

respect to ⊗, and F� is comonoidal with respect to ⊕:

m>:> −→ F�(>) m�:F�(A)⊗ F�(B) −→ F�(A⊗B)

n⊥:F�(⊥) −→ ⊥ n�:F�(A⊕B) −→ F�(A)⊕ F�(B)

• natural transformations (called “linear strengths”):

νR
�
:F�(A⊕B) −→ F�(A)⊕ F�(B)

νL
�
:F�(A⊕B) −→ F�(A)⊕ F�(B)

νR
�
:F�(A)⊗ F�(B) −→ F�(A⊗B)

νL
�
:F�(A)⊗ F�(B) −→ F�(A⊗B)

satisfying the following coherence conditions:

5

F�(⊥⊕A)

νR
⊗

��

F�(uL
⊕) // F�(A)

F�(⊥)⊕ F�(A)
n⊥⊕1

//⊥⊕ F�(A)

uL
⊕

OO

F�((A⊕B)⊕ C)
F�(a⊕) //

νR
⊗

��

F�(A⊕ (B ⊕ C))

νR
⊗

��

F�(A⊕B)⊕ F�(C)

n⊕⊕1

��

F�(A)⊕ F�(B ⊕ C)

1⊕νR
⊗

��

(F�(A)⊕ F�(B))⊕ F�(C) a⊕
// F�(A)⊕ (F�(B)⊕ F�(C))

6

F�((A⊕B)⊕ C)
F�(a⊕) //

νL
⊗

��

F�(A⊕ (B ⊕ C))

νR
⊗

��

F�(A⊕B)⊕ F�(C)

νR
⊗⊕1

��

F�(A)⊕ F�(B ⊕ C)

1⊕νL
⊗

��

(F�(A)⊕ F�(B))⊕ F�(C) a⊕
// F�(A)⊕ (F�(B)⊕ F�(C))

F�(A)⊗ F�(B ⊕ C)
1⊗νR

⊗ //

m⊗

��

F�(A)⊗ (F�(B)⊕ F�(C))

δL

��

F�(A⊗ (B ⊕ C))

F�(δL)

��

(F�(A)⊗ F�(B))⊕ F�(C)

νR
⊕⊕1

��

F�((A⊗B)⊕ C)
νR
⊗

// F�(A⊗B)⊕ F�(C)

7

F�(A)⊗ F�(B ⊕ C)
1⊗νL

⊗ //

m⊗

��

F�(A)⊗ (F�(B)⊕ F�(C))

δL

��

F�(A⊗ (B ⊕ C))

F�(δL)

��

(F�(A)⊗ F�(B))⊕ F�(C)

m⊗⊕1

��

F�((A⊗B)⊕ C)
νL
⊗

// F�(A⊗B)⊕ F�(C)

Of course, all this is much easier to “see” using a graphical calculus with

“linear functor boxes”, but for a change (!) I won’t use them in this talk . . .

8



Given linear functors F, G:X −→ Y, a linear transformation

α:F −→ G consists of a pair:

• α�, a monoidal natural transformation F� −→ G�

• α�, a comonoidal natural transformation G� −→ F�.

These must satisfy the “obvious” coherence conditions:

F�(A⊕B)
α⊗ //

νR
�

��

G�(A⊕B)

νR
�

��

F�(A)⊕ F�(B)

1⊕α�

&&NNNNNNNNNNNNNNNNNNNNNNN

G�(A)⊕G�(B)

α�⊕1
wwpppppppppppppppppppppppp

F�(A)⊕G�(B)

(and dual conditions)

9

Key example: Basic linear modal logic

Consider a linear functor F :X −→ X; we’ll write @ for F� and ♦

for F�. A complete description of the modal logic one obtains

from this is in [BCS 2002], but here are some highlights:

νL
�
:@(A⊕B) −→ @A⊕♦B

m�:@A⊗ @B −→ @(A⊗B)

In a classical setting, these would be equivalent to

@(A⇒ B) −→ (@A⇒ @B)

@A ∧ @B −→ @(A ∧B)

the first being “normality” of the logic, and the second being

one half (the linear half!) of the standard isomorphism

@A ∧ @B ←→ @(A ∧ B)

10

In “the” process calculus (e.g. Hennessy & Milner 1985), the

following rule is basic:

A1, A2, · · · , Am, B ` C1, C2, · · · , Cn
@A1, @A2, · · · , @Am,♦B ` ♦C1,♦C2, · · · ,♦Cn

This rule holds in basic linear modal logic.

Our intention now is to generalize this logic, to include a second

pair of modalities, �, �, corresponding to a second linear functor

G:X −→ X, G� = �, G� = �. (In fact, we could generalise the

situation to F :X −→ Y and G:Y −→ X, but for simplicity, we

shall not do that now.)

The key idea is that of a linear adjunction: Given two linear

functors F :X −→ Y and G:Y −→ X

we say that F is left linear adjoint to G, F a G if this is so in the

2-categorical sense, in the 2-category Lin of linearly distributive

categories, linear functors, and linear transformations.

11

In essence this means we have (ordinary) natural transformations

η�:A −→ G�F�(A) and ε�:F�G�(A) −→ A

η�:G�F�(A) −→ A and ε�:A −→ F�G�(A)

plus coherence conditions such as

A⊕B
η� //

1⊕η�

��

G�F�(A⊕B)

G�(νR
�
)

��

A⊕G�F�(B)
gg

η�⊕1
PPPPPPPPPPPPPPPPPPPPPPPPPP

G�(F�(A)⊕ F�(B))

νR
�

uullllllllllllllllllllllllllllll

G�F�(A)⊕G�F�(B)

In other words, we have ordinary adjunctions F� a G� and G� a F�

which are “coherent” with respect to one another.

12



In terms of our modal logic, this gives us a logical structure with

4 modalities
@ a � and � a ♦

which have (among others) the following derivations:

Monoidal: @ A,@B −→ @(A⊗B) > −→ @>
and duals like: �A, �B −→ �(A⊗B) > −→ �>

♦(A⊕B) −→ ♦A,♦B ♦⊥ −→ ⊥
�(A⊕B) −→ �A, �B �⊥ −→ ⊥

Strength: @ (A⊕B) −→ ♦A,@B �A, �B −→ �(A⊗B) (etc)

Adjoints: A −→ � @ A @�A −→ A
�♦A −→ A A −→ ♦�A

All together: @ (�A⊗ �B) −→ A⊗B A⊕B −→ �(♦A⊕♦B)

�(♦A⊗ @B) −→ A⊗B A⊕B −→ �(♦A⊕♦B)

> ←→ @> ⊥ ←→ �⊥ (not iso)

13

Now - this is not what Mehrnoosh had in mind . . .

She wanted to find a semantics for positive tense logic, which

required something like the following “twisted” adjoints:

Given a linear functor G, we can construct Gop, which has the

same objects and arrows (but regarded in the opposite direction),

and which switches the ⊗ and ⊕, including such things as G� and

G� (so Gop
� = G� and Gop

� = G�). Then what is now wanted is

that Gop be left linear adjoint to F , so that G� a F� and F� a G�,

or in terms of the usual modal operators, that

� a @ and ♦ a �

(There are some sticky “issues” with this, as one can see if one tries to insert

this structure in the 2-category Lin. But we’ll pass over this in silence for

now . . . )

14

“Recall” that a linear bicategory (Cockett, Koslowski, Seely,

MSCS 2000) is a bicategory whose 1- and 2-cells have linearly

distributive structure “typed” by the 0-cells (so a 1-object linear

bicategory is just a LDC). A ∗-linear bicategory is a linear bicat-

egory which has a “nice” duality (this is actually a surprisingly

subtle matter, and anyone interested in it should look up the

CKS paper for the details).

In a linear bicategory, a linear adjunction between 1-cells: A a B

for A:X −→ Y, B:Y −→ X, is given by 2-cells >X −→ A ⊕ B and

B ⊗A −→ ⊥Y , satisfying obvious (“triangle”) identities.

15

The *-linear bicategory we’ll use is Rel, consisting of sets, rela-

tions (where tensor is relational composition, and par its deMor-

gan dual), ordered by inclusion. (This could be generalized, of

course.)

In Rel, every 1-cell A has a 2-sided linear adjoint, which (today)

we’ll denote by A∗.

16



We recall the “subobject” fibration P (over Sets) of predicates

ϕ(x) over sets X (i.e. subsets of X). In a canonical way, this

extends to a fibration P over Rel: for a set X, the fibres are still

X-predicates; for a relation R:X −→| Y , i.e. X
π
←−− R

π′
−−→ Y , the

“inverse image” map is π′∗;Σπ:P(Y ) −→ P(R) −→ P(X).

This takes a predicate ϕ(y) over Y to the predicate ∃y[xRy∧ϕ(y)]

over X.

17

Following Hermida, we’ll denote ∃y[xRy ∧ ϕ(y)] over X by 〈R〉ϕ.

There is a dual operation [R]ϕ = ∀y[xRy −→ ϕ(y)]. This may be

presented as π′∗; Ππ:P(Y ) −→ P(R) −→ P(X).

In addition, we may do this with the converse relation R◦ (xR◦y

iff yRx) obtaining 〈R◦〉, [R◦]:P(X) −→ P(Y ).

[Here’s an interpretation of these operators, in terms of a Kripke-style “pos-
sible worlds” semantics:]

〈R〉ϕ ≡ ϕ will someday be true [R]ϕ ≡ ϕ will always be true
〈R◦〉ϕ ≡ ϕ was once true [R◦]ϕ ≡ ϕ was always true

18

One can make this a bit more “concrete” as follows:

Note first that given a relation R:X −→| Y we can define its

“lifting” to a function R̃:PX −→ PY :A 7→ {y ∈ Y | ∃a ∈ A aRy}

Then, we can identify ♦ = 〈R〉 with R̃, and @ = [R] with

its“Galois right adjoint”. This is easily seen to exist; it is given

by [R](B) =
⋃
{A ⊆ X | R̃(A) ⊆ B}.

Similarly, we can identify � = 〈R◦〉 with R̃◦, � = [R◦] with its

Galois right adjoint (ditto).

19

It might be of interest to see what these operations are when

R is a partial function f (so dom(f) ⊂ X and f : dom(f) −→ Y ).

Then

(〈f〉ϕ)(x) ≡ x ∈ dom(f) ∧ ϕ(f(x))

i.e. “ϕ(f(x)) if x ∈ dom(f) and ⊥ otherwise”.

(The Scott-Fourman partial term substitution operator)

Similarly,

([f ]ϕ)(x) ≡ x ∈ dom(f) −→ ϕ(f(x))

i.e. “x /∈ dom(f) or ϕ(f(x))”.

(The Hoare weakest precondition operator)

20



The point? For any relation R, we have these adjunctions of

modal operators:

〈R〉 a [R◦] and 〈R◦〉 a [R]

and so it makes sense to make these identifications:

〈R〉 with ♦, [R] with @, � with 〈R◦〉 and � with [R◦]

so ♦ a � and � a @ (as is wanted for tense logic).

Why? This basically boils down to these facts:

> −→ R∗ ⊕R i.e. x = y −→ ∀z(¬zRx ∨ zRy)

and R⊗R∗ −→ ⊥ i.e. ∃z(xRz ∧ ¬yRz) −→ x 6= y

(where xR∗y iff ¬yRx; x¬Ry iff ¬xRy, so R∗ = ¬R◦)

21

So R∗ a R, which is the essence of 〈R〉 a [R◦] in view of the

following observation:

〈R〉 = R⊗− [R◦] = ¬R◦ ⊕−
and similarly: 〈R◦〉 = R◦ ⊗− [R] = ¬R⊕−

which is the clue as to how to generalize this to other ∗-linear

bicategories.

But first, we note that there is a modification to what we have

done, using structure less specific to Rel: since the operation

“converse” R◦ is not generally available in ∗-linear bicategories,

we notice that we could have also used the linear adjoints R∗

instead. (This gives a slightly different “twisted” modal pair.)

22

So, there are two ways we could generalize our construction.

First, we could build relational models on categories other than

Sets. The construction above certainly extends to relations on

a topos (though actually less is needed), as shown by Hermida.

But we can also use other ∗-linear bicategories than Rel(S) (for

e.g. a topos S), if we slightly re-jig our example (using R and

R∗ as suggested above).

So for a ∗-linear bicategory B, and for any 1-cell A we can define

modalities 〈A〉 = A⊗− and [A] = A⊕−. The key point then is

that if A has a 2-sided adjoint A∗ then 〈A〉 a [A∗] and 〈A∗〉 a [A].

23

Why? For the same reason as before, with Rel: we want a unit

I −→ [A∗]〈A〉, which for arbitrary X gives X −→ A∗ ⊕ (A ⊗X) as

follows:

X −→ >⊗X −→ (A∗ ⊕A)⊗X −→ A∗ ⊕ (A⊗X)

using the unit of the linear adjunction (and linear distributivity).

Dually, we have the counit of the adjunction from the counit of

the linear adjunction:

A⊗ (A∗ ⊕X) −→ (A⊗A∗)⊕X −→ ⊥⊕X −→ X

[Coherence? An exercise for the audience . . . ]

So there should be lots of examples of such “twisted” modal

pairs, coming from linearly adjoint 1-cells in ∗-linear bicategories.

24


