Cal I (S) (Maths 201-NYA)

Justify all your answers-just having the correct answer is not sufficient.
Pace yourself - a rough guide is to spend less than $2 m$ minutes or so on a question worth m marks.
(2×4) 1. For each of the following functions, find the derivative $f^{\prime}(x)$ using a suitable limit definition. Be sure to state clearly the limit definition of "derivative" you are using. Simplify your answer.
(a) $f(x)=\frac{1}{2 x+1}$
(b) $f(x)=\sqrt{4-x}$
2. Given the following graph of the derivative of a function $y=f^{\prime}(x)$, draw a rough sketch of the graph of the function $y=f(x)$:

(5×4) 3. For each of the following functions, find the derivative $\frac{d y}{d x}$ using the derivative formulas. You should use logarithmic differentiation if appropriate. (You do not have to simplify your answers, but you might want to simplify some of the questions.)
(a) $y=25 x^{3}-\frac{6 x^{4}}{5}+\frac{3}{5 x^{3}}+\sqrt[4]{\pi}-2^{3 x^{5}+1}$
(b) $y=2 x \sec \left(x^{2}\right)+\sin ^{3}\left(2 x^{3}+1\right)$
(c) $y=\sqrt[5]{\cot ^{7}\left(\ln \left(6 x^{2}-\mathrm{e}^{x}+1\right)\right)}$
(d) $y=\frac{\left(3 x^{7}+2 x^{3}-1\right)^{9}}{\left(x^{2}+3 x-1\right)^{23} \sqrt{5 x^{21}-\frac{5}{x}-5}}$
(e) $y=(x+\sin x)^{3 x^{2}+1}$
(2×4) 4. (a) Find the slope and the equation of the tangent line to the curve $y=\frac{x}{2 x+1}$ at the point where $x=1$.
(b) Find the slope and the equation of the tangent line to the curve $x^{2} y^{3}+x y^{4}=x y+4$ at the point $(2,1)$.
(2×4) 5. (a) Find all x values where the curve $y=9 x^{2 / 3}(x-5)$ has a horizontal tangent.
(b) Find all x values where the curve $x y=1$ has a tangent with slope $=-1$.
6. Suppose $f(x)=x g(\sqrt{x})$ and $g(3)=5, g^{\prime}(3)=12$. Find $f^{\prime}(9)$.

