Instructor: Dr. R.A.G. Seely
Test 3 (May 2019)

Cal I (S) (Maths 201-NYA)

(Marks)

Justify all your answers-just having the correct answer is not sufficient.
Pace yourself - a rough guide is to spend less than $2 m$ minutes or so on a question worth marks.
(6) 1. For a continuous function $y=f(x)$, suppose you know its derivative is postive for $-\infty<x<1$ and for $3<x<+\infty$, and that its derivative is negative for $1<x<3$. Furthermore suppose you know that its second derivative is positive for $-\infty<x<0$ and $2<x<4$, and is negative for $0<x<2$ and $4<x<+\infty$. Finally, suppose you know the x-axis is a horizontal asymptote and that $(2,0)$ is the only x-intercept. Draw a rough sketch of the function showing all these properties.
(7) 2. For the following function

$$
y=1+\frac{2}{x}+\frac{1}{x^{2}}
$$

graph the function, identifying all intercepts, aymptotes, local extrema, and inflection points. Specify intervals where the graph is increasing, decreasing, concave up, and concave down. Show all your work.
3. A rectangle is to be inscribed in a quarter circle of radius $=1$ as shown in the figure; find the dimensions that give the rectangle with the largest possible area.
(3×5) 4. Evaluate the following:

(a) $\int_{1}^{2}\left(x-\frac{1}{x}\right)^{2} d x$
(b) $\int_{0}^{\frac{\pi}{6}}\left(t^{2}-\frac{1}{\cos ^{2} t}\right) d t$
(c) $\int\left(\mathrm{e}^{2}+\sqrt[5]{x^{3}}-\mathrm{e}^{x}\right) d x$
(5) 5. Given $f^{\prime \prime}(x)=2+\sin x \quad$ satisfying $\quad f^{\prime}(\pi)=2 \pi, f(\pi)=0$, find the function f.
6. For the function $f(x)=\int_{0}^{x^{2}} \frac{1}{1+t^{2}} d t$, what is the derivative $f^{\prime}(x)$? What is the minimum value of $f(x)$?
7. The graph of $y=\frac{3}{4} x^{4}-6 x^{2}+12$ has exactly two x-intercepts (at ± 2), and so there is a closed region between them, the curve, and the x-axis. Find the area of that region. (You may-or may not!-find that sketching a very rough graph will help you solve this problem.)
8. Express the integral $\int_{0}^{2} x 2^{2 x} d x$ as the limit of a Riemann sum. (You do not need to evaluate the limit!)

