Instructor: Dr. R.A.G. Seely (April 2019)

Cal I (S) (Maths 201–NYA)

Answers

1. (a) 1/4 (b) -3/4 (c) 11/8(d) DNE: Left $\lim = +\infty$, Right $\lim = -\infty$ (e) -2/27 (f) 0 (g) 3/5

2. (a) HAs: $y = \pm 1$; VA: $x = \frac{3}{2}$. (b) HA: $y = \frac{2}{3}$; VA: $x = \frac{2}{3}$. (c) HAs: $y = 0, \frac{7}{2}$; no VA.

3.
$$a = 0, 1, -2$$

- 4. Discontinuous at $x = -\frac{1}{2}$ (not removable: $\lim = \pm \infty$), and at $x = \frac{1}{2}$ (a "gap discontinuity"; note that the limit $\lim_{x \to 1/2} f(x)$ does not exist, since the left and right limits are not equal, so this is not a removable discontinuity).
- 5. $\frac{r}{h} = \frac{3}{15}, V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \frac{1}{25}h^3$, so $\frac{dV}{dt} = \frac{\pi}{25}h^2 \frac{dh}{dt}$. When h = 5m, $\frac{dh}{dt} = -1$ m/min, so $\frac{dV}{dt} = \frac{\pi}{25} \cdot 5^2 \cdot (-1) = -\pi$. So the tank empties at π m³/min.
- 6. Let α be the angle as shown: $\frac{d\alpha}{dt} = 4\pi; \frac{x}{4} = \tan \alpha, \text{ so } \frac{1}{4} \frac{dx}{dt} = \sec^2 \alpha \frac{d\alpha}{dt}, \text{ so } \frac{dx}{dt} = 4(\frac{\sqrt{20}}{4})^2 \cdot 4\pi = 20\pi \text{ km/min if } x = 2.$
- 7. $f'(x) = \frac{2 x^2}{(2 + x^2)^2}$: Max at $x = \sqrt{2}$; min at $x = -\sqrt{2}$.

Note: The critical points are $\pm\sqrt{2}$, so the max and min are at some of $x = \pm 3, \pm\sqrt{2}$; the trick is to decide which is which, so we compare the values at those four points: we get $\pm\frac{3}{11}$ and $\pm\frac{\sqrt{2}}{4}$. But we can estimate these values: $\frac{3}{11} < \frac{3}{10} = .3$, but $\frac{\sqrt{2}}{4} \simeq \frac{1.4}{4} = .35$, so $\frac{\sqrt{2}}{4} > \frac{3}{11}$.

Alternatively, we can use the shape of the graph, using the values of the derivative: $f'(x) = \frac{2-x^2}{(2+x^2)^2} < 0$ on $[-3, -\sqrt{2}]$, so f gets smaller on that domain (so the min is at $-\sqrt{2}$), f(x) > 0 on $[-\sqrt{2}, \sqrt{2}]$, so increases (to the max at $\sqrt{2}$), and then f(x) < 0 on $[\sqrt{2}, 3]$, so f gets smaller there: the max is at $\sqrt{2}$.

