Instructor: Dr. R.A.G. Seely (Feb 2019)

Cal I (S) (Maths 201-NYA)

Justify all your answers—just having the correct answer is not sufficient.

Pace yourself—a rough guide is to spend less than 2m minutes or so on a question worth m marks. (Marks)

(2×4) 1. For each of the following functions, find the derivative f'(x) using a suitable limit definition. Be sure to state clearly the limit definition of "derivative" you are using. Simplify your answer.

(a)
$$f(x) = \frac{1}{2x+1}$$
 (b) $f(x) = \sqrt{4-x}$

(3) 2. Given the following graph of the derivative of a function y = f'(x), draw a rough sketch of the graph of the function y = f(x):

(5×4) 3. For each of the following functions, find the derivative $\frac{dy}{dx}$ using the derivative formulas. You should use logarithmic differentiation if appropriate. (You do not have to simplify your answers, but you might want to simplify some of the questions.)

(a)
$$y = 25x^3 - \frac{6x^4}{5} + \frac{3}{5x^3} + \sqrt[4]{\pi} - 2^{3x^5+1}$$
 (b) $y = 2x \sec(x^2) + \sin^3(2x^3+1)$
(c) $y = \sqrt[5]{\cot^7(\ln(6x^2 - e^x + 1))}$ (d) $y = \frac{(3x^7 + 2x^3 - 1)^9}{(x^2 + 3x - 1)^{23}\sqrt{5x^{21} - \frac{5}{x} - 5}}$
(e) $y = (x + \sin x)^{3x^2+1}$

- (2×4) 4. (a) Find the slope and the equation of the tangent line to the curve $y = \frac{x}{2x+1}$ at the point where x = 1.
 - (b) Find the slope and the equation of the tangent line to the curve $x^2y^3 + xy^4 = xy + 4$ at the point (2, 1).
- (2×4) 5. (a) Find all x values where the curve y = 9x^{2/3}(x 5) has a horizontal tangent.
 (b) Find all x values where the curve xy = 1 has a tangent with slope = -1.

(3) 6. Suppose
$$f(x) = x g(\sqrt{x})$$
 and $g(3) = 5$, $g'(3) = 12$. Find $f'(9)$.

(Total: 50)