Instructor: Dr. R.A.G. Seely
Quiz 1

Cal I (S) (Maths 201-NYA)

1. For each of the following functions, find the derivative $f^{\prime}(x)$ using the limit definition.
(a) $f(x)=5 x+7$
(b) $f(x)=\sqrt{x+1}$
(c) $f(x)=3 x^{2}+5$
(d) $f(x)=\frac{3}{x-2}$
(e) $f(x)=\frac{1}{\sqrt{x}}$
2. For each of the following functions, find the derivative $f^{\prime}(x)$ using the derivative formulas.
(a) $f(x)=\sqrt[5]{x^{42}}$
(b) $f(x)=7 x-3$
(c) $f(x)=7 \sqrt[5]{x}-\frac{2}{x^{5}}$
(d) $f(x)=x^{5}-\frac{2}{5 x^{3}}+\sqrt[3]{x^{4}}$
(e) $f(x)=\frac{2 x^{5}-7 x^{3}+21}{15}$
(f) $f(x)=\left(6 x^{\frac{2}{5}}-5 x^{2}+\pi\right)\left(2 \sqrt{x}+x^{2}\right)$
(g) $y=\frac{5 x^{9}-\frac{1}{x}+1}{9 x^{2}-3 x+5}$
(h) $y=\frac{\left(2 x^{3}-4\right)^{9}}{\left(5 x+3 x^{2}+1\right)^{7}}$
(i) $y=\left(3 x^{6}-4 x^{2}+21\right)^{13}(4 x-11)^{5}$
3. Find the slope and the equation of the tangent line to each of the following curves at the given point.
(a) $y=5 x^{3}-3 x^{2}$ at $x=1$
(b) $y=\sqrt{x}-2 x+5$ at $(4,-1)$
4. Find the equations of the lines tangent to the curve $y=x^{3}-3 x^{2}-15 x+7$ which are parallel to the straight line $9 x-y+3=0$.
5. Find all values of x at which the graph of the following function has a horizontal tangent line: $y=$ $3 x^{4}-10 x^{3}-9 x^{2}+5$.
6. Find the values of x for which the lines tangent to the curve $y=x^{3}-3 x^{2}-15 x+7$ are normal (i.e. at right angles) to the straight line $9 x-y+3=0$.
