Calculus III (Maths 201–DDB)

1. For the following power series, find the radius and the interval of convergence.

(a)
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{3n\sqrt{n}}$$
 (b) $\sum_{n=1}^{\infty} \frac{4^n x^n}{(\log(n+1))^n}$ (c) $J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n!)^2} \left(\frac{x}{2}\right)^{2n}$

2. Given $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-5)^n}{n5^n}$ find the interval of convergence of the Taylor series expansions around x = 5 of the following:

(a)
$$f(x)$$
, (b) $f'(x)$, (c) $\int_{5}^{x} f(t) dt$.

- 3. Find power series representations for each function and give the interval of convergence (don't bother checking the endpoints) for each.
- (a) $\sin^2 x$ (b) $\arctan(x^2)$ (c) $\frac{x^3}{e^x}$ (d) $\frac{e^x}{\cos x}$ (e) $\left(\frac{x}{1+x}\right)^3$ (f) $\int_0^x \frac{\arctan t}{t} dt$ (g) $\frac{1}{\sqrt{1+x^2}}$ 4. If $f(x) = \int_0^x \frac{1-e^{-t}}{t} dt$:
 - (a) find a power series for f(x) about x = 0;
 - (b) find the interval of convergence of this series;
 - (c) compute f(0.4) to four decimal place accuracy justifying your answer.
- 5. (a) Find the Taylor series for $f(x) = \frac{3}{x^2 x 2}$ about x = 1. (Hint: partial fractions)
 - (b) Find the interval of convergence of this series.
 - (c) Use the series to compute $f^{(6)}(1)$
- 6. (a) Write the Maclaurin series for $f(x) = \sqrt{1+x}$ (use the Binomial Theorem). What is the interval of convergence?
 - (b) Use the first 4 terms of the power series you just obtained to approximate $\sqrt{16.5}$. (N.B. Be careful about the interval of convergence!)
- 7. Find the value of n so that the error obtained by approximating $\sin x$ by the nth degree Maclaurin polynomial $T_n(x)$ on the interval $-.5 \le x \le .5$ will be less than 5×10^{-6} .
- 8. Find the Taylor polynomial $T_4(x)$ of degree 4 and the remainder $R_4(x)$ for $f(x) = \sqrt[4]{x}$ about x = 16. Use this to estimate $\sqrt[4]{15}$, and give the error bound for your estimation.