Answers

1.

(a) $1 / 4$
(b) $-3 / 4$
(c) $11 / 8$
(d) DNE: Left $\lim =+\infty$, Right $\lim =-\infty$
(e) $-2 / 27$
(f) $3 / 5$
(g) 0
2. (a) HA: $y=\frac{2}{3}$; VA: $x=\frac{2}{3}$.
(b) HAs: $y= \pm 1$; VA: $x=\frac{3}{2}$. (c) HAs: $y=0, \frac{7}{2}$; no VA.
3. Discontinuous at $x=-1 / 2$ (not removable: $\lim = \pm \infty$), and at $x=1 / 2$ (a "gap discontinuity"; note that the limit $\lim _{x \rightarrow 1 / 2} f(x)$ does not exist, since the left and right limits are not equal, so this is not a removable discontinuity).
4. $a=0,1,-2$
5. Let α be the angle as shown:
$\frac{d \alpha}{d t}=4 \pi ; \frac{x}{2}=\tan \alpha$, so $\frac{1}{2} \frac{d x}{d t}=\sec ^{2} \alpha \frac{d \alpha}{d t}$, so
$\frac{d x}{d t}=2\left(\frac{\sqrt{5}}{2}\right)^{2} \cdot 4 \pi=10 \pi \mathrm{~km} / \mathrm{min}$ if $x=1$.

7. $f^{\prime}(x)=\frac{2-x^{2}}{\left(2+x^{2}\right)^{2}}:$ Max at $x=\sqrt{2}$; min at $x=-\sqrt{2}$.

Note: The critical points are $\pm \sqrt{2}$, so the max and min are at some of $x= \pm 3, \pm \sqrt{2}$; the trick is to decide which is which, so we compare the values at those four points: we get $\pm \frac{3}{11}$ and $\pm \frac{\sqrt{2}}{4}$. But we can estimate these values: $\frac{3}{11}<\frac{3}{10}=.3$, but $\frac{\sqrt{2}}{4} \simeq \frac{1.4}{4}=.35$, so $\frac{\sqrt{2}}{4}>\frac{3}{11}$.
Alternatively, we can use the shape of the graph, using the values of the derivative: $f^{\prime}(x)=\frac{2-x^{2}}{\left(2+x^{2}\right)^{2}}<0$ on $[-3,-\sqrt{2}]$, so f gets smaller on that domain (so the min is at $-\sqrt{2}$), $f(x)>0$ on $[-\sqrt{2}, \sqrt{2}]$, so increases (to the max at $\sqrt{2}$), and then $f(x)<0$ on $[\sqrt{2}, 3]$, so f gets smaller there: the max is at $\sqrt{2}$.

