## Linear functors and modal logic

R.A.G. Seely

John Abbott College & McGill University A linearly distributive category is a category X with two associative tensors  $\otimes, \oplus$  (and their units  $\top, \bot$ ) which are strong (costrong) with respect to each other, as indicated by these natural transformations:

$$\delta_L : A \otimes (B \oplus C) \longrightarrow (A \otimes B) \oplus C$$
 and  
 $\delta_R : (A \oplus B) \otimes C \longrightarrow A \oplus (B \otimes C)$ 

3

4

subject to "obvious" coherence conditions (as is usual for tensorial strength, we want these strengths/linear distributions to be well-behaved with respect to the unit and associativity isos, as well as with each other):

- An extension of an idea from a paper [Blute, Cockett, Seely; MSCS 2002]
  - Modal logic given by a linear functor (a special case of "the logic of linear functors")
- Based on an "abandoned" project [Sadrzadeh, Cockett, Seely, 2009–2010, intended for MFPS 2010]
  - Adjoint modal pairs (think two varieties of "possibly" and "necessarily") (as given in "positive tense logic" of Prior)
  - Relational models of such modal logic (using some ideas of Hermida, IMLA 2002)



1

Given linearly distributive categories  $\mathbf{X},\mathbf{Y},$  a linear functor  $F\colon \mathbf{X}\longrightarrow \mathbf{Y}$  consists of:

• a pair of functors  $F_{\otimes}, F_{\oplus}: \mathbf{X} \longrightarrow \mathbf{Y}$  so that  $F_{\otimes}$  is monoidal with respect to  $\otimes$ , and  $F_{\oplus}$  is comonoidal with respect to  $\oplus$ :

| $m_{\top} \colon \top \longrightarrow F_{\otimes}(\top)$ | $m_{\otimes}$ : $F_{\otimes}(A) \otimes F_{\otimes}(B) \longrightarrow F_{\otimes}(A \otimes B)$ |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $n_{\perp}$ : $F_{\oplus}(\perp) \longrightarrow \perp$  | $n_\oplus: F_\oplus(A \oplus B) \longrightarrow F_\oplus(A) \oplus F_\oplus(B)$                  |

• natural transformations (called "linear strengths"):

$$\nu_{\otimes}^{R}: F_{\otimes}(A \oplus B) \longrightarrow F_{\oplus}(A) \oplus F_{\otimes}(B)$$
$$\nu_{\otimes}^{L}: F_{\otimes}(A \oplus B) \longrightarrow F_{\otimes}(A) \oplus F_{\oplus}(B)$$
$$\nu_{\oplus}^{R}: F_{\otimes}(A) \otimes F_{\oplus}(B) \longrightarrow F_{\oplus}(A \otimes B)$$
$$\nu_{\oplus}^{L}: F_{\oplus}(A) \otimes F_{\otimes}(B) \longrightarrow F_{\oplus}(A \otimes B)$$

satisfying the following coherence conditions:









Of course, all this is much easier to "see" using a graphical calculus with "linear functor boxes", but for a change (!) I won't use them in this talk  $\ldots$ 

Given linear functors  $F, G: \mathbf{X} \longrightarrow \mathbf{Y}$ , a linear transformation  $\alpha: F \longrightarrow G$  consists of a pair:

- $\alpha_{\otimes}$ , a monoidal natural transformation  $F_{\otimes} \longrightarrow G_{\otimes}$
- $\alpha_{\oplus}$ , a comonoidal natural transformation  $G_{\oplus} \longrightarrow F_{\oplus}$ .

These must satisfy the "obvious" coherence conditions:



(and dual conditions)

Key example: Basic linear modal logic

Consider a linear functor  $F: \mathbf{X} \longrightarrow \mathbf{X}$ ; we'll write  $\Box$  for  $F_{\otimes}$  and  $\diamondsuit$  for  $F_{\oplus}$ . A complete description of the modal logic one obtains from this is in [BCS 2002], but here are some highlights:

$$\nu_{\otimes}^{L}: \Box(A \oplus B) \longrightarrow \Box A \oplus \Diamond B$$
$$m_{\otimes}: \Box A \otimes \Box B \longrightarrow \Box(A \otimes B)$$

In a classical setting, these would be equivalent to

 $\Box(A \Rightarrow B) \longrightarrow (\Box A \Rightarrow \Box B)$  $\Box A \land \Box B \longrightarrow \Box(A \land B)$ 

the first being "normality" of the logic, and the second being one half (the linear half!) of the standard isomorphism

$$\Box A \land \Box B \longleftrightarrow \Box (A \land B)$$

In "the" process calculus (e.g. Hennessy & Milner 1985), the following rule is basic:

 $\frac{A_1, A_2, \cdots, A_m, B \vdash C_1, C_2, \cdots, C_n}{\Box A_1, \Box A_2, \cdots, \Box A_m, \Diamond B \vdash \Diamond C_1, \Diamond C_2, \cdots, \Diamond C_n}$ 

This rule holds in basic linear modal logic.

Our intention now is to generalize this logic, to include a second pair of modalities,  $\blacksquare$ ,  $\blacklozenge$ , corresponding to a second linear functor  $G: \mathbf{X} \longrightarrow \mathbf{X}, G_{\otimes} = \blacksquare, G_{\oplus} = \diamondsuit$ . (In fact, we could generalise the situation to  $F: \mathbf{X} \longrightarrow \mathbf{Y}$  and  $G: \mathbf{Y} \longrightarrow \mathbf{X}$ , but for simplicity, we shall not do that now.)

The key idea is that of a linear adjunction: Given two linear functors  $F: \mathbf{X} \longrightarrow \mathbf{Y}$  and  $G: \mathbf{Y} \longrightarrow \mathbf{X}$ 

we say that F is left linear adjoint to G,  $F \dashv G$  if this is so in the 2-categorical sense, in the 2-category **Lin** of linearly distributive categories, linear functors, and linear transformations.

11

In essence this means we have (ordinary) natural transformations

$$\eta_{\otimes}: A \longrightarrow G_{\otimes}F_{\otimes}(A) \quad \text{and} \quad \epsilon_{\otimes}: F_{\otimes}G_{\otimes}(A) \longrightarrow A$$

$$\eta_{\oplus}: G_{\oplus}F_{\oplus}(A) \longrightarrow A$$
 and  $\epsilon_{\oplus}: A \longrightarrow F_{\oplus}G_{\oplus}(A)$ 

plus coherence conditions such as



In other words, we have ordinary adjunctions  $F_{\otimes} \dashv G_{\otimes}$  and  $G_{\oplus} \dashv F_{\oplus}$  which are "coherent" with respect to one another.

9

In terms of our modal logic, this gives us a logical structure with

4 modalities  $\Box \dashv \blacksquare$  and  $\blacklozenge \dashv \diamondsuit$ 

which have (among others) the following derivations:

Monoidal:  $\Box A$ ,  $\Box B \longrightarrow \Box (A \otimes B)$  $\top \longrightarrow \Box \top$  $\top \longrightarrow \blacksquare \top$ and duals like:  $\blacksquare A, \blacksquare B \longrightarrow \blacksquare (A \otimes B)$  $\Diamond (A \oplus B) \longrightarrow \Diamond A, \Diamond B$  $\Diamond \bot \longrightarrow \bot$  $(A \oplus B) \longrightarrow (A, A)$  $\bigstar \bot \longrightarrow \bot$ Strength:  $\Box (A \oplus B) \longrightarrow \Diamond A, \Box B$  $\blacklozenge A, \blacksquare B \longrightarrow \blacklozenge (A \otimes B)$  (etc)  $\Box \blacksquare A \longrightarrow A$ Adjoints:  $A \longrightarrow \blacksquare \Box A$  $\blacklozenge \Diamond A \longrightarrow A$  $A \longrightarrow \Diamond \blacklozenge A$ All together:  $\Box (\blacksquare A \otimes \blacksquare B) \longrightarrow A \otimes B \qquad A \oplus B \longrightarrow \blacksquare (\Diamond A \oplus \Diamond B)$  $\blacklozenge(\Diamond A \otimes \Box B) \longrightarrow A \otimes B \qquad A \oplus B \longrightarrow \blacksquare(\Diamond A \oplus \Diamond B)$  $\top \longleftrightarrow \Box \top$  $\bot \longleftrightarrow \bigstar \bot$ (not iso) "Recall" that a linear bicategory (Cockett, Koslowski, Seely, MSCS 2000) is a bicategory whose 1- and 2-cells have linearly distributive structure "typed" by the 0-cells (so a 1-object linear bicategory is just a LDC). A \*-linear bicategory is a linear bicategory which has a "nice" duality (this is actually a surprisingly subtle matter, and anyone interested in it should look up the CKS paper for the details).

In a linear bicategory, a linear adjunction between 1-cells:  $A \dashv B$ for  $A: X \longrightarrow Y, B: Y \longrightarrow X$ , is given by 2-cells  $\top_X \longrightarrow A \oplus B$  and  $B \otimes A \longrightarrow \bot_Y$ , satisfying obvious ("triangle") identities.

13

15

Now - this is not what Mehrnoosh had in mind ....

She wanted to find a semantics for positive tense logic, which required something like the following "twisted" adjoints:

Given a linear functor G, we can construct  $G^{\text{op}}$ , which has the same objects and arrows (but regarded in the opposite direction), and which switches the  $\otimes$  and  $\oplus$ , including such things as  $G_{\otimes}$  and  $G_{\oplus}$  (so  $G_{\otimes}^{\text{op}} = G_{\oplus}$  and  $G_{\oplus}^{\text{op}} = G_{\otimes}$ ). Then what is now wanted is that  $G^{\text{op}}$  be left linear adjoint to F, so that  $G_{\oplus} \dashv F_{\otimes}$  and  $F_{\oplus} \dashv G_{\otimes}$ , or in terms of the usual modal operators, that

$$\blacklozenge \dashv \Box$$
 and  $\diamondsuit \dashv \blacksquare$ 

(There are some sticky "issues" with this, as one can see if one tries to insert this structure in the 2-category Lin. But we'll pass over this in silence for now  $\dots$ )

The \*-linear bicategory we'll use is **Rel**, consisting of sets, relations (where tensor is relational composition, and par its deMorgan dual), ordered by inclusion. (This could be generalized, of course.)

In **Rel**, every 1-cell A has a 2-sided linear adjoint, which (today) we'll denote by  $A^*$ .

We recall the "subobject" fibration  $\mathcal{P}$  (over **Sets**) of predicates  $\varphi(x)$  over sets X (*i.e.* subsets of X). In a canonical way, this extends to a fibration  $\mathcal{P}$  over **Rel**: for a set X, the fibres are still X-predicates; for a relation  $R: X \to Y$ , *i.e.*  $X \xleftarrow{\pi} R \xrightarrow{\pi'} Y$ , the "inverse image" map is  $\pi'^*; \Sigma_{\pi}: \mathcal{P}(Y) \to \mathcal{P}(R) \to \mathcal{P}(X)$ .

This takes a predicate  $\varphi(y)$  over Y to the predicate  $\exists y[xRy \land \varphi(y)]$  over X.

One can make this a bit more "concrete" as follows:

Note first that given a relation  $R: X \to Y$  we can define its "lifting" to a function  $\tilde{R}: \mathcal{P}X \to \mathcal{P}Y: A \mapsto \{y \in Y \mid \exists a \in A \ aRy\}$ 

Then, we can identify  $\diamond = \langle R \rangle$  with  $\tilde{R}$ , and  $\Box = [R]$  with its "Galois right adjoint". This is easily seen to exist; it is given by  $[R](B) = \bigcup \{A \subseteq X \mid \tilde{R}(A) \subseteq B\}$ .

Similarly, we can identify  $\blacklozenge = \langle R^{\circ} \rangle$  with  $\widetilde{R^{\circ}}$ ,  $\blacksquare = [R^{\circ}]$  with its Galois right adjoint (ditto).

19

Following Hermida, we'll denote  $\exists y [xRy \land \varphi(y)]$  over X by  $\langle R \rangle \varphi$ .

There is a dual operation  $[R]\varphi = \forall y[xRy \longrightarrow \varphi(y)]$ . This may be presented as  $\pi'^*$ ;  $\Pi_{\pi}: \mathcal{P}(Y) \longrightarrow \mathcal{P}(R) \longrightarrow \mathcal{P}(X)$ .

In addition, we may do this with the converse relation  $R^{\circ}(xR^{\circ}y)$ iff yRx) obtaining  $\langle R^{\circ} \rangle, [R^{\circ}]: \mathcal{P}(X) \longrightarrow \mathcal{P}(Y)$ .

[Here's an interpretation of these operators, in terms of a Kripke-style "possible worlds" semantics:]

 $\begin{array}{lll} \langle R\rangle\varphi &\equiv \varphi \text{ will someday be true} & [R]\varphi &\equiv \varphi \text{ will always be true} \\ \langle R^\circ\rangle\varphi &\equiv \varphi \text{ was once true} & [R^\circ]\varphi &\equiv \varphi \text{ was always true} \end{array}$ 

It might be of interest to see what these operations are when R is a partial function f (so  $dom(f) \subset X$  and  $f: dom(f) \longrightarrow Y$ ). Then

 $(\langle f \rangle \varphi)(x) \equiv x \in dom(f) \land \varphi(f(x))$ i.e. " $\varphi(f(x))$  if  $x \in dom(f)$  and  $\perp$  otherwise".

(The Scott-Fourman partial term substitution operator)

Similarly,

 $([f]\varphi)(x) \equiv x \in dom(f) \longrightarrow \varphi(f(x))$ i.e. " $x \notin dom(f)$  or  $\varphi(f(x))$ ".

(The Hoare weakest precondition operator)

17

The point? For any relation R, we have these adjunctions of modal operators:

 $\langle R \rangle \dashv [R^{\circ}]$  and  $\langle R^{\circ} \rangle \dashv [R]$ 

and so it makes sense to make these identifications:

 $\langle R \rangle$  with  $\Diamond$ , [R] with  $\Box$ ,  $\blacklozenge$  with  $\langle R^{\circ} \rangle$  and  $\blacksquare$  with  $[R^{\circ}]$ 

so  $\Diamond \dashv \blacksquare$  and  $\blacklozenge \dashv \square$  (as is wanted for tense logic).

Why? This basically boils down to these facts:

 $\begin{array}{c} \top \longrightarrow R^* \oplus R \quad i.e. \ x = y \longrightarrow \forall z (\neg z Rx \lor z Ry) \\ \text{and} \qquad R \otimes R^* \longrightarrow \bot \quad i.e. \ \exists z (x R z \land \neg y R z) \longrightarrow x \neq y \\ \text{(where } x R^* y \text{ iff } \neg y Rx; \ x \neg Ry \text{ iff } \neg x Ry, \text{ so } R^* = \neg R^\circ) \end{array}$ 

21

So  $R^* \dashv R$ , which is the essence of  $\langle R \rangle \dashv [R^\circ]$  in view of the following observation:

|                | $\langle R \rangle =$         | $R\otimes -$          | $[R^{\circ}]$ | = | $\neg R^{\circ} \oplus -$ |
|----------------|-------------------------------|-----------------------|---------------|---|---------------------------|
| and similarly: | $\langle R^{\circ} \rangle =$ | $R^{\circ} \otimes -$ | [R]           | = | $\neg R \oplus -$         |

which is the clue as to how to generalize this to other \*-linear bicategories.

But first, we note that there is a modification to what we have done, using structure less specific to **Rel**: since the operation "converse"  $R^{\circ}$  is not generally available in \*-linear bicategories, we notice that we could have also used the linear adjoints  $R^*$ instead. (This gives a slightly different "twisted" modal pair.) So, there are two ways we could generalize our construction. First, we could build relational models on categories other than **Sets**. The construction above certainly extends to relations on a topos (though actually less is needed), as shown by Hermida.

But we can also use other \*-linear bicategories than **Rel(S)** (for *e.g.* a topos **S**), if we slightly re-jig our example (using R and  $R^*$  as suggested above).

So for a \*-linear bicategory **B**, and for any 1-cell A we can define modalities  $\langle A \rangle = A \otimes -$  and  $[A] = A \oplus -$ . The key point then is that if A has a 2-sided adjoint  $A^*$  then  $\langle A \rangle \dashv [A^*]$  and  $\langle A^* \rangle \dashv [A]$ .

23

Why? For the same reason as before, with **Rel**: we want a unit  $I \longrightarrow [A^*]\langle A \rangle$ , which for arbitrary X gives  $X \longrightarrow A^* \oplus (A \otimes X)$  as follows:

$$X \longrightarrow \top \otimes X \longrightarrow (A^* \oplus A) \otimes X \longrightarrow A^* \oplus (A \otimes X)$$

using the unit of the linear adjunction (and linear distributivity).

Dually, we have the counit of the adjunction from the counit of the linear adjunction:

$$A \otimes (A^* \oplus X) \longrightarrow (A \otimes A^*) \oplus X \longrightarrow \bot \oplus X \longrightarrow X$$

[Coherence? An exercise for the audience ...]

So there should be lots of examples of such "twisted" modal pairs, coming from linearly adjoint 1-cells in \*-linear bicategories.