

Instructor: Dr. R.A.G. Seelv

Calculus III (Maths 201-DDB)

You will be asked to hand in only a selection of these problems for grading.

- 1. Compute the angle between the planes x=7 and $x+y+\sqrt{2}\,z=-3$
- 2. A parallelogram has vertices A(2,1,-4), B(1,0,-1) and C(1,2,3). Determine possible coordinates of its fourth vertex D. Write the equation of the plane in which the parallelogram lies. Compute the area of the parallelogram.
- 3. Determine if the points (0,-1,0), (1,1,1) and $(\frac{1}{2},-1,\frac{1}{2})$ are collinear.
- 4. Determine the angle between an edge of a cube and the longest adjacent diagonal.
- 5. Calculate the area of a triangle with vertices (0,0,0), (1,0,0), (2,3,4).
- 6. Write the equation of the plane which includes the point (1,7,3) and is perpendicular to the line L: x = 1 - 2t, y = 3 + t, z = 7.
- 7. Find the equation of the plane containing the straight lines: $\frac{x-1}{3} = \frac{y+2}{-1} = \frac{z}{2}$ and $\frac{x-1}{2} = \frac{y+2}{2} = -z.$
- 8. Write the equation of the line which includes the point (1,7,3) and is perpendicular to the the plane x + 2y = 3.
- 9. Write the equation of the line of intersection of the planes x + 2y z = 2 and 3x + 2y + 2z = 7.
- 10. (a) Prove that $|\mathbf{u} + \mathbf{v}|^2 + |\mathbf{u} \mathbf{v}|^2 = 2|\mathbf{u}|^2 + 2|\mathbf{v}|^2$. (b) Prove that $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} \mathbf{v}) = -2 \mathbf{u} \times \mathbf{v}$. Explain the connection between equation (b) and this picture:
- 11. Write the equations of the curves of intersection of the sphere $x^2 + y^2 + z^2 = 25$ and the $cylinder x^2 + y^2 = 16.$
- (a) $x^2 + z^2 = 4$ (b) $z = \frac{y^2}{4}$ (c) $x^2 + \frac{y^2}{4} + z^2 = 1$ (d) $z = 4 x^2 y^2$ (e) $x^2 + z^2 = y$ (f) $x^2 + z^2 = y^2$ (g) $x^2 z^2 = y$ (h) $\frac{y^2}{4} + \frac{x^2}{4} z^2 = 1$ (i) $\frac{y^2}{4} \frac{x^2}{4} z^2 = 1$ (j) $x^2 16y^2 + 9z^2 = 0$ (k) $x^2 16y + 9z^2 = 0$ (l) $x^2 + y^2 = z^2 + 9$ 12. Sketch these graphs. (State the name of each surface and include all intercepts.)

(a)
$$x^2 + z^2 = 4$$

(b)
$$z = \frac{y^2}{4}$$

(c)
$$x^2 + \frac{g}{4} + z^2 = 1$$
 (d) $z = \frac{1}{2}$

h)
$$\frac{y^2}{x^2} + \frac{x^2}{x^2} - z^2 = 1$$

(e)
$$x^2 + z^2 = y$$

(f)
$$x^2 + z^2 = y^2$$

$$(g) x^2 - z^2 = y$$

(k)
$$x^2 - 16y + 9z^2 = 0$$

(1)
$$x^2 + y^2 = z^2 + 9$$

(m)
$$z^2 = 9 - 4x^2 - y^2$$

- 13. State the name and draw rough sketches of each of the following surfaces:

(b)
$$9x^2 + y^2 + z^2 = 36$$

(c) $9x^2 - 16y^2 + z^2 = 144$

(d)
$$\rho = 3\cos\phi$$

(e) $z = 3 - r^2$

(f)
$$9x^2 - 16y^2 - z^2 = 144$$

14. Sketch the region given in cylindrical coordinates:

(a)
$$z^2 + r^2 = 9$$

(b)
$$z \perp r^2 - 0$$

(c)
$$r = 3$$

(d)
$$r = 4\cos\theta$$

(e)
$$z = 2r$$

(a)
$$z^2 + r^2 = 9$$
 (b) $z + r^2 = 9$ (c) $r = 3$ (d) $r = 4\cos\theta$ (e) $z = 2r$ (f) $r = \frac{6}{2 - \cos\theta}$

Assignment 3

- 15. Sketch the region given in spherical coordinates:
 - (a) $\rho = 5$ (b) $\theta = \frac{\pi}{6}$ (c) $\phi = \frac{\pi}{4}$ (d) $\rho = 5\cos\phi$ (e) $\rho\sin\phi = 8$
- 16. Write an equation in cylindrical coordinates for the ellipsoid $4x^2 + 4y^2 + z^2 = 1$.
- 17. What is the equation in Cartesian coordinates for the surface whose equation in spherical coordinates is $\rho = \sin \theta \sin \phi$?
- 18. Write the equation in spherical coordinates for the surface whose equation in Cartesian coordinates is $x^2 + y^2 + (z 1)^2 = 1$.
- 19. (a) Write the equation $x^2 y^2 + z^2 = 1$ in cylindrical coordinates and simplify.
 - (b) Write the equation $x^2 + y^2 = 9$ in spherical coordinates and simplify.
- 20. The angular momentum of a particle is $\mathbf{L}(t) = m\mathbf{r}(t) \times \mathbf{v}(t)$. Its torque is $\boldsymbol{\tau}(t) = m\mathbf{r}(t) \times \mathbf{a}(t)$. Prove $\frac{d}{dt}\mathbf{L}(t) = \boldsymbol{\tau}(t)$. Deduce that if $\boldsymbol{\tau}(t) = \mathbf{0}$ for all t, then $\mathbf{L}(t)$ is constant. (This is the law of conservation of angular momentum.)
- 21. A position vector of a particle (moving around an ellipse) is $\mathbf{r}(t) = \langle 3\cos t, 2\sin t \rangle$. Find the maximum and minimum values of the magnitude of its acceleration.
- 22. Prove that if a particle's speed is constant, then its acceleration is directed along N.
- 23. Write the equation of the osculating circle of $y = \sin x$ at $\left(\frac{\pi}{2}, 1\right)$.
- 24. $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$. Find a parametrization by arc length.
- 25. Determine T, N and κ for the circular helix $\mathbf{r}(t) = a \cos t \mathbf{i} + a \sin t \mathbf{j} + bt \mathbf{k}$.
- 26. Find the tangential and normal components of acceleration for $\mathbf{r}(t) = \langle t \sin t, 1 \cos t \rangle$.
- 27. Write parametric equations for the tangent line at $(1,1,\frac{2}{3})$ to the curve $\mathbf{r}(t) = \langle t, t^2, \frac{2}{3}t^3 \rangle$.
- 28. Determine the tangential and normal components of acceleration of a particle with position vector $\mathbf{r}(t) = \langle t, t, t^2 \rangle$.
- 29. $\mathbf{r}(t) = \langle t \sin t, t \cos t, t^2 1 \rangle$, $t \in [0, 2\pi]$. Compute: the velocity, speed and acceleration at $t = \pi$; the arc length; the tangential and normal components of acceleration at $t = \pi$; κ at $t = \pi$. Sketch the curve.
- 30. A particle P moves along a curve $\mathbf{r}(t) = (t \frac{t^3}{3}) \mathbf{i} + t^2 \mathbf{j} + (t + \frac{t^3}{3}) \mathbf{k}$. Find: the velocity vector $\mathbf{v}(t)$ and the unit tangent vector $\mathbf{T}(t)$; the unit normal vector $\mathbf{N}(t)$ and the curvature $\kappa(t)$; an integral for the length of the curve cut off by the planes z = 0 and z = 12.
- 31. A particle P moves along a curve $\mathbf{r}(t) = \langle 2 e^t \sin t, e^t, -2 e^t \cos t \rangle$. Find: the velocity vector $\mathbf{v}(t)$ and the unit tangent vector $\mathbf{T}(t)$; the unit normal vector $\mathbf{N}(t)$ and the curvature $\kappa(t)$; an integral for the length of the curve cut off by the planes y = 1 and $y = e^2$.
- 32. At what point does $y = e^x$ have maximum curvature? What is the curvature and the radius of curvature at that point? Find the equation of the osculating circle at the point; draw a sketch of the graph of the function and the osculating circle at the point.
- 33. Find $\mathbf{r}(t)$ if $\mathbf{r}'(t) = \sin t \,\mathbf{i} \cos t \,\mathbf{j} + 2t \,\mathbf{k}$ and $\mathbf{r}(0) = \mathbf{i} + \mathbf{j} + 2\mathbf{k}$.