Instructor: Dr. R.A.G. Seely
Quiz 1
(Feb 2019)
Cal I (S) (Maths 201-NYA)

With Answers

1. For each of the following functions, find the derivative $f^{\prime}(x)$ using the limit definition.
(3)
(a) $f(x)=\frac{5}{3-x}$

Answer:

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{5}{(3-(x+h)}-\frac{5}{3-x}\right)=\lim _{h \rightarrow 0} \frac{5}{h}\left(\frac{(3-x)-(3-x-h)}{(3-x)(3-x-h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{5}{h} \frac{h}{(3-x)(3-x-h)}=\frac{5}{(3-x)^{2}}
\end{aligned}
$$

(b) $f(x)=\sqrt{2 x+1}$

Answer:
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{2(x+h)+1}-\sqrt{2 x+1}}{h}=\lim _{h \rightarrow 0} \frac{2 h}{h(\sqrt{2(x+h)+1}+\sqrt{2 x+1})}=\frac{1}{\sqrt{2 x+1}}$
2. For each of the following functions, find the derivative $f^{\prime}(x)$ using the derivative formulas. You don't need to simplify.
(a) $f(x)=4 x^{7}-\frac{3}{\sqrt{x}}+5 \sqrt[4]{x^{7}}-2$

Answer:
$f^{\prime}(x)=28 x^{6}+\frac{3}{2} x^{-3 / 2}+\frac{35}{4} x^{3 / 4}$
(b) $y=\frac{\left(5 x^{7}-2 x^{4}+3 x\right)^{10}}{(5 x+12)^{4}}$

Answer:
$y^{\prime}=\frac{10\left(5 x^{7}-2 x^{4}+3 x\right)^{9}\left(35 x^{6}-8 x^{3}+3\right)(5 x+12)^{4}-\left(5 x^{7}-2 x^{4}+3 x\right)^{10} \cdot 4(5 x+12)^{3}(5)}{(5 x+12)^{8}}$
3. Find the equations of the lines tangent to the curve $y=x^{3}-10 x+1$ which are parallel to the straight line $2 x-y+5=0$.
Answer:
Want slope $m=2$, which is at $x= \pm 2$. At $x=-2$ the equation of the tangent line is $y=2 x+17$; at $x=2$ the equation of the tangent line is $y=2 x-15$.
4. Find the values of x at which the curve $y=4 x^{3}+3 x+5$ has a horizontal tangent.

Answer:

$y^{\prime}=12 x^{2}+3$, so $y^{\prime}=0$ for no (real) x; i.e. there is no such x.

