

Instructor: Dr. R.A.G. Seely Assignment 5

Calculus III (Maths 201-DDB)

- 1. Sketch the region of integration for the integral $\int_0^1 \int_y^1 \cos(x^2) dx dy$. Calculate the integral by reversing the order of integration.
- 2. Evaluate the following integrals:

(a)
$$\int_0^2 \int_{y^2}^4 \frac{y^3}{\sqrt{y^4 + x^3}} \, dx \, dy$$

(c)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} e^{-(x^2+y^2)} dy dx$$

(b)
$$\int_0^{1/\sqrt{2}} \int_y^{\sqrt{1-y^2}} \frac{y^2}{\sqrt{y^2 + x^2}} \, dx \, dy$$
(d)
$$\int_0^2 \int_0^{\sqrt{4-y^2}} \int_{\sqrt{x^2 + y^2}}^{\sqrt{8-x^2 - y^2}} z \, dz \, dx \, dy$$

(d)
$$\int_0^2 \int_0^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{8-x^2-y^2}} z \, dz \, dx \, dy$$

- 3. Let $R = \{(x, y) : 0 \le x \le 2, x^2 \le y \le 4\}$. Evaluate $\iint_B x e^{y^2} dA$.
- 4. Let S be the solid region above the xy plane, inside the cylinder $x^2 + y^2 = 4$, outside the cone $z^2 = x^2 + y^2$. Evaluate (using spherical coordinates) $\iiint_S \frac{1}{x^2 + y^2 + z^2} dV$.
- 5. Find the volume of the solid lying in the first (positive) octant inside the cylinder $x^2 + y^2 = a^2$ and under the plane z = y.
- 6. Find the volume of the part of the sphere $x^2 + y^2 + z^2 = 4$ which lies inside the cylinder $x^2 + y^2 - 2y = 0.$
- 7. Find the volume of the region in the first octant bounded by the coordinate planes, the plane y = 1 - x and the surface $z = \cos\left(\frac{\pi x}{2}\right)$, $0 \le x \le 1$.
- 8. Find the volume of the region bounded by $z = \sqrt{x^2 + y^2}$ and the paraboloid $z = 2 (x^2 + y^2)$.
- 9. Find the volume of the region bounded by the surfaces $z = x^2 + y^2$ and $z = 8 x^2 y^2$.
- 10. Set up the following integrals:
 - (a) the double integral needed to find the area of the region common to both the cardioid $r = 4 - 4\sin\theta$ and the circle $r = 4\sin\theta$.
 - (b) the triple integrals needed to find the volume of the solid inside the sphere $x^2 + y^2 + z^2 = 8$ and above the plane z=2, using each of the coordinate systems (Cartesian, cylindrical, spherical).
- 11. Let S be the solid region bounded by the surfaces $y = x^2 + z^2$ and y = 4. Write the triple integral $\iiint_S f(x,y,z) dV$ in the order given by dV = dy dz dx and by dV = dz dy dx.
- 12.* Find the Jacobian of the transformation u = x + y, v = x y. Use this transformation to evaluate $\iint_R \cos(x-y) dA$, where R is the region bounded by the lines $x-y=0, x-y=\frac{\pi}{2}$ x + y = 2, x + y = 4.