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Archimedes’ quadrature of the parabola
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CALCULUS II
(SCIENCE)

Carefully study the text below and attempt the exercises at the end. You will be evaluated on this material by writing a
30 to 45 minute test (which may be part of a larger class test).This test will be worth 10% of your class mark and may
include questions drawn from the exercises at the end.
This activity will contribute to your attainment of the Science Program competency: To put in context the emergence
and development of scientific concepts.

1. CONIC SECTIONS

The Greeks originally viewed parabolas (and also circles, el-
lipses and hyperbolas) asconic sections. Imagine rotating a
straight line about a vertical line that intersects it, thusobtaining a
circular (double) cone. A horizontal plane intersects the cone in a
circle. When the plane is slightly inclined, the section becomes an
ellipse. As the intersecting plane is inclined more towardsthe ver-
tical, the ellipse becomes more elongated until, finally, the plane
becomes parallel to a generating line of the cone, at which point
the section becomes a parabola. If the intersecting plane isin-
clined still nearer to the vertical, it meets both branches of the
cone (which it did not do in the previous cases); now the curveof
intersection is a hyperbola.
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2. ARCHIMEDES’ T HEOREM

A segment of a convex curve (such as a parabola, ellipse or hy-
perbola) is a region bounded by a straight line and a portion of the
curve.

In his bookQuadrature of the Parabola, Archimedes gives two
methods for finding the area of a segment of a parabola (previous
mathematicians had unsuccessfully attempted to find the area of a
segment of a circle and of a hyperbola). The second of these meth-
ods, which we discuss below, is based on the so-called “method
of exhaustion.”
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Given a parabolic segmentS with base AB (see the above fig-
ure), the pointP of the segment that is farthest from the base is
called thevertex of the segment, and the (perpendicular) distance
from P to AB is its height. (The vertex of a segment is not to be
confused with the vertex of the parabola which, as you will recall,
is the intersection point of the parabola with its axis of symmetry.)
Archimedes shows that the area of the segment is four-thirdsthat
of the inscribed triangleAPB. That is,

the area of a segment of a parabola is4/3 times
the area of the triangle with the same base and
height.

(Exercise 1 asks you to check Archimedes’ result in a very simple
case.)

3. PRELIMINARIES ON PARABOLIC SEGMENTS

By the time of Archimedes, the following facts were known
concerning an arbitrary parabolic segmentS with baseAB and
vertexP (see the figure below).

P1. The tangent line atP is parallel toAB.
P2. The straight line throughP parallel to the axis of the parabola

intersectsAB at its midpointM .
P3. Every chordQQ′ parallel toAB is bisected byPM .
P4. With the notation in the figure below,

PN

PM
=

NQ 2

MB 2

(Equivalently, PN = (PM/MB 2) · NQ 2. In modern
terms, this says that, in the pictured obliquexy-coordinate
system, the equation of the parabola isy = λx2, where
λ = PM/MB 2.)
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Archimedes quotes these facts without proof, referring to ear-
lier treatises on the conics by Euclid and Aristaeus. (You are asked
to prove the first three properties, mostly by modern methods, in
exercises 2, 3 and 4. Using property P2 to find the vertex, you will
then, in exercise 5, verify Archimedes’ theorem in another special
case. Exercise 6 will then guide you through a modern proof of
the general case.)

4. PART 1: THE METHOD OFEXHAUSTION

To find the area of a given parabolic segmentS, Archimedes
constructs a sequence of inscribed polygonsP0, P1, P2, . . . , that
fill up or “exhaust”S. The first polygonP0 is the inscribed tri-
angleAPB with AB the base of segmentS andP its vertex. To
construct the next polygonP1, consider the two smaller parabolic
segments with basesPB andAP ; let their vertices beP1 andP2,
respectively, and letP1 be the polygonAP2PP1B.
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We continue in this way, adding at each step the triangles in-
scribed in the parabolic segments remaining from the previous
step. As seems clear from the above figures, the resulting poly-
gonsP0, P1, P2, . . . , exhaust the area of the original parabolic
segmentS. In fact, Archimedes carefullyproves this by showing
that the difference between the area ofS and the area ofPn can
be made as small as one pleases by choosingn sufficiently large.
In modern terms, this simply means that

(1) lim
n→∞

area(Pn) = area(S)

(but it is important to realize that Archimedes, like all theancient
Greek mathematicians, had no limit concept).

To prove (1), we let

Mn = area(S) − area(Pn) for n = 0, 1, 2,. . .

and show thatlimn→∞ Mn = 0. Consider the parallelogram
ABB′A′ circumscribed about the segmentS, whose sidesAA′

andBB′ are parallel to the axis of the parabola, and whose base
A′B′ is tangent to the parabola atP (and therefore parallel toAB,
by property P1).
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The area of this parallelogram is of course greater than the area
of the parabolic segmentS. Since it also equals twice the area of
triangleAPB (why?), it follows that the area of this triangle is
more than half the area of the parabolic segment. The remaining
area, which equalsM0 becauseP0 = △APB, must therefore be
less than half the area ofS:

M0 < 1

2
area(S)

Now consider the two triangles (△AP2P and△PP1B) that
are added in the next step to form polygonP1. The above argu-
ment, applied to the two smaller parabolic segments with bases
AP andPB, shows that the areas of these triangles are more than
half the areas of the two segments. It therefore follows that

M1 < 1

2
M0

Continuing in this way, we see that

M2 < 1

2
M1, M3 < 1

2
M2, . . . ,

and in generalMn < 1

2
Mn−1. It is now easy to prove that

limn→∞ Mn = 0 (see exercise 7), and therefore (1) follows.

5. PART 2: FINDING THE AREA OF Pn

At each step in the construction of the polygonsP0, P1,
P2, . . . , we add triangles to the previous polygon: a single tri-
angle (△APB) begins the process, then two triangles (△AP2P
and△PP1B) are added in the next step, then four triangles are
added, etc. Leta0, a1, a2, . . . , be the total areas of the triangles
added at each step. Thus

a0 = area(△APB),

a1 = area(△AP2P ) + area(△PP1B),

and so on. In the second part of his proof, Archimedes finds the
area of the polygonsP0, P1, P2, . . . , by evaluating the sum

(2) a0 + a1 + a2 + · · · + an = area(Pn)

The key step is to show that the total area of the triangles added
at each step is equal to1/4 the total area of the triangles added at
the previous step. In other words,

(3) a1 = 1

4
a0, a2 = 1

4
a1, . . . ,

and in generalan = 1

4
an−1. We will describe Archimedes’ proof

thata1 = 1

4
a0, leaving the general case to exercise 8.

We want to show that the suma1 of the areas of triangles
AP2P andPP1B is 1/4 that of△APB. Apply property P2 to
both the original parabolic segmentS and the smaller segment
with basePB: we obtain two lines parallel to the axis of the
parabola, one going throughP and intersectingAB at its mid-
point M , and one going throughP1 and intersectingPB at its
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midpointY . Let M1 be the intersection point of this second par-
allel line with AB. ThenM1 is the midpoint ofMB because
the trianglesY M1B andPMB are similar. Finally, letV be the
intersection withPM of the line throughP1 parallel toAB (so
V MM1P1 is a parallelogram).
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Applying property P4 (withN = V andQ = P1) and noting
thatV P1 = MM1 = 1

2
MB, we have

PV

PM
=

V P1
2

MB 2
=

1

4
so PM = 4PV (and, therefore,V M = 3PV ). Two conse-
quences follow from this. First, sinceP1M1 = V M , we have

(4) P1M1 = 3PV

Second, becauseM1B = 1

2
MB, Y M1 = 1

2
PM (by similar tri-

angles again), so that

(5) Y M1 = 2PV

Now (4) and (5) imply thatP1Y = PV , so in fact

Y M1 = 2P1Y

Now consider the two trianglesPM1B andPP1B. They have
the same basePB and, becauseY M1 = 2P1Y , a simple argu-
ment with similar triangles shows that the height of△PM1B is
twice the height of△PP1B (both heights being relative to the
common basePB). Therefore

(6) area(△PM1B) = 2 area(△PP1B)

Similarly, trianglesPMB andPM1B have the same basePB
and, sinceMB = 2M1B, the height of△PMB is twice that of
△PM1B, so

(7) area(△PMB) = 2 area(△PM1B)

It follows from (6) and (7) that

(8) area(△PP1B) = 1

4
area(△PMB)

An argument similar to the one in the last two paragraphs
shows that

area(△AP2P ) = 1

4
area(△APM)

Combining this with (8) then gives

area(△AP2P ) + area(△PP1B)

= 1

4
area(△APM) + 1

4
area(△PMB)

= 1

4
area(△APB)

soa1 = 1

4
a0, as desired (see exercise 9 for a shorter proof).

Returning now to the area of polygonPn (see (2) above) and
using (3), we have finally

area(Pn) = a0 +
1

4
a0 +

1

42
a0 + · · · +

1

4n
a0

In other words, the areasa0, a1, a2, . . . , added at each step in
the construction ofPn form a geometric sequence with common
ratio1/4, andarea(Pn) is the sum of the firstn + 1 terms of this
sequence.

6. PART 3: CONCLUSION OFARCHIMEDES’ PROOF

Now that the area ofPn has been determined, it follows from
the conclusion of Part 1 that the difference between the areaof the
parabolic segmentS and the sum

a0 +
1

4
a0 +

1

42
a0 + · · · +

1

4n
a0

can be made as small as one pleases by choosingn sufficiently
large. In modern terms,

(9) area(S) = lim
n→∞

(

a0 +
1

4
a0 +

1

42
a0 + · · · +

1

4n
a0

)

and Archimedes now seeks to determine this limit.
He begins by deriving the identity

(10) 1 +
1

4
+

1

42
+ · · · +

1

4n
+

1

3
·
1

4n
=

4

3
which is a restatement of the formula you learned for the par-
tial sums of a geometric series (see exercise 10). As Archimedes
shows, (10) follows from the observation that

1

4k
+

1

3
·
1

4k
=

4

3 · 4k
=

1

3
·

1

4k−1

for we can then sum the terms on the left side of (10) by repeat-
edly adding the last two terms:

1 +
1

4
+

1

42
+ · · · +

( 1

4n
+

1

3
·

1

4n

)

= 1 +
1

4
+

1

42
+ · · · +

( 1

4n−1
+

1

3
·

1

4n−1

)

= . . .

= 1 +
1

4
+

( 1

42
+

1

3
·
1

42

)

= 1 +
(1

4
+

1

3
·
1

4

)

= 1 +
1

3
=

4

3
From a modern perspective, Archimedes’ theorem is now a

simple consequence of (9) and (10):

area(S) = a0 · lim
n→∞

(

1 +
1

4
+

1

42
+ · · · +

1

4n

)

= a0 · lim
n→∞

(4

3
−

1

3
·
1

4n

)

= a0 · (
4

3
− 0)

= 4

3
area(△APB)

No doubt Archimedes intuitively obtained the answer4/3 in a
similar way but, rather than taking limits explicitly, he completed
the proof by showing that the two alternative conclusions

area(S) < 4

3
area(△APB)
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and
area(S) > 4

3
area(△APB)

both lead to acontradiction, and so must be false. This approach
(whose details we will omit) was in fact typical of Greek proofs
by the method of exhaustion.

7. EXERCISES

1. Use integration to verify Archimedes’ theorem for the segment
bounded byy = x2 and the liney = 1. (Determine the vertex of
the segment and show that the inscribed triangle has area 1. Then
integrate to verify that the segment has area4/3.)

2. Property P1 follows easily from a theorem you learned in Cal-
culus I. Which one? (Rotate the parabolic segment until its base
AB is horizontal. What can you then say about the vertexP?)

3. Prove property P2 by modern methods as follows. Introduce
a rectangularxy-coordinate system centred at the vertex of the
parabola, as in the figure below.
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In these coordinates, the equation of the parabola has the form
y = kx2 and its axis of symmetry is they-axis. Assume first that
k = 1 and writeA = (a, a2), B = (b, b2) andP = (p, p2).

(a) Show thatp = 1

2
(a + b). (Compute the slope of the tangent

line atP using (i) calculus and (ii) property P1.)
(b) Explain why the result of part (a) proves property P2.
(c) If k 6= 1, what changes do you need to make to the calculation

in part (a)?

4. Explain why property P3 follows from P2. (Hint: what is the
vertex of the parabolic segmentQ′PQ?)

5. Consider the parabolic segment bounded byy = x2 and the
line y = 2x + 3.

(a) Sketch the segment and find the pointsA, B andP . (Use
property P2 to find the vertexP of the segment; see also ex-
ercise 3(a).)

(b) Let M be the midpoint ofAB. Find the length ofPM and
use it to compute the area of triangleAPB.

(c) Find the area of the segment by integrating and check
Archimedes’ theorem.

6. Prove Archimedes’ theorem by modern methods as follows.
Using property P2, we can label thex-coordinates ofA, B andP
as in the figure below.

x
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Assume first thatk = 1.

(a) Use the method of exercise 5(b) to show that the area of tri-
angleAPB is r3.

(b) Show that the equation of lineAB is y = 2px − p2 + r2.
(c) Find the area of the segment by integrating. (You should get a

value of 4

3
r3, thus proving Archimedes’ theorem fork = 1.)

(d) If k 6= 1, what changes do you need to make to the calcula-
tions in parts (a), (b) and (c)?

7. (a) LetM0, M1, M2, . . . , be any sequence of positive num-
bers such thatMn < 1

2
Mn−1 for n = 1, 2, . . . . Show that

limn→∞ Mn = 0. This result, which is really the crux of
the method of exhaustion, is originally due to Eudoxus, a pre-
decessor of Euclid’s. (For the proof, start by showing that
0 < Mn < M0/2n.)

(b) Given any positive numberr < 1, show that the conclusion of
part (a) still holds if the positive numbersM0, M1, M2, . . . ,
satisfyMn < rMn−1 for n = 1, 2, . . . .

8. Show thata1 = 1

4
a0 impliesa2 = 1

4
a1, and convince yourself

of the general casean = 1

4
an−1.

9. In exercise 6, you showed that for the parabolay = kx2, the
area of triangleAPB is kr3. Use this to give a second proof that
a1 = 1

4
a0.

10. Prove (10) using the formula for the partial sums of a geo-
metric series:

1 + r + r2 + · · · + rn =
1 − rn+1

1 − r

11. Write a short summary of the three parts of Archimedes’
proof.
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8. SOLUTION OUTLINES

1. The inscribed triangle has vertices at(±1, 1) and at the origin
(the vertex of the segment). Since it has width 2 and height 1,its
area is 1. The segment has area

∫ 1

−1

(1 − x2) dx = 4

3

as required.

2. Rotate the parabolic segment until its baseAB is horizontal.
Because the vertexP is the point of the segment that is farthest
from AB, it corresponds to anextreme value (a maximum or a
minimum, depending on whether the segment is above or below
AB). By Fermat’s Theorem (section 4.1 of Stewart), the tangent
line atP must be horizontal, in other words, parallel toAB.

3. (a) Since the derivativey′ = 2x, the slope of the tangent line
atP is 2p. On the other hand, the slope ofAB is

b2 − a2

b − a
= b + a

By Property P1, these two slopes are equal, so

2p = a + b =⇒ p = 1

2
(a + b)

(b) The straight line throughP parallel to the axis of the parabola
is vertical, so it intersectsAB at a point withx-coordinate
1

2
(a + b), in other words, at its midpoint.

(c) If k 6= 1, then the two expressions for the slope in part (a)
are scaled by a factor ofk and one finds, as before, that
p = 1

2
(a + b).

4. Any segment of the given parabola whose baseQ′Q is parallel
to AB will clearly also have vertexP . Applying Property P2 to
the segment with baseQ′Q, we conclude thatPM intersectsQ′Q
at its midpoint, as required.

5. (a) A = (−1, 1), B = (3, 9), P = (1, 1), M = (1, 5).

x

y
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B

P

M
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(b) The length ofPM is 4. Referring to the above figure, the
circumscribed parallelogramABB′A′ has ‘base’ equal to 4
(the length ofPM ) and ‘height’ equal to 4 (the horizontal
distance betweenA andB). Its area is therefore 16, which
is twice the area of△APB. TriangleAPB therefore has
area 8. (Alternatively, add the areas of trianglesAPM and
PBM , and note that these triangles have the same basePM
and equal heights.)

(c) The area of the parabolic segmentAPB is
∫ 3

−1

(2x + 3 − x2) dx = 32

3

which is indeed4/3 times the area of triangleAPB.

6. (a) A = (p − r, (p − r)2) andB = (p + r, (p + r)2), so the
midpoint ofAB is M = (p, p2 + r2) because

1

2

(

(p − r)2 + (p + r)2
)

= p2 + r2

SinceP = (p, p2), it follows that the length ofPM is r2. As
in the previous problem, the area of triangleAPB is half the
area of a parallelogram with ‘base’ equal tor2 and ‘height’
equal to the horizontal distance2r betweenA andB. In other
words,

area(△APB) = 1

2
r2 · 2r = r3

(b) Since the derivativey′ = 2x andP = (p, p2), line AB has
slope2p by property P1. (Alternatively, compute the slope
directly from the coordinates ofA andB given in part (a).)
Using the point-slope form

y − y1 = m(x − x1)

with (x1, y1) = M = (p, p2 + r2) andm = 2p then gives

y = p2 + r2 + 2p(x − p) = 2px − p2 + r2

(c) The required integral
∫ p+r

p−r

(2px − p2 + r2 − x2) dx

can be computed in two ways. The first is to integrate directly:
∫ p+r

p−r

2px dx = p
(

(p + r)2 − (p − r)2
)

= 4p2r

∫ p+r

p−r

(r2 − p2) dx = 2r(r2 − p2)

∫ p+r

p−r

x2 dx = 1

3

(

(p + r)3 − (p − r)3
)

= 2

3
r3 + 2p2r

The area of the segment is therefore

4p2r + 2r3 − 2p2r − 2

3
r3 − 2p2r = 4

3
r3

The second way is to note that the integrand contains a perfect
square,

2px − p2 + r2 − x2 = r2 − (x − p)2,

and to introduce the substitutiont = x − p. The area of the
segment is then

∫ p+r

p−r

(

r2 − (x − p)2
)

dx =

∫ r

−r

(r2 − t2) dt

= 2r3 −

[

1

3
t3

]t=r

t=−r

= 2r3 − 2

3
r3 = 4

3
r3

(d) If k 6= 1, then they-coordinates ofP andM , the length of
PM , and the area of triangleAPB are each scaled by a fac-
tor of k. The same is true of they-coordinates of all points on
the lineAB, and of the integrand in part (c).
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7. (a) We have

M1 < 1

2
M0,

M2 < 1

2
M1 < 1

4
M0,

M3 < 1

2
M2 < 1

8
M0,

and in generalMn < M0/2n. The result then follows from
the Squeeze Theorem (section 8.1 of Stewart).

(b) Show that0 < Mn < rnM0 and use the Squeeze Theorem,
noting thatlimn→∞ rn = 0 since0 < r < 1.

8. The conclusiona1 = 1

4
a0 is valid not only for the original

parabolic segment (with baseAB) but also for all the smaller
segments that arise in the construction of the polygonsP0, P1,
P2, . . . . Thus if we apply this result to the two parabolic seg-
ments with basesAP andPB, we find that, of the four triangles
added toP1 to constructP2, two have combined area equal to
1

4
area(△AP2P ), while the other two have combined area equal

to 1

4
area(△PP1B). It follows thata2 = 1

4
a1. Similarly, if we

applya1 = 1

4
a0 to the four parabolic segments with basesAP2,

P2P , PP1 andP1B, we obtaina3 = 1

4
a2, and so on.

9. Apply the stated result from exercise 6 and property P2 to the
two parabolic segments with basesAP andPB: we conclude that
trianglesAP2P andPP1B each have area equal to

k(1

2
r)3 = 1

8
kr3

Therefore,

a1 = area(△AP2P ) + area(△PP1B)

= 1

4
kr3 = 1

4
area(△APB) = 1

4
a0

10. If r = 1

4
,

1 − rn+1

1 − r
=

1

1 − r
−

rn+1

1 − r
=

4

3
−

1

3
·
1

4n

and (10) follows.

9. NOTE ON PROPERTYP4

For completeness, we outline a modern proof of property P4.
This property is equivalent to the assertion that

PN

NQ 2
=

PM

MB 2

for every chordQQ′ parallel toAB, so it suffices to show that
the ratioPN/NQ 2 remains constant asQQ′ varies. Introduce
xy-coordinates as in exercise 3, assumek = 1 in y = kx2, and
write P = (p, p2), Q = (q, q2). The equation ofQQ′ is then

y − q2 = 2p(x − q)

and so

N = (p, 2p(p − q) + q2) = (p, p2 + (p − q)2)

Therefore,

PN = (p − q)2

NQ 2 = (p − q)2 + 4p2(p − q)2

so
PN

NQ 2
=

1

1 + 4p2

does not depend on the choice ofQQ′, as desired. (Ifk 6= 1, we
haveP = (p, kp2), Q = (q, kq2) and

PN

NQ 2
=

k

1 + 4k2p2

which again is independent of the choice ofQQ′.)
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www.math.ubc.ca/∼cass/

archimedes/parabola.html.

Netz, Reviel and William Noel.The Archimedes Codex. Lon-
don: Weidenfeld & Nicolson, 2007. A recent popular work on
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