

Calculus III (Maths 201-DDB)

- 1. (a) If $x^3y + y^3z + z^3x = 0$ defines z = f(x, y), find $\frac{\partial z}{\partial x}$.
 - (b) If w = f(xz, yz) (and f is a differentiable function), show that

$$x \frac{\partial w}{\partial x} + y \frac{\partial w}{\partial y} = z \frac{\partial w}{\partial z}$$

- 2. In a certain space, the temperature at a point P(x,y,z) is given by $T = \frac{xyz}{1+x^2+y^2+z^2}$.
 - (a) Find the directional derivative of T at $P_0(2, 1, 1)$ in the direction of a vector pointing **from** P_0 to the origin O.
 - (b) Find the direction of greatest increase in T at the point P_0 .
 - (c) What is the greatest increase in T at P_0 ?
- 3. Find and classify the critical points of $f(x,y) = \frac{1}{x} \frac{64}{y} + xy$.
- 4. Use Lagrange Multipliers to find the minimum distance between the point (1, 2, 0) and the cone $z^2 = x^2 + y^2$.
- 5. Evaluate the following: (change coordinates as appropriate; don't worry about the fact that the first one is in fact an improper integral, as that has no effect on the value in this case.)
 - (a) $\iint_R \frac{e^x}{x} dA$, where R is the triangular region with vertices (0,0),(1,0),(1,1).
 - (b) $\int_0^8 \int_{\sqrt[3]{y}}^2 e^{x^4} dx dy$
 - (c) $\int_0^2 \int_y^{\sqrt{8-y^2}} \sqrt{x^2+y^2} \, dx \, dy$
- 6. Sketch the solid region S in the first octant (i.e. where $x \ge 0, y \ge 0, z \ge 0$), bounded by the cylinder $z = 1 x^2$ and the plane y = 1 x. Find the volume of S.
- 7. The volume of a solid region ${\cal S}$ can be found by evaluating the following triple integral

$$\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}} \int_{-\sqrt{8-x^2-y^2}}^{\sqrt{8-x^2-y^2}} \, dz \, dy \, dx$$

- (a) Sketch \mathcal{S} .
- (b) Express the above integral in both
 - i. cylindrical and
 - ii. spherical coordinates.

Evaluate whichever you prefer to find the volume of \mathcal{S} .

- 8. Set up the triple integral needed to find the volume of the ("ice-cream cone") solid region \mathcal{IC} inside the sphere $x^2 + y^2 + z^2 = 4z$ and above the cone $z = \sqrt{x^2 + y^2}$. Calculate the volume of the solid \mathcal{IC} .
- 9. (Bonus question) Suppose H(u,v) is differentiable, and that z=z(x,y) is implicitly defined by the equation $H\left(\frac{z}{x},\frac{y}{x}\right)=0$ (for $x\neq 0\neq z$). Show that $x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=z$.