Instructor: Dr. R.A.G. Seely

Calculus III (Maths 201–DDB)

(Marks)

Note: Justify all your answers — don't make me guess your thoughts!

- (3×2) 1. Let Λ be the line passing through the point $P_0(1,2,3)$, parallel to the vector $\boldsymbol{v} = 3\boldsymbol{i} + 9\boldsymbol{j} + \boldsymbol{k}$, and let Π be the plane given by 2x y + 3z = 5.
 - (a) Show that Λ is parallel to the plane Π .
 - (b) What is the distance from Λ to Π ?

(Hint: Choose a point Q on Π , then project the vector $\overrightarrow{P_0Q}$ onto the normal of the plane Π . You know the length of the projection, right?)

- (c) What is the angle between Π and the plane 3x + 2y + z = 1?
- (2) 2. Show that for any vector function $\mathbf{r}(t)$ which is parallel to $\mathbf{r}''(t)$ (for all t), the cross product $\mathbf{r}(t) \times \mathbf{r}'(t)$ is constant.
- (3) 3. $\mathbf{r} = \mathbf{r}(t)$ is a vector function: simplify $\frac{d}{dt}(\mathbf{r} \cdot (\mathbf{r}' \times \mathbf{r}''))$ as much as possible. Is this derivative a vector function or a scalar function?

(Hint: for questions 2,3 don't use components; instead use the general properties of derivatives and dot and cross products of vectors.)

- (9) 4. Name and sketch the following surfaces in 3-space. Show all your work, including traces, intercepts (and contour curves if you use them).
 (a) ρ = 4 sec φ
 (b) z = x² y²
 (c) z r² = 4
 - (a) $\rho = 4 \sec \phi$ (b) $z = x^2 y^2$ (c) $z r^2 = 4$
- (5) 5. Find the parametrization of $\mathbf{r}(t) = \langle 3\cos t, 3\sin t, 4 \rangle$ in terms of the arclength s. Use t = 0 for the "starting point". This curve lies on a quadric surface: identify such a surface (give its equation) and draw a sketch of the graph of the curve and the surface on which it lies.
- (12) 6. A particle P moves along a curve $\mathbf{r}(t) = 2t \, \mathbf{i} + \ln t \, \mathbf{j} + t^2 \, \mathbf{k}, t > 0$. Find:
 - (a) the unit tangent vector $\boldsymbol{T}(t)$; (b) the unit normal vector $\boldsymbol{N}(t)$; (c) the curvature $\kappa(t)$;
 - (d) the tangential and normal components a_T, a_N of acceleration;
 - (e) the length of the part of the curve from t = 1 to t = 2.

(Hint: do the algebra **carefully**, and you will find there is a lot of simplification—all the square roots work out easily if you factor where appropriate.)

- (5) 7. Find the point (x, y) of maximum curvature for the parabola y = 1 ¹/₂x². Find the equation of the osculating circle at that point. Draw the graphs of the parabola and the osculating circle (on the same axes).
- (4) 8. Is the following function continuous at the origin? (Justify your answer.)

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

9. Show that $z = \sqrt{\frac{x}{y}}$ is a solution of the equation $\frac{x}{z} \frac{\partial z}{\partial x} + \frac{y}{z} \frac{\partial z}{\partial y} = 0.$

(Total: 50)

(4)