Cal I (S) (Maths 201-NYA)

Justify all your answers-just having the correct answer is not sufficient.
Pace yourself - a rough guide is to spend less than $2 m$ minutes or so on a question worth m marks.
(2×4) 1. For each of the following functions, find the derivative $f^{\prime}(x)$ using a suitable limit definition. Be sure to state clearly the limit definition of "derivative" you are using. Simplify your answer.
(a) $f(x)=\frac{4}{x-1}$
(b) $f(x)=x^{3}-x$
(5×4) 3. For each of the following functions, find the derivative $\frac{d y}{d x}$ using the derivative formulas. You should use logarithmic differentiation if appropriate. (You do not have to simplify your answers, but you might want to simplify some of the questions.)
(a) $y=8 x^{7}+\sqrt[7]{x^{8}}-\log _{8}(x+7)+\frac{\sin \left(x^{7}\right)}{7}-4^{3 \pi}+\mathrm{e}^{1 / x}$
(b) $y=\tan ^{3}(x) \csc (10 x-1)$
(c) $y=\sqrt[5]{\cot ^{7}\left(\ln \left(6 x^{2}-\mathrm{e}^{x}+1\right)\right)}$
(d) $y=\frac{(4 x-1)\left(x^{2}+1\right)^{3 / 2}}{\sqrt{x} \mathrm{e}^{4 x}}$
(e) $y=\left(x^{3}-1\right)^{\sec (x)}$
4. For the function $y=\ln \left(3 x^{4}+4 x^{3}\right)$, find the second derivative $\frac{d^{2} y}{d x^{2}}$. Give your answer in (fully) simplified form (a ratio of simple polynomials, factored if possible). (You might also want to simplify the first derivative.)
5. The graph of the equation $x^{2}-x y+y^{2}=4$ is an ellipse: find the points where this ellipse crosses the x-axis (i.e. find the x-intercepts of this curve). Show that the tangent lines at these points are parallel to each other.
(2×4) 6. (a) Find all x values where the curve $y=(x-5)^{4}(2 x-1)^{5}$ has a horizontal tangent.
(b) Find all points $(1, y)$ on the curve $x y^{2}-x^{3} y=6$; find the equation of the tangent line at each of these points.
7. Suppose $f(x)=\frac{g(1 / x)}{x}$ and $g(1 / 2)=12, g^{\prime}(1 / 2)=8$. Find $f^{\prime}(2)$.

