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Who am I, and why do research?

I’ve been a teacher at JAC in the mathematics department since
the fall of 1979; in addition to teaching, I have also had a “parallel
career” doing mathematical research, specifically work in logic and
theoretical computer science, being funded by various agencies
such as FCAR, NSERC, and currently, FRQNT in its Programme
de Recherche pour les Enseignants de Collège. Over the years, I’ve
published many research papers in scholarly journals, been an
editor of journals and special collections of papers, and generally
participated in the usual activities of an active scholar in
mathematics. Most years I have had release time for my research,
either funded by Québec agencies or by the college, and have been
fortunate to have worked in an environment at John Abbott which
has been remarkably supportive of pure academic research, as
illustrated by today’s activity.
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I think such research, although often not directly related to our
courses, nonetheless has a positive impact on our activities in the
classroom. In my own case, I have found it possible to directly
introduce material from my research into the college classroom, to
the benefit of both my students and my colleagues, as may be seen
from some examples. My work on monoidal categories has direct
connections with mathematical linguistics, and I have included this
application of monoidal category theory in my Principles of

Mathematics and Logic course for Liberal Arts students at John
Abbott. My course text even includes some excerpts from a couple
of my research papers.
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Insights from my current work on algebraic approaches to
differential calculus have influenced the way I teach college-level
calculus (especially Calculus III). In general, my classroom material
is influenced by my research in many ways, from subtle
presentational matters to explicit descriptions of current
mathematical research, which help students see that mathematics
is a living, growing, even organic, subject, and not merely a dead
repetition of meaningless formulas and rules. Many students have
responded with enthusiasm to these additions to my classroom
repertoire.
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But perhaps most importantly, doing new, fresh, work can help
keep one’s own attitude to the subject new and fresh, and can give
to one’s class presentation an enthusiasm which helps grab
students’ attention and can even give them the impression that
what’s going on may actually be exciting(!). It also can help with
one’s interactions with colleagues; I know I’ve learned much from
conversations with fellow teachers about matters sometimes
closely, sometimes more distantly, related to my research, and
always related to our course material.
In this poster, I’ll try to give some idea of my current research
project, although I’ll try to keep technical material to a reasonable
level. Feel free to skip over anything you don’t understand! —
there won’t be an exam!.
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Introduction (not too technical!)

(This intro should be understandable by anyone who has studied
Calculus III; I make no such promise about the rest of this poster!)
What is the essential (algebraic) structure of undergraduate-level
differential calculus? Specifically, what structure is needed for basic
differentiation? There have been several answers in the literature;
in collaboration with Richard Blute (University of Ottawa) and
Robin Cockett (University of Calgary), I have developed (and
continue to work on) answers to this question based on some
intuitions from categorical logic, specifically some categorical
models of linear logic.
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Why would this be of interest? Well, there are structures occurring
elsewhere in mathematics and in theoretical computer science that
share many of the properties of differentiation, even though they
are not at all what one studies in college calculus courses. In some
cases, these structures are related to very practical matters, such
as the efficiency of some computational algorithm (such as a
computer programme), in other cases they are merely something
which seems to observers to be a beautiful pattern, about which it
would be nice to know more. In either case, there is strong
motivation to study these structures, and if one can understand
them better by seeing their connection—hitherto unnoticed,
perhaps—to ordinary differentiation, then one is that much further
to understanding what is behind the pattern.
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Some examples to motivate the mathematics

Let’s consider some simple examples. First, really simple(!): Take
a function f (x) = x2 (this goes from IR to IR). Usually, we say that
the derivative is f ′(x) = 2x : but what this really means is that for
any input a, the slope is 2a, i.e. the slope function takes an input u
to output 2au. So what we really have is a function which produces
a linear function as output. All we actually will need is that this
function preserves addition: we call such a function additive.

Slide 8

Let’s generalize this a tiny bit by allowing multiple-value inputs
and outputs. Suppose we have a smooth map (i.e. one with all
necessary derivatives) g : IR3

→ IR , such as g(x , y , z) = xyz . We
recall the Jacobian of this map (which for such maps is essentially
the derivative) is [yz , xz , xy ]; this may be regarded as a smooth
operator J which, given input (x , y , z) assigns a linear operator,
J(x , y , z), represented by the matrix [yz , xz , xy ], which in turn,
given any input [u, v ,w ] assigns an output

J(x , y , z)(u, v ,w) = [yz , xz , xy ] · [u, v ,w ] = yzu + xzv + xyw
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We can avoid the notion of a “function-valued function” by simply
going to the last step, so that what we really have, from the initial
smooth function g , is a smooth map D×(g): IR

3
× IR3

→ IR , which
is additive in the first variable (in the first triple of coordinates):

D×(g): ((u, v ,w), (x , y , z)) 7→ [yz , xz , xy ]·[u, v ,w ] = yzu+xzv+xyw
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This suggests that the basic structure we need is the following.
First two types of function: smooth and additive. Then a
“derivative” operation, which, given a smooth function, produces
another smooth function, which is additive in the first variable. In
symbols:

f :X → Y

D×[f ]:X × X → Y
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Introduction (technical summary)

The technical definition resulting from these ideas is the following:

Definition:

A Cartesian differential category is a Cartesian left additive
category which has a Cartesian differential operator D× on the
maps of the category,

f :X → Y

D×[f ]:X × X → Y

which must satisfy certain equations.
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Intuition?

To the non-expert, that definition may seem rather obscure.
Without going into detail, maybe a few pointers can help direct
one to an intuitive idea of what is intended; of course, the
technical details are necessary to “get” the entire picture, and
particularly its utility, but I hope the following remarks may be
useful to some readers.

Category theory is in essence the abstract theory of
functions and function composition, and a category
may be viewed as consisting of objects and maps (or
functions) between them. In general, these “objects”
and “functions” may be very different from what
one usually means by these terms, but for the exam-
ples we have in mind, that intuition isn’t really very
bad. One has “identity maps”, and one can com-
pose maps where appropriate; there are “obvious”
equations that must hold (such as f (gh) = (fg)h).
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A “Cartesian left additive category” has more structure: there are
“Cartesian products” A× B (as one has with sets), and one can
add maps f + g (as in ordinary algebra), again satisfying
appropriate equations.
So a Cartesian differential category is a structure where one can
form products, add maps, and where one has a derivative
operation. The axioms are just basic properties of differentiation,
such as the condition “additive in the first variable”, and the chain
rule.
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More intuition?

The next bit is rather technical, but I’ll try to give some “feeling”
for what it will say. It’s a simple Cal I exercise to get a chain rule
formula for second order (and higher) derivatives, and in a similar
way, we can do that for our Cartesian differential categories. These
the chain rules tell us how to compose (higher order) derivatives.
So we can put together a “family of categories”, whose
composition is given by the (higher order) chain rules (this is called
a fibration), which represents all the higher order categorical
structure of differentiation. This family is the essence of
differentiation, and is a very natural structure (even if it is rather
complicated to describe in detail!). The Cartesian differential
category we started with can be regained from this family (as the
“bottom level”).
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The construction we arrived at (which we named Faà after a 19th
century Italian priest named Francesco Faà di Bruno, beatified by
Pope John Paul II apparently for his charitable work teaching
young women mathematics, and who formulated the higher order
chain rule for “ordinary, Calculus I, calculus”) was, as was Faà di
Bruno’s original, a quite complicated piece of combinatorics. As
neither of us (my coauthor Robin Cockett or myself) was
experienced as a combinatorialist, we found it simpler to ignore
Faà di Bruno’s formula, and work from scratch. And we found it
useful to create some “pictorial” structures to codify the
categorical calculations, in particular, some “labelled trees”, as
seen below. And we had a notion of the “derivative” of such a
tree, which would be a bag of trees created from the original by
adding a new label appropriately in as many ways as possible, as
illustrated below for two trees of height 2 (widths 1, 2).
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Exercise: see if you can calculate the “derivative” ∂x4 of one of the
width 3 trees, and also see if you can work out how many such
trees there are of a given height and width. (You didn’t really
think there’d be no homework, did you??)

and
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Characterization of Cartesian differential categories

Theorem The category of coalgebras for the comonad Faà is
equivalent to the category of Cartesian differential categories and
Cartesian differential functors (Cartesian left additive functors
which preserve the differential combinators).
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Remark: Although I have not defined all the notions in the
Theorem, in fact it gives a complete characterization of Cartesian
differential categories as a natural byproduct of the structure of the
(higher order) chain rule. In effect, this says the structure we have
defined is as tightly connected with the essence of differentiation
as one could hope.
As a personal remark, this result was a complete surprise to us
both as we gradually realized what we had discovered, a very
pleasant surprise indeed.
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An alternate viewpoint

In fact, Cartesian differential categories were the second notion we
developed to describe the categorical structure of differentiation. A
couple of years earlier, we defined (tensor) differential categories in
terms of two categories, one consisting of smooth maps (these are
the maps to be differentiated), and the other consisting of linear
maps (these are the derivatives), with a functor (a map of
categories) which links them (in addition to the differential
operator).
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The link between these two notions is this: for any (tensor)
differential storage category, its “coKleisli category” is a Cartesian
differential category. Our current research is focussed on clarifying
the relationship between the two notions of differential
categories,specifically how to construct a tensor differential
category from a Cartesian differential category. (Apologies for not
explaining these technical notions; but those interested can read
the original papers, found on my website. A talk describing partial
results towards linking the two structures more closely may be
found there also.)
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Diagrammatic notation

One of the technical (and rather attractive) devices we have used
often over the years is to represent maps in structured categories
as graphs (we call them circuits). In the present case, as an
illustration (and sorry, without a proper explanation of how the
notation works∗), here is the calculation of the derivative of a
function u2 in a differential category equipped with a commutative
multiplication operator •:A⊗ A → A, so u2 means u • u.

Slide 22

Then, using the appropriate rewrites for a differential combinator,
we obtain

∗Roughly, the boxes with the double line at top, dotted line at bottom, are

applications of the derivative, the other boxes are maps or functions, labelled as

shown, and the “wires” are objects, also labelled as shown.
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Impact on the work of others

These two categorical notions of differential structure have found
use in the work of other mathematicians, logicians, and computer
scientists in the development of other structures involving
differentiation. One interesting use in theoretical computer science
is differential λ calculus and differential combinatory algebras.
These (and related) structures are intended to provide theoretical
tools for analysing things like the use of resources and the
complexity of computations and programs, in other words, to
measure the effectiveness of programming paradigms. Some
examples: Laird, Manzonetto, and McCusker have modelled
resource sensitive calculi (such as Resource PCF) in differential
categories, which they use to unify Ehrhard & Regnier’s differential
λ calculus and Tranquilli’s resource calculus.
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Paolo Tranquilli has used differential categories as the semantics of
differential linear logic in his study of rewriting for this logic. Giulio
Manzonetto has been looking at differential model theory for
resource λ-calculus, using both of our notions of differential
categories.

In all these cases, having differential categories simplifies the
semantics and provides a clean environment for the research being
done.

Slide 25

In this illustration, taken from a talk by Giulio Manzonetto, the
construction of an embedding of a model of resource PCF into a
Cartesian differential category is shown, starting from a category of
games, G, constructing a related subcategory G⊗ (which is a
Cartesian closed differential category), and then a category of
“exhausting games”, EG, which is a symmetric closed monoidal
category.
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Further information?

You can find several papers I’ve cowritten, and slides for talks I’ve
given, on these matters at my webpage:
http://www.math.mcgill.ca/rags/. All the technical details
casually ignored in this poster may be found there.

In addition, there is a special session on this topic at meeting
organized by the Association of Symbolic Logic at the University of
Waterloo, 8-11 May 2013.
http://www.math.uwaterloo.ca/~asl2013/
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