Name: \qquad

Cal I (S) (Maths 201-NYA)

NYA Cal I - Quiz 3

1. Suppose $f(x)=\left\{\begin{array}{cl}\frac{x^{2}-4}{x^{2}-x-6} & \text { if } x \leq-1 \\ \frac{1}{4} x+1 & \text { if }-1<x<5 \\ \frac{1}{x^{2}-10 x-24} & \text { if } x \geq 5\end{array}\right.$

Find the values of x for which f is discontinuous. For each of these, specify whether the discontinuity is removable, jump, or infinite.
2. Find all values of k that make the function g continuous at $x=3$:

$$
g(x)=\left\{\begin{array}{cc}
\frac{1}{k+1-x} & \text { if } x \leq 3 \\
\sqrt{\frac{x^{2}-5 x+6}{k(x-3)}} & \text { if } x>3
\end{array}\right.
$$

3. At the right is given the graph of a function; for each of the points $x=a, b, c, d$, e state whether the function is (i) continuous and/or (ii) differentiable at the point. (Remember that "is differentiable" means "has a derivative".)

4. Let $f(x)$ be a continuous and differentiable function on the interval $[0,3]$. If $f^{\prime}(x) \leq 2$ for all values of x and $f(0)=4$, then what is the maximum possible value of $f(3)$?
5. For each of the following conditions, draw a rough sketch of the graph of a function which satisfies that condition. If the stated condition is impossible, say so, and explain why.
(a) The function must be continuous everywhere but not differentiable at $x=0$.
(b) The function must be differentiable everywhere, but not continuous at $x=0$.
(c) The function must not be continuous at $x=0$, but $\lim _{x \rightarrow 0} f(x)$ must be defined.
