Cal I (S) (Maths 201-NYA)

Justify all your answers-just having the correct answer is not sufficient.
Pace yourself - a rough guide is to spend less than $2 m$ minutes or so on a question worth m marks.
(2×4) 1. For each of the following functions, find the derivative $f^{\prime}(x)$ using a suitable limit definition. Be sure to state clearly the limit definition of "derivative" you are using. Simplify your answer.
(a) $f(x)=\sqrt{5-x}$
(b) $f(x)=\frac{1}{4 x+3}$
2. Given the following graph of the derivative of a function $y=f^{\prime}(x)$, draw a rough sketch of the graph of the function $y=f(x)$:

(5×4) 3. For each of the following functions, find the derivative $\frac{d y}{d x}$ using the derivative formulas. You should use logarithmic differentiation if appropriate. (You do not have to simplify your answers, but you might want to simplify some of the questions.)
(a) $y=5 x \sin \left(x^{3}\right)+\sec ^{3}\left(3 x^{4}+1\right)$
(b) $y=15 x^{4}-\frac{5 x^{4}}{8}+\frac{4}{3 x^{5}}+\sqrt[3]{2 \pi}-3^{2 x^{4}+1}$
(c) $y=(x+\sin x)^{2 x^{3}+1}$
(d) $y=\frac{\left(x^{2}+3 x-1\right)^{23}}{\left(3 x^{7}+2 x^{3}-1\right)^{9} \sqrt{5 x^{21}-\frac{5}{x}-5}}$
(e) $y=\sqrt[3]{\csc ^{7}\left(\ln \left(5 x^{2}-\mathrm{e}^{x}+1\right)\right)}$
(2×4) 4. (a) Find the slope and the equation of the tangent line to the curve $x^{2} y^{3}+x y^{4}=x y+4$ at the point $(2,1)$.
(b) Find the slope and the equation of the tangent line to the curve $y=\frac{x}{2 x+1}$ at the point where $x=1$.
5. (a) Find all x values where the curve $x y=1$ has a tangent with slope $=-1$.
(b) Find all x values where the curve $y=9 x^{2 / 3}(x-5)$ has a horizontal tangent.
6. Suppose $g(x)=x f(\sqrt{x})$ and $f(5)=3, f^{\prime}(5)=20$. Find $g^{\prime}(25)$.

