

Calculus III (Maths 201-DDB)

Questions 1 – 11 appeared on Assignment $3\frac{1}{2}$. I repeat them here again (small print) just "for the record". I will ask you to hand in only a selection of these questions.

- 1. Sketch the domain of $f(x,y) = \sqrt{36 4x^2 9y^2}$.
- 2. Sketch level curves of $f(x,y) = x y^2$ for z = -2, -1, 0, 1, 2. Use these to sketch the surface z = f(x,y).
- 3. Sketch the level surface of $f(x, y, z) = x^2 + y^2 z^2$ for w = 1.
- 4. Calculate these limits.

Instructor: Dr. R.A.G. Seely

(a)
$$\lim_{(x,y)\to(0,0)} \left(1+\tan\left(\frac{1}{x+y}\right)\right)$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2+3y-7}{2+x^3-5y^2}$$

(c)
$$\lim_{(x,y)\to(0,0)} (1+x^2y^2)^{1/(2x^2y^2)}$$

5. Are the following functions continuous at the origin?

(a)
$$f(x,y) = \begin{cases} \frac{5xy^2}{2x^2+2y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(b)
$$f(x,y) = \begin{cases} \frac{5xy}{2x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

6. Find $\frac{\partial z}{\partial x}$ for each of the following.

(a)
$$z = x^4 \cos(xy^3)$$

(a)
$$z = x^4 \cos(xy^3)$$
 (b) $xyz^2 - x^2y = \sin(3z)$

(c)
$$z = u^2 \ln v$$
 where $u = x^2 + y^2, v = xy^3$

- 7. Demonstrate that $z = e^{2ax+2y} + \tan^{-1}(ax+y)$ (with a constant) is a solution of the partial differential equation $\frac{\partial z}{\partial x} - a \frac{\partial z}{\partial y} = 0$
- 8. Show that $z = e^{x-y} \sin(x-y)$ satisfies $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$.
- 9. If $w = \frac{xy}{x^2 + y^2}$, find $\frac{\partial w}{\partial x}$, $\frac{\partial w}{\partial y}$ and then show $x^2 \frac{\partial^2 w}{\partial x^2} + 2xy \frac{\partial^2 w}{\partial x \partial y} + y^2 \frac{\partial^2 w}{\partial y^2} = 0$
- 10. Show that Laplace's equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ is satisfied by each of the following functions:

(a)
$$z = x^3 - 3xy^2$$

(b)
$$z = e^{-y} \cos x$$

(a)
$$z = x^3 - 3xy^2$$
 (b) $z = e^{-y}\cos x$ (c) $z = \tan^{-1}\left(\frac{y}{x}\right)$ where $(x, y) \neq (0, 0)$

- 11. (a) Let $f(x,y) = \frac{2xy}{x^2 + y^2}$ $(x,y) \neq (0,0)$, f(0,0) = 0. i. find $f_x(0,0)$, $f_y(0,0)$; ii. find both $f_x(x,y)$ and $f_y(x,y)$ at $(x,y) \neq (0,0)$
 - (b) Although both the partial derivatives $f_x(0,0)$ and $f_y(0,0)$ exist, show that f(x,y) is not continuous at (0,0).
 - (c) Similarly, show that $f_x(x,y)$ and $f_y(x,y)$ are not continuous at (0,0)
- 12. Question 7: Demonstrate that $z = e^{2ax+2y} + \tan^{-1}(y+ax)$ (a constant) is a solution of the partial differential equation $\frac{\partial z}{\partial x} - a \frac{\partial z}{\partial y} = 0$.

This is a special case of the more general result: if w=f(ax+by) for a differentiable function f, with a,b constants, then $b\frac{\partial w}{\partial x}-a\frac{\partial w}{\partial y}=0$. Show that this is always true.

13. w = f(x, y) is a continuous function with continuous partial derivatives. Suppose that one substitutes the polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$. Show that $\frac{\partial w}{\partial \theta} = x f_y - y f_x$.

This is also frequently expressed as $\frac{1}{r}\frac{\partial w}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta$.

Calculate
$$\frac{\partial w}{\partial r}$$
, and show that $\left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2 = \left(\frac{\partial w}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial w}{\partial \theta}\right)^2$.

- 14. Show that if f, g have continuous second derivatives then z(x, t) = f(x + at) g(x at) is a solution of the wave equation $\frac{\partial^2 z}{\partial t^2} = a^2 \frac{\partial^2 z}{\partial x^2}$.
- 15. Suppose f(u,v) is a differentiable function of two variables, and w=xyf(xz,yz). Show that $x\frac{\partial w}{\partial x} + y\frac{\partial w}{\partial y} - z\frac{\partial w}{\partial z} = 2w.$
- 16. Show that the space curve given by $r(t) = \langle \ln t, t^2 2, t \rangle$ is tangent to the surface given by $xz^{2} - yz + \cos(xy) = 2$ at the point P(0, -1, 1).
- 17. Find the tangent plane to the surface xyz = 27 at the point (1, 9, 3).

Assignment 4

18. Find the point where the tangent plane to the surface $z = x^2 + 2xy + 2y^2 - 6x + 8y$ is horizontal.

- 19. The surfaces $\frac{1}{a}x^2 + y^2 z = a$ and $x^2 + y^2 + z = a^2$ (two paraboloids) share the same tangent plane at the point P(a,0,0). Find the value of the constant a.
- 20. Let \mathcal{C} be the cross section of the hyperboloid $z^2 = x^2 + 4y^2 1$ on the plane x y + 2z = 6 (i.e. the intersection of the plane and the hyperboloid). Find the equations of the line tangent to \mathcal{C} at the point $P_0(1, -1, 2)$. Hint: find two non-parallel vectors perpendicular (normal) to \mathcal{C} at P_0 .
- 21. Find the directional derivative of the function $f(x, y, z) = x^2 + y^2 + xyz$ at the point $P_0(1, 1, -1)$ in the direction i 2j + 2k. Find the equation of the tangent plane to the surface f(x, y, z) = 1 (same f) at the (same) point P_0 .
- 22. In which direction does $f(x, y, z) = e^{xy} + z^2$ increase most rapidly at (0, 2, 3)? At what rate does f change in that direction?
- 23. If the temperature T at a point P(x, y, z) on a surface is given by $T(x, y, z) = 3x^2 + 2y^2 4z$, find the rate of change in T at P in the direction PQ, where Q is the point Q(-4, 1, -2). Find the maximum rate of change in T at P and the direction in which this occurs.
- 24. Use the directional derivative to estimate how much $f(x, y) = \cos(\pi xy) + xy^2$ will change if one moves from (-1, 1) a distance of 0.1 unit along the vector i + j.
- 25. Find the directional derivative of $f(x, y, z) = x^3 xy^2 z$ at the point $P_0(1, 1, 0)$ in the direction of the vector 2i 3j + 6k.
- 26. For a differentiable function f(x, y), at a fixed point P_0 , the following is true: the derivative of f in the direction i + j is $2\sqrt{2}$; the derivative of f in the direction i j is $3\sqrt{2}$. Calculate ∇f at P_0 , and find the maximum rate of increase in f at P_0 .
- 27. Find the points where $f(x,y) = x^3 + y^3 3x^2 3y^2 9x$ has a local max, a local min, and a saddle point.
- 28. Find and classify the critical points of $f(x,y) = x^3 3xy + y^3$.
- 29. Find and classify the critical points of $f(x,y) = x^2 + 2y^2 x^2y$.
- 30. Suppose $f(x, y, z) = x^2 + y^2 z$. Show that the line x = 2 + t, y = -t, z = 2 is tangent to the surface f(x, y, z) = 0. Find the rate of change in f in the direction of the given line (take the direction of increasing t).
- 31. Use the method of Lagrange Multipliers to find the maximum and the minimum of the function x + 2y + 4z subject to the constraint $x^2 + y^2 + z^2 = 19$.
 - For what values of k is the plane x + 2y + 4z = k tangent to the sphere $x^2 + y^2 + z^2 = 19$? Find the points of tangency. (Is there a connection between these questions?)
- 32. Find the extreme values of $f(x,y) = x^2 + y^2 2x 4y$ on the disk $x^2 + y^2 \le 16$.
- 33. Find the maximum possible product of three positive numbers whose sum is 120.
- 34. Find the point(s) on the surface $z = \frac{1}{2}(x^2 + y^2)$ closest to the point P(0,4,1).
- 35. A rectangle is inscribed in the ellipse $4x^2 + 9y^2 = 36$ in such a way that its sides are parallel to the axes. What are the dimensions of such a rectangle of maximum area? What are the dimensions for the rectangle of minimum area?
- 36. Find the maximum and minimum values of $f(x, y, z) = z x^2 y^2$ on the curve given by the intersection of the plane x + z = 1 and the cylinder $x^2 + y^2 = 4$.