Instructor: Dr. R.A.G. Seely
Quiz 2
(Feb 2019)

Cal I (S) (Maths 201-NYA)

Answers

1. Given a right-angled triangle with y the vertical side, the base being 10 ft , and the angle opposite the vertical side being θ : we have $\frac{d y}{d t}=-20(\mathrm{ft} / \mathrm{sec})$, and also $y=10 \tan \theta$; hence $-20=\frac{d y}{d t}=$ $10 \sec ^{2} \theta \frac{d \theta}{d t}$. So $\sec ^{2} \theta \frac{d \theta}{d t}=-2$, so $\frac{d \theta}{d t}=-2 \cos ^{2} \theta$. When $\theta=0$ (i.e. when the balloon hits the ground), $\cos \theta=\cos 0=1$ and so $\frac{d \theta}{d t}=-2$. The angle is deceasing at 2 (radians) per second.
2. We could work with h or with r; just for "variety" I'll work with r, remembering that $h=2 r$ and so $\frac{d h}{d t}=2 \frac{d r}{d t}$. Then we have $V=\frac{1}{3} \pi r^{2} h=\frac{2}{3} \pi r^{3}$, so $\frac{d V}{d t}=2 \pi r^{2} \frac{d r}{d t}$. Hence $5=2 \pi \frac{d r}{d t}$, so $\frac{d r}{d t}=\frac{5}{2 \pi}$, and so $\frac{d h}{d t}=5 / \pi(\mathrm{m} / \mathrm{s})$.
3. Similar triangles: if $x=$ distance from light to man, $y=$ length of shadow, then $\frac{x}{2}=\frac{12}{y}$, so $x y=24$. Since $\frac{d x}{d t}=1.6$, and $y \frac{d x}{d t}+x \frac{d y}{d t}=0$, we get $\frac{d y}{d t}=-\frac{y}{x} \frac{d x}{d t}=-\frac{3}{8}(1.6)=-0.6$. So the shadow is shrinking at $0.6 \mathrm{~m} / \mathrm{s}$.

The pictures:

