

Calculus III (Maths 201–DDB)

Answer half the questions in each section. (Your choice, although I suggest you try the others, as they are good preparation for the tests and exam.)

- 1. For the following curves, given parametrically, find $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$; locate all points where the tangent is horizontal or vertical (identify which), and sketch the graph. Describe the concavity. Where indicated, calculate the required area or length.
 - Area: between the curve and the x axis, for $0 \le t \le 4$.

 - (b) $\begin{cases} x = 2 \ln t \\ y = t + \frac{1}{t} \end{cases}$ Length: on the t-interval [1, 5]

 (c) $\begin{cases} x = \cos 2t \\ y = \cos t \end{cases}$ Area: the bounded region between the curve and the y axis.

 (d) $\begin{cases} x = \arcsin(t) \\ y = t^2 1 \end{cases}$ Area: between the curve and the x axis. (Hint: what is the maximum possible range of t?)
- - (a) $\begin{cases} x = 2 \cos t \\ y = 3\sin t + 1 \end{cases}$ (b) $\begin{cases} x = \sqrt{t} \\ y = 2t + 4 \end{cases}$ (c) $\begin{cases} x = \tan^{-1} t \\ y = t^2 1 \end{cases}$ (d) $\begin{cases} x = 2 \frac{1}{t} \\ y = 2t + \frac{1}{t} \end{cases}$
- (a) A bike tire with a radius of 30 cm has a stone stuck in the tread; if the tire travels along a path of 30 m, what is the length of the arched path of the stone?
 - (b) Find the arc length of the curve with parametric equations $x = t^2 \cos t$, $y = t^2 \sin t$, $0 \le t \le 2\pi$.
- (a) Sketch the graphs of the following curves: $r = 2\cos\theta$ and $r = 2\cos2\theta$. Find all points of intersection. Find the area of the region inside the first curve but outside the second.
 - (b) Sketch the graphs of the following curves: r=2 and $r^2=8\sin 2\theta$. Find all points of intersection. Find the area of the region common to both regions defined by the curves.
- 5. Do all parts of this question For the limacon $r = 1 - 2\sin\theta$:
 - (a) sketch the curve;

Instructor: Dr. R.A.G. Seely

- (b) find the tangent line to the curve at $\theta = \frac{\pi}{3}$;
- (c) find all points where the tangent is horizontal or vertical (identify which is which);
- (d) set up (but you need not evaluate) the integrals necessary to find the length of the inner loop, and the area between the inner and outer loops.
- 6. Find the Cartesian equations for the following curves, and sketch them.
 - (b) $r = \frac{1}{2\cos\theta \sin\theta}$ (c) $r = 3 \csc \theta$ (d) $r = 3 - 2 \cos \theta$ (a) $r = 2\cos\theta - \sin\theta$
- 7. Find the polar equations for the following curves, and sketch them.
 - (a) $(x^2 + y^2)^2 4(x^2 y^2) = 0$
- (b) xy = 9
- (a) Show that the tangent lines at the points of intersection of the circles $r = a \sin \theta$ and $r = a \cos \theta$ are perpendicular.
 - (b) Given a curve expressed by parametric equations, show that $\frac{d^2y}{dx^2} = \frac{\frac{dx}{dt}\frac{d^2y}{dt^2} \frac{dy}{dt}\frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}$
- 9. Sketch and name the curve $r = 2\sin^2\left(\frac{\theta}{2}\right)$.
 - (a) Find its length, and
 - (b) the area it encloses.