

1. Evaluate the following:

(a)
$$\int \sin^4 x \, dx$$
 (b) $\int \frac{\csc^4 x \, dx}{\sqrt[3]{\cot x}}$ (c) $\int_1^2 x \operatorname{arcsec} x \, dx$
(d) $\int \frac{(\ln x)^2 \, dx}{x}$ (e) $\int e^{-x} \sin 3x \, dx$ (f) $\int \frac{x^3 - 1}{x^3 - 2x^2} \, dx$
(g) $\int_0^4 \frac{x^5}{\sqrt{x^2 + 9}} \, dx$ (h) $\int \sin(\ln x) \, dx$ (i) $\int (\ln x)^2 \, dx$

2. Evaluate the following limits:

(a)
$$\lim_{x \to +\infty} \left(1 + \tan \frac{1}{x} \right)^{2x}$$

(b)
$$\lim_{x \to 0} \frac{\arcsin x}{x}$$

(c)
$$\lim_{x \to +\infty} x(e^{1/x} - 1)$$

(d)
$$\lim_{x \to 0^+} \frac{\cos x}{x}$$

3. Find the particular solution of the following differential equation (satisfying the given initial condition):

$$xy' + y = y^2$$
 where $y(1) = -1$

4. Determine whether these improper integrals converge or diverge: if an integral converges, give the exact value of the integral.

(a)
$$\int_{2}^{\infty} \frac{dx}{x(\ln x)^{2}}$$
 (b) $\int_{0}^{3} \frac{dx}{(x-2)^{4/3}}$ (c) $\int_{0}^{\infty} x e^{-x} dx$
(d) $\int_{1}^{\infty} \frac{dx}{x^{2}+x}$ (e) $\int_{0}^{\frac{\pi}{2}} \frac{dx}{\cos x}$

5. Find the areas of the following regions:

Note: The graphs are available on my webpage — but calculate the intersection points for yourself; don't rely on the graphs.

- (a) The region between $y = x^3 2x^2 + 1$ and y = 1 x.
- (b) The region between the curves $x + 3y^2 = y^3 + 2y$ and $x + y^2 = 2y$ and above the x-axis.
- 6. (a) Find the volume of the solid generated when the region between the curves $y = \sqrt{x+2}$, y = x, and x = 0 is rotated about the y-axis.
 - (b) Find the volume of the solid generated when the region between the curves $y = \sqrt{x+2}$, y = x, and y = 0 is rotated about the x-axis. (Careful: these are not the same region! One equation has changed.)