Calculus I (Maths 201-NYA)
Derivatives via a limit definition
With Answers

Justify your answers-just having the correct answer is not sufficient.

1. Using a (correct!) limit definition, find $f^{\prime}(0)$, where

$$
f(x)= \begin{cases}x^{3} \sin (\ln (|x|)) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

2. Using a (correct!) limit definition, find $f^{\prime}(x)$ where $f(x)=(x-3)^{3 / 2}$.
3. Using a (correct!) limit definition, find $f^{\prime}(x)$ where

$$
f(x)=\frac{2 x-1}{|x-3|}
$$

(Consider the cases where the fraction is defined.)

## Answers

(The answers are "easy", using the derivative formulas - the point here is to use the limit definition of the derivative correctly! I've given hints as to how to do that. Ask if you need a complete solution.)

1. 0

Hint: squeeze theorem! The key thing you need to remember is that $|\sin (A)| \leq 1$. (And see your class notes!)
2. $f^{\prime}(x)=\frac{3}{2}(x-3)^{1 / 2}$.

Hint: rationalize the expression you get with the limit definition of $f^{\prime}(x)$ (and remember that $A^{3 / 2}=\sqrt{A^{3}}$. Also, after simplifying $(x+h-3)^{3}-(x-3)^{3}=h^{3}+3 h^{2} x-9 h^{2}+3 h x^{2}-18 h x+27 h$.
3. $f^{\prime}(x)= \begin{cases}\frac{5}{(x-3)^{2}} & \text { if } x<3 \\ -\frac{5}{(x-3)^{2}} & \text { if } x>3\end{cases}$

Hint: $f^{\prime}(3)$ does not exist, so you only need to worry about the two cases $x<3$ and $x>3$. In each case, get the lowest common denominator, and the algebra works out well.

