
Math. Proc. Camb. Phil. Soc. (1984), 95, 33 3 3
Printed in Great Britain

Locally cartesian closed categories and type theory

B Y R. A. G. SEELY

John Abbott College, Ste. Anne de Bellevue, Quebec H9X 3L9, Canada

(Received 12 July 1983; revised 17 September 1983)

0. Introduction. I t is well known that for much of the mathematics of topos theory,
it is in fact sufficient to use a category C whose slice categories C/A are cartesian
closed. In such a category, the notion of a 'generalized set', for example an 'A-
indexed set', is represented by a morphism B^-A of C, i.e. by an object of C/A. The
point about such a category C is that C is a C-indexed category, and more, is a hyper-
doctrine, so that it has a full first order logic associated with it. This logic has some
peculiar aspects. For instance, the types are the objects of C and the terms are the
morphisms of C. For a given type A, the predicates with a free variable of type A are
morphisms into A, and 'proofs' are morphisms over A. We see here a certain 'am-
biguity' between the notions of type, predicate, and term, of object and proof: a term
of type A is a morphism into A, which is a predicate over A; a morphism 1 -> A can be
viewed either as an object of type A or as a proof of the proposition A.

For a long time now, it has been conjectured that the logic of such categories is
given by the type theory of Martin-Lof [5], since one of the features of Martin-Lof's
type theory is that it formalizes ' ambiguities' of this sort. However, to the best of
my knowledge, no one has ever worked out the details of the relationship, and when
the question again arose in the McGill Categorical Logic Seminar in 1981-82, it was
felt that making this precise was long overdue. That is the purpose of this paper. We
shall describe the system ML, based on Martin-Lof's system, and show how to con-
struct a locally cartesian closed category from an ML theory, and vice versa. Finally,
we show these constructions are inverse.

A somewhat different approach to the question was taken by John Cartmell[l],
who describes a categorical structure suitable for Martin-Lof's type theory. I have
taken greater liberties with the type theory, my purpose being to characterize locally
cartesian closed categories; the payoff is that these categories are simpler, and perhaps
more natural, than Cartmell's contextual categories. For example, since toposes are
locally cartesian closed, there are many familiar locally cartesian closed categories: the
category of Sets, and more generally Boolean (or Heyting) valued models and Kripke
models of set theory, (indeed any other example of a category of sheaves on a site).

These results were first presented at the McGill Categorical Logic Seminar: an early
draft, based on the seminar notes, appeared as [11] and an abstract was published [12].

1. The type theory ML. The type theory described here is based on Martin-Lof's,
as given in Martin-Lof [5]. We adopt some simplifications of Diller [2]. In the interests
of readability, we present the type theory more or less informally, as in the first
section of Martin-Lof [5]; a more formal version would follow the second section of

2 PSP 95

34 R. A. G. SEELY

that paper. In particular, a fuller discussion of the ' condition on variables' is given
there (§2-2).

An ML system permits the construction of 'terms', 'types', and of expressions of
the form teT ('t is a term of type T'), s = t, when seT, teT have been derived, and
S = T. We identify expressions differing only by a change of bound variables. If we
write e\x\, then x denotes all free occurrences of a; in the expression e, and e[a] is then
the result of replacing these occurrences with a, under the assumption that a is
substitutable in e. If xlt..., xn is a sequence of variables, we say xlt...,xn,e satisfy the
condition on variables (c.o.v.) if for each i < n, xi does not occur in the type of any free
variable of e other than xk, for k > i.Ifxlt...,xn contains all free variables occurring
in e, we say the variables are properly listed in e[xv ..., xn] iixv ...,xn,e satisfy the c.o.v.
It should be noted that 'occur' is used in the following sense: if xeX occurs in e, then
any variables occurring in X also occur in e. We may write

if the variables are properly listed in e[xv ..., xn].

1-1. Definition. An ML theory is given by a language which includes a set of typed
type-valued function constants, a set of typed term-valued function constants, and
variables and constants as indicated in the following rules. (By 'typed function
constants' we mean that the arguments have types specified, and in the case of term-
valued constants, the value has its type specified as well. We assume the arguments are
properly listed.)

l-l-l. Type formation rules. The following are to be types:
(i) If F is a type-valued function constant, and av...,an are terms of the appro-

priate types, then F(av ...,an) is a type.
(ii) 1 is a type.
(iii) If a, b e A, then I(a, b) is a type.
(iv) If A,B[x] are types, xeA, where x,B satisfy the c.o.v., then HxeAB[x] and

Z ê A B[x] are types. lix does not in fact occur in B, these are written A => B and AxB
respectively.

1-1 -2. Term formation rules. The following are to be terms of the indicated types:
(vbl) For each type A, there are variables xeA; (such x could also be denoted xA,

if the type of x is not clear from the context.)
(fen) If / is a term-valued function constant, and a1)...,an are terms of the

appropriate types, then f(av..., an) is a term of the appropriate type.
(II) *e l .
(III) If t[x]eB[x], where xA,t (and a;̂ ,.B) satisfy the c.o.v., then

(also written AxA t[x] e HxA B[x]).
(TIE) IffeYlx€AB[x], aeA, thenf(a)eB[a].
(El) If aeA,beB[a], then <a,b}e'LxeAB[x'].
(SE) If ce'LxeAB[x], then7r(c)e4, 7T'(c)eB[n(c)].
(=1) If aeA, then r(a)el{a, a).

Locally cartesian closed categories 35

(= E) If a,beA, cel(a,b), deC[a,a,r(a)], where C[x,y,z] is a type depending on
x,yeA, zeI(x,y), then a(d)[a,b,c]eC[a,b,c].

1-1-3. Equality rules. Using the notation of § 1-1-2, we have the following equations:
(f eq) Any imposed equations on function constants induce the obvious equations.
(lred) If<el,then< = *.
(Tired) (*xeAt[x])(a) = t[a].
(UexV)f=AxeAf(x).
(S red) n«a,b)) = a; n'((a,b)) = b.
(Sexp) c = (n(c),n'(c)y.
(= red) cr(d) [a, a, r(a)] = d.
(= exp) If/[a, b, c] e C[a, b, c], then/ = <r(f[a, a, r(a)]) [a, b, c].
(I rule) If a[x], b[x]eA, t[x]el(a[x], b[x]), then a[x] = b[x], and t[x] = r(a[x]).

Furthermore, an ML theory may have axioms of the form S = T for types S, T. (We
suppose similar axioms for terms are given by function constants of the appropriate
I-type.)

Finally, we have the usual rules for = : for types or terms o, b, c (as appropriate):
If a = b then c[a] = c[b]. If a — b then b = a.
If a = b and b = c, then a = c. a = a.
If cea and a = b, then ce6. If aec and a = b, then 6ec.

1-2. Remarks. There are obvious similarities between ML and first order logic - the
types of ML correspond to predicates, and the terms of ML to derivations of the
predicates, so that' t e T' can be interpreted as ' t proves T'. Under this interpretation,
I(a,b) is a = b, UxeAB[x] is VxeAB[x], ~LxeAB[x\ is 3xeAB[x], and 1 is T. Further-
more, the term formation rules are then the introduction and elimination rules in a
natural deduction system for first order (intuitionistic) logic, as in Prawitz [7] or [8]
(also Seely [10], where equality is included in the system).

There is a slight problem with (SE): although it specializes properly to (AE), it
does not seem quite like (3E), which is usually denoted

3xeABjx] C
C

where {} denote a discharged assumption, and where x must not occur freely in
3xeAB[x],C, or any assumption other than B on which C depends. This is more
closely given by Martin-Lof 's version of (SE) in [5]:

(2 elim) If <7[2] is a type depending on zeS^^iJla;] but not on #6.4 nor on y eB[x],
and if t[x,y]eC[(x,y>] is a term depending on xe A, yeB[x], then there is a term
i(z)eC[z\.
This rule is accompanied by its own reduction and expansion rules:

(S red n) *(<*,?>) = *[*,*].
(S exp n) If/[z]eC[z], and if t[x,y] is/[<a:,y>], then/[z] = l(z).

(Martin-Lof does not give (S exp n), nor any other expansions, in his system. The
expansions are all based on the ones in Seely [9] or [10].)

36 R. A. G. SEELY

It is easy to see that the (£E), (2 red), (S exp) of ML are special cases of (2 elim),
(2 red n), (2 exp n), but it is also true that they imply the more general forms. For
example, the I in (2 elim) may be given by l(z) = t[n(z), n'(z)]; the other equations
follow immediately.

The equality rules for ML, under the interpretation of ML as first order logic,
correspond to the operations on derivations given in Seely [10]. (The (Irule) corresponds
to Corollary 1 of §2 of [10], and is a consequence of the rule (RCoh) expressing that
'z = x' is isomorphic to Tx, the terminal 'truth' predicate. It expresses that equality
is given by an equalizer; it does not occur in Martin-Lof[5].) So, in effect, terms
correspond rather to equivalence classes of derivations ('proofs') in first order logic,
than to derivations themselves. There is one major difference between ML and first
order logic: in regarding types as predicates, we then use both notions at the same
time in forming UxeA B[x], ~LxeA B[x\. Equivalently, we are quantifying in some sense
over proofs of predicates. It is precisely this ambiguity between types (as 'sets') and
predicates that we need to characterize locally cartesian closed categories.

In addition to the analogy with first order logic, the notation suggests the terms and
types have a naive interpretation in Sets: II and 2 are the cartesian product and
disjoint union of indexed families respectively. 1 is the singleton family. / is the
identity: if a, b are indexed families of objects then I (a, b) is the family made up of
singletons where a and b are equal and of null sets where they are not. This is the basis
for what follows, as will be seen in §4.

1-3. As in Seely[10], from the substitution rule for equality (i.e. (= E)) we can
derive symmetry and transitivity of equality:

LEMMA. If a,b,ceA, del(a,b), eel(b,c), then there are terms S(a,b,d)el(b,a) and
T(a,b,c,d,e)el(a,c). IffeA => B, then there is a term Ap(a,b,d,f)el(f(a),f(b)).

Proof, (i) Let C[x,y,u] be I(y,x), for x,yeA, uel(x,y); then r(a)eC[a,a,r(a)].
Take S(a, b, d) to be a{r(a)) [a, b, d], of type C[a, b, d] = I(b, a).

(ii) Let C[y,z,v] be I(a,z), for y,zeA, vel(y,z). Then C[b,b,r(b)] is I(a,b) and
d e C[b, b, r{b)]. Take T(a, b, c, d, e) to be a(d) [b, c, e], of type C[b, c, e] = I(a, c).

(iii) Let C[x,y,u] be I(f(x),f(y)), for x,yeA, uel(x,y);

r(f(a))eC[a,a,r(a)] = /(/(a),/(a)).

Take Ap (a, b, d,f) to be o-(r(f(a))) [a, b, d].
2. Categorical preliminaries. For basics, refer to Mac Lane [4].
2-1. Definition. A locally cartesian closed category (LCC) C is a category C with

finite limits, such that for any object A of C, the slice category C/A is cartesian
closed.

2-1-1. Remark. C/A has as its objects all morphisms B->A of C (for all possible B).
Morphisms in C/A are commutative triangles over A:

Locally cartesian closed categories 37

If C has finite limits, then each category C/A also has. However, even if C has
exponents, the categories C/A need not have them: that they do is the essential
property of an LCC category.

2-2. Definition. For C a category with finite limits, a C-indexed category P consists
of:

(i) for each object A of C, a category P(A),
(ii) for each morphism/: A^-B of C, afunctor/*: P(B)->1*{A),

subject to
(i) (idj* S idPU),
(ii) (9/)* = / V ,

and standard coherence conditions. (See Par6-Schumacher[6].)

2-3. Definition. A C-indexed category P is a hyperdoctrine if
(i) for each object A of C, ~P(A) is cartesian closed,
(ii) for each/: A -> B of C, /* preserves exponents,
(iii) for each/: A -> B of C, /* has adjoints Sy -H/* —i Ylf,
(iv) P satisfies the Beck condition: if

I 1
is a pullback in C, then for any object <f> of P(C), ~Lkh*<l> ->/*Eff<f> is an isomorphism in
P(J4). (A similar condition for FI follows from this.)

2-4. Any category C with finite limits induces a C-indexed category (which we
shall denote C also) given by C(̂ 4) = C/A;f* is then defined by pullback. One of the
basic results of topos theory is the following.

THEOREM. / / C has finite limits, then C is LCC iff as a C-indexed category C is a
hyperdoctrine.

A proof may be found in Freyd [3], § 1-3. The point is that for all A, C/A is cartesian
closed iff for all/,/* has a right adjoint Hf. For any C with finite limits, each/* of C
has a left adjoint 2y (defined by composition), and the Beck condition for C is satisfied
(it says the composite of two pullback diagrams is a pullback diagram, which is
always true).

2-5. In Seely[10] it is shown that the category of hyperdoctrines is equivalent to
the category of first order theories (with equality). With the interpretation of ML
theories as special first order theories, and of LCC categories as special hyperdoctrines,
the connection between ML theories and LCC categories seems natural.

2-6. Definition. Two C-indexed categories Px and P2 are equivalent, Px ~ P2, if for
each A, there is an equivalence Pi(A) ~ P2(^l), and furthermore, these equivalences
commute with the/*'s.

2-6-1. Remark. If Px ~ P2 as C-indexed categories, and if Px is a hyperdoctrine,

38 R. A. G. SEELY

then so is P2, and moreover, the equivalences PX(A) ~ P2(A) commute with the Z/s
and IL/s.

3. From ML to LCC. Given an ML theory M, we define a category C(M), whose
objects are all closed types of M (i.e. types depending on no free variables), and
morphisms A^-B are closed terms of type A => B. (So /: A-+B in C(M) means
feA =BinM.)

3-1. PROPOSITION. C(M) is cartesian closed.

Proof. We can check that C(M) is a cartesian closed category with finite limits
directly; the details are straightforward. (The reader can turn directly to 3-2.)

3-1-1. Category axioms. For an object A, idA:A->A is AxeAx. Given f:A-*B,
g:B->C,gof:A-+Cis AxeAg(f(x)).

foidA = fo(AxeAx) = AysA f((AxeAx){y)) (definitions)
= \eAf(y) (H red)

= / (Ilexp).

Similarly idjjof = /, ho (gof) = (hog) of.

3-1-2. Products. 1 is the terminal object of C(M).
Given any object A, there is a morphism A -> 1, namely AxeA *.
LEMMA. For any closed type A, if t is a closed term of type A =3 1, then t = XxeA *•

= AxeAt(x) (Ilexp)
(Ired).

For objects A,B, AxB is given by AxB; pah-ing <,), and projections n, n' are
likewise given by' themselves', and that the requisite equations are satisfied is obvious
from (S red) and (S exp).

3-1-3. LEMMA (PTJLLBACKS). Givent: A->B, s: C-+B, thepullback Pof s along t

p

C —» B

is given by HxeA'EyeCI(t(x),s(y)), with the evident projections to A and C: p is n and
q is nn'.

Proof. Given/: X->A, g: X->C such that tf = sq, note that there is a term

p(x)Gl(t(f(x)),s(q(x))), for xeX,

viz. r(t(f(x))). Define h: X^P by Aa€:c</(*),<£(*),^)». Clearly ph = /and qh = g,
and (using the (I rule) to see p(x) is the only possible term in I(t(f(x)), s(q(x)))) his
unique with this property.

Locally cartesian closed categories 39

3-1-4. Remark (Equalizers). Given s,t: Az£B, the equalizer of s,t

eq(s,t) >->AzZB

is given by 'LzeAI(s(x),t(x))> the inclusion being the projection n. (That it is a mono-
morphism follows from the (I rule).)

3-1-5. LEMMA (EXPONENTS). BA defined as A=> B makes C(M) cartesian closed.

Proof. Given t: A xC^B, define t = AyeC*.xeAt((x,y)): G^BA; given s:G^BA,
define s = Az€AxCs(n'(z))(n(z)): AxC^-B. I t is a routine exercise to see these
operations are inverse. (Note that this correspondence is the usual one; for example,
ev: AxBA^-B is just AZ€AXBA n'(z) (n(z)), so that ev « a , / » = /(a).)

3-2. THEOREM. C(M) is locally cartesian closed.

Proof. To see that C(M) is LCC, we must check that the slice categories C(M)/A are
cartesian closed, or equivalently, that C(M) is a hyperdoctrine. To do this we define
two C(M)-indexed categories, one being C(M) itself, and show they are equivalent
hyperdoctrines.

3-2-1. Definition. P(M) is the C(M)-indexed category defined by:
(i) for an object A of C(M), P(M) (.4) is the category whose objects are types B[x],

depending only on x e A, and whose morphisms are terms t[x] e B[x] => C[x], depending
only on xeA.

(ii) for a term feB^A (i.e. / : B->A in C(M)) / * is denned by substitution:
e[x]i->e[/(2/)], yeB, for an expression e.

3-2-2. LEMMA. For any closed type A, P(M) (A) is cartesian closed.

Proof. The proof of this fact is exactly like the proof that C(M) was cartesian closed.
(We never really needed to know that the objects were closed types, so repeat the
arguments with a parameter xeA.)

3-2-3. LEMMA. For any closed type A, C(M)/A ~ P(M) (A).

Proof. We define functors C(M)/A ^ ^ > P(M) (̂ 4):
A

(i) For / : B^-A, f is the type f-x(x) = ^ Sv6B/(x,/(2/)), xeA, For a morphism h
of C(M)/A:

A
so that f = goh, h is the term A2e/-i(a.)<A(771(z)),p)e/-1(a;) ^g'Hx), where pel(x,
g(h{n(z)))) is defined by 'transitivity' from n'{z) el(x,f{n(z))) and r(j(n{z)))el(f(n(z)),
g(h(n(z)))), using Lemma 1-3.

(ii) For B[x] in P(M)(-4), B is the morphism in C(M) given by the projection
n: I,X€A B[x]^-A. For t[x]eB[x) => C[x] in P(M) {A), I is given by

^ & i B W <n(z), t[n(z)] (n'(z))) of type Y.xeA B[x] => XxeA C[x].

It is easy to check this gives a morphism in C(M)/A.

40 R. A. G. SEELY

We must now show these are functors, and the two composites are isomorphic to the
identity functors. We shall not give all the details - the highlights are the following.

3-2-31. SUBLEMMA. If feB=> A in M, then the objects B and Swi/"
1(a;) are iso-

morphic in C(M).
i

Proof. Morphisms B^_^~LX£A ^y€B^i.x>f(y)) a r e given by

for xeA, yeB, zel(x,f(y)). (Actually, there is considerable abuse of language here:
i and j should be given using A terms, and (x, (y, z» should be a single variable
we'LxeAf-1(x); x, y, z thus stand for projection terms.)

Clearly j(i{y)) = y. For the inverse, i(j((x, (y, z») = <J{y),{y, r(f(y)))) and thus
we are done if we show x =f{y), z = r{f(y)). But since zel{x,f(y)), this is a consequence
of the (I rule).

3-2-3-2. SUBLEMMA. For B[x] a type, xeA, the objects B[x] and
are isomorphic in P(M)(A).

Proof. Morphisms B[x]^IZ!>'Lyel^AB[x]I(x,n(y)) are given by
m i(z) = «x,z),r(x)}

ior x, x' e A, z e B[x], z' e B[x'], v e I(x, x'), (with the familiar abuse of language.) Clearly
j(i(z)) = z. Inversely, i(j(((x',z'y,v))) = ({x,z'),r(x)), and we are done if x = x',
z' eB[x], and v = r(x). These follow from the (I rule) as before.

3-2-3-3. SUBLEMMA. / / A is a closed type, B[xA] a type in P(M) (A), then there is a
bijection between the set of terms t[x] e B[x] and the set of (closed) terms seA => T,xeA B[x]
satisfying n(s(x)) = x.

Remark. To see the significance of this, recall that P(M) (̂ 4) is cartesian closed and
that A =; J:xeA 1 in C(M).

Proof. The functors of 3-2-3 in this case specialize to

t[x]^t = \x€A(x,t[x]),

The composites are (i)

= s,

and (ii) n'((\xeA(x,t[x]y) (x)) = n'{(x,t[x])) = t[x].
(These proofs also work if A, B, B[x] have other parameters, and a similar result

holds for B[x] with more than one (extra) variable.)

3-2-4. PEOPOSITION. AS C(M)-indexed categories, C(M) ~ P(M).

Locally cartesian closed categories 41

Proof. The only other point to verify is that the equivalences of Lemma 3-2-3
commute with the/*'s: given/: B-+A in C(M), it suffices to show that

C(M)/A S* » C(M)/JJ

commutes. Let t: C^A be in C{M)/A; t = t~\xA) in P(M)(A), f*(t) = t~l(f(yB)),

and (/•(?))» is XveBt-Hf(y))^B, i.e. Zy6SZ.eOHf(y),t(z)) + B. But this is just the
definition of the pullback of t along/, as in Lemma 3-1-3, i.e. (/*(<))* = /*(<)•

3-2-5. PROPOSITION. C(M) is a hyper doctrine.

Proof. Since P(M)(^4) is cartesian closed, so also is C(M)/.4, for each A, and so
C(M) is a hyperdoctrine.

3-3. Remark. Although this completes the proof of Theorem 3-2, in fact it is easy to
show by direct calculation that P(M) is a hyperdoctrine (equivalent to C(M), by
the preceding). For example, the construction of 2 / ; 11 ,̂ for/: B->A, is exactly the
same as for first order logic, as in Seely [10]: for P[yB] in P(M) (B),

UfP[y] = nyeB(I(xA,f(y))

I t is easy to check these commute with the equivalences of 3-2-3.
4. Interpreting ML in LGC. Given an ML theory M and an LCC category C, it is

possible to define the notion of an interpretation of M in C, denoted M -> C.

4 1 . Definition. An interpretation ~: M->C consists of:
(i) for a type-valued function constant, F, with arguments of types Xlt ...,Xn,

a morphism <j>: F->Xn of C, and
(ii) for a term-valued function constant, / , with arguments of type Xlt ...,Xn,

and value of type A, a morphism/: Xn^-A of C/X, X the codomain of Xn and A.
Xn, A must be defined consistently with 4-4. We shall generally write F = <fi: F-+Xn

(abusing the notation horribly!).

4-2. Given an interpretation ~: M -> C, we shall extend it to all types and terms of
M: a type depending on a free variable xeA will be interpreted as an object in C/A
(for suitable A), and terms will be interpreted as morphisms in the appropriate slice
categories. In particular, a closed type A (with no free variables) will correspond to an
object A of C, and if t[v]e A depends only o n e e l , t will correspond to a morphism
t: X ->A. The main intuitive idea is that we think of the type B[xA] as the morphism

•n: I,xeA B[x] -> A, (this will be B-> A), and so B -+ A is the type / - 1 (xA), as in Lemma
3-2-3; note that via this interpretation, / is the projection n.

4-3. Remark (concerning the condition on variables). If B[xlt..., xn] is a type with the
variables properly listed, x1eX1, x2eX2[x1], ...,xneXn[xlt ..^Xn^], then under our

42 R. A. G. SEELY

interpretation Xlt being closed, corresponds to an object X1 of C. X2 should correspond
to a morphism ^2: X2->Xlt where we think of X2 as H,xeXiX2[x]. Then, in saying
x2 e J a ^ J to form X3[xlt x2], we are implying that the xx is #2(z2)

 a nd s o X3 becomes a
morphism #3:X3->X2. This induces the expected morphism Xs->-X1xX2 as
(JX2X3' Xz)- (Equivalently, we could interpret Xz as Xz- X3^-X1 x X2; then the c.o.v.
would require that

commutes, inducing %z: X3->X2 as n'x'a)- Similarly for the other variables, so that B
is interpreted as B-+Xn with induced 'projections' to Xx, ...,Xn_v In what follows,
we assume variables are properly listed.

4-4. We now extend the notion of interpretation to all terms and types of M. Since
M is (like) a first order theory, and C is a hyperdoctrine, this follows the ideas of
Seely [10] closely; we give fairly complete details to allow the reader to verify 4-5.

Definition (continued). Given an interpretation ~: M->C (as in 4-1), the extension
of ~ to all types and terms of M is defined as follows (i.e. the following equalities must
be true of ~):

(Substitution). The substitution of a term t in a type A is defined via the functor t*
(for the hyperdoctrine C): A[t] = t*A. The substitution of t in a term a is defined by
composition: a[t] = a-l.

4-4-1. (Type formation rules), (i) 1 = 1.
(ii) I(xA,yA) = Aj: A-> Ax A. (In view of the definition of substitution, if

a,beA are interpreted as a,b: X->A, X the interpretation of the type(s) of free
variable(s) in a, b, then I(a, b) is the equalizer Eq (a, b) -> X of a and b.)

(iii) If A, B[xA] are types interpreted a,a a,: A->X, fi: B->A, then

B\X\ = nj,
(Here IIa, 2a are adjoints to a*, in the hyperdoctrine C. X interprets the type(s) of
free variables in A, and also those other than xA in B.)

Remark. If B is independent of xA, then 5[x^] is B with a dummy free variable xA

added; i.e. B = ft': JJ->X, and B[xA] is the pullback
A x XB •• B

Locally cartesian closed categories 43

i.e. B[xA] = a* ft'. Then UxeAB[x] = Uaa*ft' = a =>/?', and Zx<EAB[x] = Zaa*jff' =

4-4-2. (Term formation rules). Variables are interpreted as identity morphisms, as in
Seely[10].

(II). ; = id i : l - ^ l .
(III). If t[xA]eB[xA], <[a;̂] is a morphism lA->fi in C/A, i.e. a triangle

B

in C. Then AaeAt[x] = Uat; since IIa iA = ljj.t his is a morphism l^-*-IIa f! inC/X
(ITE). IifeYlxeAB[x], aeA are interpreted by morphisms/: f->IIa/?, a: £->-a in

C/X, for some £: Z->X, then/(a): lj->a*/? in C/.Z is defined as follows: (without loss
in generality, we suppose a,f depend on the same free variables 'Z'; add dummy
variables if not). Since a: £->a is a morphism in C/X, ad = £, and so there is a
morphism ('id') 2aa->£ in C/X. By adjointness, there is a morphism a->a*£ in
C/A. Similarly, /: £->- Uafi in C/X induces a morphism <x*£->/? in C/A. Composing,
we have a morphism a->•/?; i.e. a morphism S^lg->/? in C/A, and again adjointness
gives the required f(a): lg-»-a*/?.

(21). If aeA, beB[a], a: £->a in C/X, 6: H^a*p~ in C/Z, for some f: Z->X
(again supposing a, b depend on the same free variables), then (a, b): £->2a/ff in C/X
is obtained from the morphism induced by b: 1^^-a* ft: viz. 2slg-*/?, in C/A. Since
2^1^ is a, we have a^-/?. Apply 2a to get Saa^-2ayff. But again the morphism ('id')
£->2aa gives us, by composition, <a, 6>.

(2E). As indicated in 4-2, n = /?: Say5^-a. As for TT', essentially jr' is the identity
map. (This is because of a peculiarity of category theory, whereby for a map whose
'codomain' depends on the argument of the map, these 'partial codomains' are
replaced by their disjoint sum. Here we want a map Z,xAB[x]-+'B[x]'; we replace
this with XxA B[x] -> 2xA B[x].)

To see how this works, suppose c e ~ZxeA B[x], c: £->Za/?inC/X (for some£: Z->X);
we derive n'(c): \z -»• (n(c)) * ft via the following correspondence. Note that n(c) = fie:
£^a, and so (n(c))*p~= (/?c) *y?= c*p*/3.

c.pc^-fi in C/A

c-.'Lpglz -> ft in C/A

n'(c):lz-*(/3c)*p~ m C/Z

(= I). r(,-r̂) = id^: A-+A. Hence if ae.4, a: ^-^a. then I(a,a) is

,a)v>2) = (idiz: Z -+Z), and r(a) is idg

(= E). In SeelyflO] (§5) it is shown that any hyperdoctrine P has 'substitution'
morphisms B\a\ x I(a, b)->B[b], where B[xA] is a predicate in P(^4), / is the 'equality

44 R. A. G. SEELY

predicate', and a, b are terms of type A. This is essentially (= E), since by the c.o.v.
CixA>yA>zHx,y)\ must be interpreted as a morphism C->A; recall that I{x,y) is
Aj: A->Ax A.) Briefly the details are as follows: If, for some £: Z->X, a, be A are
interpreted as a, b: £->a in C/X, the substitution morphism is

a*fix(a,b)*I->b*/1 inC/Z
given by the following, a * /? x (a, 6> * / is the morphism P^-Z defined by the top left
pullback in — =, j

P • 1 ^ A

a*B

b */$ is the pullback of ft along b:

b*B B

P.b.

The morphism between these pullbacks is induced by the commutative square

P • a*B * B

V

z

z — A

I id,,

by the pullback's universal property.

4-5. PROPOSITION (SOUNDNESS). For any interpretation ~: M->C, as given in 4-1
and 4-4, the equality rules are all valid under the interpretation.

The proof of the soundness theorem is a straightforward matter of checking defini-
tions. Since a similar sort of result is discussed in Seely [10], I omit most of the details
here.

(1 red) is valid since 1 is a terminal object.
(IT red). If in the notation of 4-4-2 for the Ft rules, Z = X, £ = id5, f=AxAt[x].

a: ljf->a, then one can check that of the two morphisms whose composite a^-fi
induces f(a): ljf-»a*(1, the first a->a*£ is a itself (a*£= 1A), and the second
a is i, so the composite is t-a = t[a].

Locally cartesian closed categories 45

(II exp) is checked similarly; the point here is that the adjunction correspondences
are just (II I) . (a* y^fi)^->(y-» HJ) and (II E): (y-> nj)v* (a* y ^ £) .

(E red) and (S exp) follow similarly, from the remark that essentially (S I) is the
adjunction correspondence (/?-=• a * y) H>- (Sa/?->y), and (S E) is (£a/?-> y) »-> (f}->a* y).

(= red) and (= exp) are similar to the proof in Seely [10] (§5).
(/ rule) is valid, essentially since equalizers are monomorphisms: If a, be A are

interpreted &sa,b: Z->A (Z interpreting the type of the variable x in a[x], b[x\), then
i: I(a,b) y->Z is the equalizer. If t[x] el(a[x], b[x]), and x satisfies the c.o.v., then t is
a morphism in C/Z:

Z
It is easy to see that there can be at most one such I, since i-t = id^, and i is mono;
and that the existence of such a I implies i is an isomorphism, so that a = b. (Hint: i
must be mono since i is, and so also t • i = id^.)

4-6. Given an ML theory M, there is a canonical interpretation ~: M->C(M),
essentially using the ideas of Lemma 3-2-3; types are interpreted as their 'extensions',
and terms are interpreted according to 4-4-2. So if A[xlt..., xn] is a type depending on
z1eX1, x2eX2[x1], ...,xneXn[xv...,xn_1], then Xx is interpreted as itself, X2 is
interpreted as the projection term n: 2,XieXiX2[x1]->X1 (denoted X^-^-Xj), and so on,
A being interpreted as the projection

^ e Xa ^x2e XJLX{1 • • • ̂ xne Xn[xx.. .a^-J A[xx... £ J

(denoted A-+Xn). The main fact we must check is that this is compatible with 4-4-1.
(i) Since 1 is closed, 1 = 1.
(ii) /(*, y) is interpreted as Y,xeAT,y£AI(x,y)^-AxA:(x,y,r}\-^(x, y) (supposing

for simplicity that A is closed). We must show an isomorphism

making the triangle commute. The evident maps will do, because of the (I rule):
<x, y,r)h->x and xt-> (x, x, r(x)> are the required inverses.

(iii) If for xeA, B[x] is a type, then B[x] is interpreted as 2Z6^.B[V]->-^4 (again
supposing A closed). ^xeA^lx] a n (i ^xe^-^M a r e interpreted as themselves (since
they are closed): we must show they are (isomorphic to) II^7r and TiAn (where we
identify A with A^-l). The latter is obvious, since I>An = 2,xeAB[x]->l. For the
former, note that 11^ 7r = 2/e^-Jv2/lBr,]/(7T/,id^), the pullback of

nA:A=>I,xAB[x]^-A=> A along rid1: 1 -> A => A.

To see this is isomorphic to UxeA B[x], we can copy the proof of 3-2-3-3: to t in 11^ A B[x]

46 R. A. G. SEELY

associate t = (&xeA(pc,t(x)}, r(idA)), and to s in UAn, associate s = AX6An\ns)(x).
It is easy to check these are inverse.

4-6-1. Given an ML theory M and an LCC C, an interpretation ~: M -»• C induces a
functor F: C(M)-»-C preserving all LCC structure. Under ~, closed types of M are
interpreted as objects of C, and closed terms as morphisms; it can then be checked
that this is in fact functorial. That LCC structure is preserved follows from soundness
(4-5). Hence:

4-6-1. PROPOSITION. There is a canonical interpretation ~: M->C(M); given any
other interpretation ~: M -»• C, there is a unique functor F: C(M) -> C making

M ^ — C(M)

C
commute (in the evident sense).

4-7. Definitions, (i) LCC is the category of all LCC categories and structure pre-
serving functors.

(ii) For any ML theory M and any LCC category C, Int (M, C) is the set of inter-
pretations M->C.

(iii) For ML theories M,M', an interpretation M->M' is an interpretation

(iv) ML is the category of all ML theories and interpretations between them.

Remark. It is straightforward to check that the definition (iii) is equivalent to the
standard syntactical description one would expect of the notion 'interpretation of
ML theories'.

4-8. COROLLARY, (i) For any ML theory M, and any LCC category C,

Int (M, C) ~ LCC (C(M), C).

(ii) For ML theories M, M', ML(M, M') ~ LGC(C(M), C(M')); each is isomorphic
to Int (M, (CM')).

4-8-1. Remark. Int (—, —) is in fact functorial: given an interpretation/: M->M'
in ML, and a functor g: C -»• C in LCC, we have maps

Int(/,C):Int(M',C)-^Int(M,C) and Int(M,g): Int(M,C)->Int(M,C),

with the expected properties. The isomorphisms of 4-8 are then natural in each
variable.

5. From LCC to ML. Given an LCC category C, we define an ML theory M(C),
basically by mimicking the definition (4-1, 4-4) of an interpretation. The objects of
C are to be the type constants of M(C) (i.e. type-valued function symbols with no
argument), and the morphisms of C are to be term-valued function symbols, with
argument and value of types given by the domain and codomain respectively.
Following the steps of 4-4, the other types and terms are defined as objects and

Locally cartesian closed categories 47

morphisms of appropriate slice categories, so that, e.g., a type with a free variable xA

is an object of C/A. We have to make certain that the syntactical constructions give
the correct results; for instance, if A, B are objects of C (and so types of M(C)) then
there is an object A x B (which is a type of M(C)) as well as a (different!) type AxB:
these should be equal. So we add all such equations to M(C). (In Seely[10] a similar
construction is carried out, adding appropriate terms (or derivations) and equations
(or operations) forcing the terms to be the required isomorphisms.) We omit the
details.

5-1. The point about M(C) is that its types are the predicates of the first order
theory T(C) corresponding to the hyperdoctrine C, and its terms are the 'proofs'
(equivalence classes of derivations) in T(G).

5-2. PROPOSITIOX. M(C) is an ML theory.

The proof is essentially the same as the proof of the Soundness Theorem 4-5.

5-3. Remark. In denning M(C) above, we could regard an ML theory as made up of
a set of types, a set of terms, a relation ' e ' between them, and equality relations ' = '
on each, the type and term formation rules being regarded as closure conditions on
these sets, and the equality rules as conditions on ' = '. This viewpoint produces a
somewhat more economical structure for M(C). In adopting the more usual viewpoint,
regarding the formation rules as a procedure for generating new terms and types from
old, we produce a 'fatter' structure for M(C); this does not present too much of a
problem. First we note that an ML theory M has a natural categorical structure
(essentially C(M)). Then note that the 'extra' types and terms of the fat version of
M(C) are isomorphic to ones in the more economical version of M(C), and so the two
versions are in fact equivalent theories; this is essentially Proposition 3-2-4.

5-4. Remark. An LCC functor F:C->C canonically induces an interpretation
M(C)-»C, and furthermore Int(M(C), C) ^ LCC(C, C) (naturally in C and C).
A direct proof may be done as an exercise. The result is also a corollary of 6-1.

5-5. Definition. Two ML theories M, M' are equivalent if the functors Int(M,~),
Int (M', -) are naturally isomorphic.

Remark. This means that for any C in LCC, there is an isomorphism

Int(M,C)^Int(M',C),

and moreover, for any functor/: C-»C,

Int(M,C)^Int(M',C)

\ 1
Int(M,C')^Int(M',C)

commutes. By 4-8 this is equivalent to C(M) s C(M') in LCC, or that M s M ' i n ML.
There is also an equivalent' standard syntactical description' of equivalence of ML

theories: it may be left as an exercise to write this out, showing it equivalent to 5-5.

48 R. A. G. SEELY

6. Equivalences

61 . THEOREM. IfC is LOG, then C = C(M(C)).
Proof. By construction of M(C), theclosed types and terms of M(C) are the predicates

and proofs of C/l (i.e. without free variables). But C/l s C. Hence C(M(C)) =r C.

6-1-1. Remark. By 4-8 and 5-4, LCG(C,C) s LCC(C(M(C)), C), giving an alter-
native proof. (Or: 6-1 and 4-8 imply 5-4.)

6-2. THEOREM. If M is an ML theory, M(C(M)) is an equivalent ML theory.

Proof. Immediate from 6-1 and the definition 5-5.

6-3. THEOREM. The categories ML and LCC are equivalent.

Proof. Immediate from 6-1, 6-2. Note that, from 5-4 and 6-1,
LCC(C,C) ~ Int(M(C),C) ~ Int(M(C),G(M(C'))) = ML(M(C), M(C')),

and we have already seen in 4-8 that ML(M, M') ^ LCC(C(M)), C(M')).

REFERENCES

[1] J. W. CARTMELL. Generalized algebraic theories and contextual categories, Ph.D. Thesis,
University of Oxford, 1978.

[2] J. DILLER. Modified realisation and the formulae-as-types notion. In To H. B. Gurry:
Essays on Gombinatory Logic, Lambda Calculus and Formalism, ed. J. P. Seldin and
J. R. Hindley (Academic Press, 1980), 491-501.

[3] P. FBEYD. Aspects of topoi, Bull. Australian Math. Soc. 7 (1972), 1-76.
[4] S. MACLANE. Categories for the Working Mathematician (Springer-Verlag, 1971).
[5] P. MABTIN-L6F. An intuitionistic theory of types: predicative part. In Logic Colloquium '73,

ed. H. E. Rose and J. C. Shepherdson (North-Holland, 1974), 73-118.
[6] R. PABE and D. SCHUMACHER. Abstract families and the adjoint functor theorems. In

Indexed Categories and Their Applications, ed. P. T. Johnstone and R. Pare1 (Springer-
Verlag, 1978).

[7] D. PBAWITZ. Natural Deduction: a Proof-theoretical Study (Almqvist and Wiksell, 1965).
[8] D. PBAWITZ. Ideas and results in proof theory. In Proc. of the Second Scandinavian Logic

Symposium, ed. J. E. Fenstad (North-Holland, 1971), 235-307.
[9] R. A. G. SEELY. Hyperdoctrines and natural deduction. Ph.D. Thesis, University of

Cambridge, 1977.
[10] R. A. G. SEELY. Hyperdoctrines, natural deduction, and the Beck condition. Zeitschrift

fur Math. Logik und Orundlagen der Math. (To appear, 1984.)
[11] R. A. G. SEELY. Locally cartesian closed categories and type theory. McGill University

Mathematics Report 82-22 (Montreal, 1982).
[12] R. A. G. SEELY. Locally cartesian closed categories and type theory. Mathematical Reports

of the Academy of Science, IV, 5, 271-275. (Canada, 1982).

