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Carefully study the text below and attempt the exerciselseaénd. You will be evaluated on this material by writing a

30 to 45 minute test (which may be part of a larger class
include questions drawn from the exercises at the end.

téhiy test will be worth 10% of your class mark and may

This activity will contribute to your attainment of the Soie Program competency: To put in context the emergence

and development of scientific concepts.

1. CONIC SECTIONS

The Greeks originally viewed parabolas (and also circles, e
lipses and hyperbolas) a®nic sections. Imagine rotating a
straight line about a vertical line that intersects it, thbtaining a
circular (double) cone. A horizontal plane intersects thieecin a
circle. When the plane is slightly inclined, the sectiondrees an
ellipse. As the intersecting plane is inclined more towahnesser-
tical, the ellipse becomes more elongated until, finallg, plane
becomes parallel to a generating line of the cone, at whidht po
the section becomes a parabola. If the intersecting plane is
clined still nearer to the vertical, it meets both branchiethe
cone (which it did not do in the previous cases); now the cofve
intersection is a hyperbola.

2. ARCHIMEDES THEOREM

A segment of a convex curve (such as a parabola, ellipse or hy-

perbola) is a region bounded by a straight line and a portidimeo
curve.

In his bookQuadrature of the Parabola, Archimedes gives two
methods for finding the area of a segment of a parabola (prsvio
mathematicians had unsuccessfully attempted to find tteecdz
segment of a circle and of a hyperbola). The second of thede me
ods, which we discuss below, is based on the so-called “rdetho
of exhaustion.”
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Given a parabolic segme&twith base AB (see the above fig-
ure), the pointP of the segment that is farthest from the base is
called thevertex of the segment, and the (perpendicular) distance
from P to AB is its height. (The vertex of a segment is not to be
confused with the vertex of the parabola which, as you wiaik
is the intersection point of the parabola with its axis of syetry.)
Archimedes shows that the area of the segment is four-tthats
of the inscribed trianglel PB. That is,

the area of a segment of a parabold /8 times
the area of the triangle with the same base and
height.
(Exercise 1 asks you to check Archimedes’ resultin a verp&m
case.)

3. PRELIMINARIES ON PARABOLIC SEGMENTS

By the time of Archimedes, the following facts were known
concerning an arbitrary parabolic segméhtvith baseAB and
vertex P (see the figure below).

P1. The tangentline & is parallel toAB.
P2. The straight line through parallel to the axis of the parabola
intersectsA B at its midpoint)M.
P3. Every chord)(Q’ parallel toAB is bisected byP M.
P4. With the notation in the figure below,
PN  NQ?
PM  MB?
(Equivalently, PN = (PM/MB?) - NQ?%. In modern
terms, this says that, in the pictured obliqug-coordinate
system, the equation of the parabolayis= A\z?, where




Archimedes quotes these facts without proof, referringate e
lier treatises on the conics by Euclid and Aristaeus. (Yewaked
to prove the first three properties, mostly by modern methiods
exercises 2, 3 and 4. Using property P2 to find the vertex, yitbu w

then, in exercise 5, verify Archimedes’ theorem in anotipeicsal A B
case. Exercise 6 will then guide you through a modern proof of
the general case.)
r P
4. PRT 1: THE METHOD OFEXHAUSTION I
A/ axis

To find the area of a given parabolic segméntArchimedes
constructs a sequence of inscribed polygBpsP;, P, . .., that ~ The area of this parallelogram is of course greater thantbe a
fill up or “exhaust’S. The first polygorP, is the inscribed tri-  Of the parabolic segmest. Since it also equals twice the area of
angleAPB with AB the base of segmestandP its vertex. To  triangle AP B (why?), it follows that the area of this triangle is
construct the next polygoR;, consider the two smaller parabolic More than half the area of the parabolic segment. The rentaini
segments with basé3B and A P; let their vertices b, andP,,  area, which equald/, becausé®, = AAPB, must therefore be
respectively, and leP; be the polygomd P, PP, B. less than half the area 6t

My < 1 area(S)
Now consider the two trianglesNAP, P and AP P, B) that
are added in the next step to form polygBn The above argu-
ment, applied to the two smaller parabolic segments witledas
AP andP B, shows that the areas of these triangles are more than
half the areas of the two segments. It therefore follows that
M, < %]\/[0
Continuing in this way, we see that
My < $My, Ms < $Ms, ..

and in generalM,, < %Mn,l. It is now easy to prove that
lim,, ... M,, = 0 (see exercise 7), and therefore (1) follows.
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5. PART 2: FINDING THE AREA OF P,

At each step in the construction of the polygoRs, Pi,
P2, ..., we add triangles to the previous polygon: a single tri-
We continue in this way, adding at each step the triangles inangle (A AP B) begins the process, then two trianglésA P, P
scribed in the parabolic segments remaining from the pusvio andAPP; B) are added in the next step, then four triangles are

step. As seems clear from the above figures, the resulting pol added, etc. Leto, a1, az, ..., be the total areas of the triangles
gonsPy, P1, Ps, ..., exhaust the area of the original parabolic added at each step. Thus
segment. In fact, Archimedes carefullgroves this by showing ag = area(AAPB),

that the difference between the areaSoand the area oP,, can

be made as small as one pleases by choossgfficiently large. a; = area(AAP, P) + area(APPB),

In modern terms, this simply means that and so on. In the second part of his proof, Archimedes finds the
(1) lim area(P,) — arca(S) area of the polygon®,, Py, Po, ..., by evaluating the sum
o toee : : . 2 ao + a1+ az + - - + a, = area(P,)
(but it is important to realize that Archimedes, like all #gcient ) )
Greek mathematicians, had no limit concept). The key step is to show that the total area of the triangles@dd
To prove (1), we let at each step is equal 194 the total area of the triangles added at

the previous step. In other words,
M,, = area(S) — area(P,) forn=0,1,2,...
and show thalim,_,., M,, = 0. Consider the parallelogram . . ) . . '
ABB' A’ circumscribed about the segmefitwhose sidestA’  andin generat,, = 3an—1. We will describe Arck_nmedes proof
and BB’ are parallel to the axis of the parabola, and whose baséhata: = jao, leaving the general case to exercise 8.

A’ B'is tangent to the parabola&t(and therefore parallel td B, We want to show that the sumy of the areas of triangles
by property P1). AP,P and PP, B is 1/4 that of AAPB. Apply property P2 to

both the original parabolic segmeStand the smaller segment
with basePB: we obtain two lines parallel to the axis of the
parabola, one going through and intersectingd B at its mid-
point M, and one going througl?; and intersecting®B at its

) alZ%ao, azzial,---,



midpointY. Let M; be the intersection point of this second par-
allel line with AB. Then M is the midpoint of M B because
the trianglest” M; B and PM B are similar. Finally, lel” be the
intersection withP M of the line throughP; parallel toAB (so
VM M, P, is a parallelogram).
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Applying property P4 (withV = V and@ = P;) and noting
thatV Py = MM; = 1 M B, we have
PV _VR® 1
PM  MB? 4
so PM = 4PV (and, therefore}yM = 3PV). Two conse-
guences follow from this. First, sindg M; = V M, we have
(4) P M, =3PV

Second, becaus®, B = 1M B, Y M,
angles again), so that

1 PM (by similar tri-

(5) Y M, = 2PV
Now (4) and (5) imply tha’, Y = PV, so in fact
YM, =2PY

Now consider the two triangleB M, B and PP, B. They have
the same bas®B and, becaus& M; = 2P,Y, a simple argu-
ment with similar triangles shows that the heighteP M, B is
twice the height ofAPP; B (both heights being relative to the
common basé B). Therefore

(6) area(APM;B) = 2area(APP, B)
Similarly, trianglesPM B and PM; B have the same badeB

and, sinceM B = 2M, B, the height ofA PM B is twice that of
APM,B, so

(7 area(APM B) = 2 area(APM; B)
It follows from (6) and (7) that
(8) area(APP; B)

1 area(APM B)

An argument similar to the one in the last two paragraphs

shows that
area(ANAP,P) = % area(ANAPM)
Combining this with (8) then gives
area(AAP, P) + area(APP, B)
1 area(NAPM) + § area(APM B)
1 area(AAPB)

soa; = %ao, as desired (see exercise 9 for a shorter proof).
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Returning now to the area of polygd), (see (2) above) and

using (3), we have finally

B 1 1 1
—G0+ZG0+E(10+"'+4—”(10

In other words, the areas), ai, as, ..., added at each step in
the construction of,, form a geometric sequence with common
ratio 1/4, andarea(P,,) is the sum of the first + 1 terms of this

sequence.

area(Py,)

6. PART 3: CONCLUSION OFARCHIMEDES PROOF

Now that the area dP,, has been determined, it follows from
the conclusion of Part 1 that the difference between theafriwe
parabolic segmer& and the sum

1 1 1
@o + 7o F 750 + e+ 77 do
can be made as small as one pleases by choasmgfficiently
large. In modern terms,
(9) area(S) = nll_% (ao + iao + 4—12(10 4.+ %ao)
and Archimedes now seeks to determine this limit.
He begins by deriving the identity

11 1
(10) I+ = b — 4o

4 42
which is a restatement of the formula you learned for the par-
tial sums of a geometric series (see exercise 10). As Arathesie
shows, (10) follows from the observation that

1 11 4 1 1

IR ST W
for we can then sum the terms on the left side of (10) by repeat-
edly adding the last two terms:
1 1

14+ =4 — 4...
+titet

3
From a modern perspective, Archimedes’ theorem is now a
simple consequence of (9) and (10):

area(S) = ap - lim

n—oo

4 42 4n
4 11
G-37)
—a0-(4-0)

= % area(AAPB)

No doubt Archimedes intuitively obtained the answg3 in a
similar way but, rather than taking limits explicitly, heropleted
the proof by showing that the two alternative conclusions

area(S) < 3 area(AAPB)

=ap - lim
n—oo
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and 6. Prove Archimedes’ theorem by modern methods as follows.
area(S) > % area( AAPB) Using property P2, we can label thecoordinates of4, B and P

both lead to aontradiction, and so must be false. This approach as in the figure below.

(whose details we will omit) was in fact typical of Greek pf®@o

by the method of exhaustion.

7. EXERCISES

1. Use integration to verify Archimedes’ theorem for the segtne

bounded byy = 22 and the liney = 1. (Determine the vertex of

the segment and show that the inscribed triangle has ardaeh T A
integrate to verify that the segment has at¢a.)

2. Property P1 follows easily from a theorem you learned in Cal-

culus I. Which one? (Rotate the parabolic segment untilasseb
AB is horizontal. What can you then say about the veRt@X

p;r

3. Prove property P2 by modern methods as follows. Introduce K r
a rectangular:y-coordinate system centred at the vertex of the
parabola, as in the figure below. Assume first thak = 1.
v (a) Use the method of exercise 5(b) to show that the area-of tri
B angleAPB isr3.

(b) Show that the equation of linéB is y = 2pz — p? + r2.
(c) Find the area of the segment by integrating. (You shoetdg
value of%r?’, thus proving Archimedes’ theorem for= 1.)

A (d) If £ # 1, what changes do you need to make to the calcula-

tions in parts (a), (b) and (c)?
7. (8) Let My, M1, Ms, ..., be any sequence of positive num-

? bers such thab?,, < M, forn =1, 2,.... Show that
lim,, ... M,, = 0. This result, which is really the crux of
the method of exhaustion, is originally due to Eudoxus, a pre

In these coordinates, the equation of the parabola has the fo ~ decessor of Euclid’s. (For the proof, start by showing that

y = kz? and its axis of symmetry is the-axis. Assume first that 0 <M, < Mo/2")
k =1 and writeA = (a,a?), B = (b,b?) andP = (p,p?). (b) Given any positive number< 1, show that the conclusion of

part (a) still holds if the positive numbefdy, M, Mo, ...,
satisfyM,, <rM,_,forn=1,2,....

axis

(a) Show thap = %(a + b). (Compute the slope of the tangent
line at P using (i) calculus and (ii) property P1.)

(b) Explain why the result of part (a) proves property P2. 8. Show that; = jao impliesa; = ;as, and convince yourself
(c) If k # 1, what changes do you need to make to the calculatiorof the general case, = fa, 1.

in part (a)? 9. In exercise 6, you showed that for the parabple k2, the
4. Explain why property P3 follows from P2. (Hint: what is the area of triangled PB is kr3. Use this to give a second proof that
vertex of the parabolic segmeft PQ?) a1 = ao.
5. Consider the parabolic segment boundedyby 2% and the  10. Prove (10) using the formula for the partial sums of a geo-
liney = 2z + 3. metric series:
(a) Sketch the segment and find the poidtsB and P. (Use Lt tr? ey — 1—prtt

property P2 to find the verteR of the segment; see also ex- 1—r

ercise 3(a).) 11. Write a short summary of the three parts of Archimedes’

(b) Let M be the midpoint ofAB. Find the length of°M and  proof.
use it to compute the area of trianglé® B.

(c) Find the area of the segment by integrating and check
Archimedes’ theorem.



8. SOLUTION OUTLINES

1. The inscribed triangle has vertices(dtl, 1) and at the origin
(the vertex of the segment). Since it has width 2 and heigit$ 1,
areais 1. The segment has area

1
2 _ 4
/_1(1 —z%)dr =3
as required.

2. Rotate the parabolic segment until its basB is horizontal.

Because the verteR is the point of the segment that is farthest

from AB, it corresponds to aextreme value (a maximum or a

minimum, depending on whether the segment is above or below
AB). By Fermat’s Theorem (section 4.1 of Stewart), the tangent

line at P must be horizontal, in other words, parallel4@.
3. (@) Since the derivativg’ = 2z, the slope of the tangent line
at P is 2p. On the other hand, the slope 453 is
b% — a?
b—a
By Property P1, these two slopes are equal, so
2p=a+b = p= %(a+b)

(b) The straight line througR parallel to the axis of the parabola
is vertical, so it intersectgl B at a point withz-coordinate
1(a+1b), in other words, at its midpoint.

=b+a

(c) If & # 1, then the two expressions for the slope in part (a)

are scaled by a factor df and one finds, as before, that
p=73(a+b).
4. Any segment of the given parabola whose b@4@ is parallel
to AB will clearly also have vertex’. Applying Property P2 to
the segment with bage’ ), we conclude thaP M intersect)’Q
at its midpoint, as required.

5 (@) A=(-1,1),B =(3,9), P = (1,1), M = (1,5).

Y

B

B/

L7

(b) The length of PM is 4. Referring to the above figure, the
circumscribed parallelogram BB’ A’ has ‘base’ equal to 4
(the length of PM) and ‘height’ equal to 4 (the horizontal
distance betweer and B). Its area is therefore 16, which
is twice the area ofNAPB. Triangle AP B therefore has
area 8. (Alternatively, add the areas of triangleBM and
PBM, and note that these triangles have the same Bage
and equal heights.)

(c) The area of the parabolic segmeh® B is

3
2 _ 32
/ 2z +3—2%)dx ==

-1
which is indeed!/3 times the area of triangld P B.

6. @ A= (p—r,(p—r)?)andB = (p+r,(p+r)?), so the
midpoint of AB is M = (p, p? + r?) because

5(=1+@+7r)?) =p*+r?
SinceP = (p, p?), it follows that the length of? M is r2. As
in the previous problem, the area of triangl® B is half the
area of a parallelogram with ‘base’ equalitband ‘height’
equal to the horizontal distanee betweenA andB. In other
words,

area(ANAPB) = 1r? . 2r = o3

Since the derivativg’ = 2z and P = (p,p?), line AB has
slope2p by property P1. (Alternatively, compute the slope
directly from the coordinates oft and B given in part (a).)
Using the point-slope form

(b)

y—y1=m(xr—x1)
with (z1,31) = M = (p,p? + r?) andm = 2p then gives
y=p>+r>+2p(x —p) =2px — p* + 12
(©)

The required integral

p+r
/ (2px — p* + 72 — 2?) dx
P

-

can be computed in two ways. The firstis to integrate directly

p+r
/ 2prdr =p((p+7)° — (p—r)*) = 4p’r
p

-

p+r
/ (% — p) dz = 20(s” — )
P

—-Tr

p+r
[ =+ = - ) = 3%+ 2
p—r

The area of the segment is therefore

4p?r + 2r% — 2p%r — %7’3 — 2% = %TB

The second way is to note that the integrand contains a perfec

square,

2= 72 - (‘T—p)Qa
and to introduce the substitutian= « — p. The area of the

segmentis then

p+r
[T
p—r

pr —p> +ri—z

T

(r? —t%) dt

(x —p)?) dx:/

—-Tr

t=r
3 143

=273 — %7’3 =443

(d) If & # 1, then they-coordinates ofP and M, the length of
PM, and the area of triangld PB are each scaled by a fac-
tor of k. The same is true of thipcoordinates of all points on
the line AB, and of the integrand in part (c).



7. (@) We have
M, < 1Mo,
My < £ My < 1My,
M3z < £ My < £ Mo,

and in generalM,, < M,/2™. The result then follows from
the Squeeze Theorem (section 8.1 of Stewart).

(b) Show that) < M,, < r" M, and use the Squeeze Theorem,
noting thatlim,, .. »™ = 0 sincel < r < 1.

8. The conclusiorn; iaO is valid not only for the original
parabolic segment (with baséB) but also for all the smaller
segments that arise in the construction of the polygBnsp;,
Pa, .... Thus if we apply this result to the two parabolic seg-
ments with based P and P B, we find that, of the four triangles
added toP; to constructP,, two have combined area equal to

1 area( AAP, P), while the other two have combined area equal

to 1 area(APP;B). It follows thata; = ta;. Similarly, if we
applya; = iaO to the four parabolic segments with basgs;,
P, P, PP, andP, B, we obtainas = %QQ, and so on.

9. Apply the stated result from exercise 6 and property P2 to the

two parabolic segments with basé® and P B: we conclude that
trianglesA P, P and P P, B each have area equal to

k(%r)g = %krg
Therefore,
a; = area(AAP, P) + area(APP, B)
= 1kr? = Larea(AAPB) = 1ag
10. If r = i,
-l 1 gl g1
1—r 1—r 1-7 3 34»

and (10) follows.

9. NOTE ON PROPERTYP4
For completeness, we outline a modern proof of property P4.

This property is equivalent to the assertion that

PN  PM

NQ?2 MB?
for every chordQ@Q’ parallel to AB, so it suffices to show that
the ratio PN/NQ? remains constant a@Q’ varies. Introduce
xy-coordinates as in exercise 3, assutne 1 iny = k2?2, and
write P = (p, p?), Q = (g, ¢?). The equation 0QQ’ is then

y—q*=2p(z—q)
and so
N =(p.2p(p—a) +4°) = (0,0" + (p — 0)?)

Therefore,

PN = (p—q)?

NQ*=(p—q)+4°(p — q)?
SO
PN 1
NQ2  1+4p?

does not depend on the choice®@f)’, as desired. (It # 1, we
haveP = (p, kp?), Q = (¢, kq¢?) and

PN k

NQ?2 1+ 4k%p?
which again is independent of the choice@®’.)

10. SUGGESTIONS FORFURTHER READING

Edwards, C. H., Jr.The Historical Development of the Calcu-
lus. New York: Springer-Verlag, 1979. The principal source
for preparing this assignment. Contains much else about
Archimedes and the development of calculus.

Heath, T. L. The Works of Archimedes. Cambridge: Cam-
bridge University Press, 1897. (Available as a reprint from
Dover Publications.) The complete text @tiadrature of the
Parabola, as translated by Heath, is also available on the web:
www. mat h. ubc. ca/ ~cass/

ar chi medes/ par abol a. ht m .

Netz, Reviel and William Noel.The Archimedes Codex. Lon-
don: Weidenfeld & Nicolson, 2007. A recent popular work on
Archimedes. See also
www. ar chi medespal i npsest. org.



