Workshop 1 Solutions

1 Given $d V / d t=2$, find $d h / d t$ when $h=5 . V=\frac{1}{3} \pi r^{2} h$ and, from similar triangles, $\frac{r}{h}=\frac{3}{10} \Rightarrow V=\frac{\pi}{3}\left(\frac{3 h}{10}\right)^{2} h=\frac{3 \pi}{100} h^{3}$, so $2=\frac{d V}{d t}=\frac{9 \pi}{100} h^{2} \frac{d h}{d t} \Rightarrow \frac{d h}{d t}=\frac{200}{9 \pi h^{2}}=\frac{200}{9 \pi(5)^{2}}=\frac{8}{9 \pi} \mathrm{~cm} / \mathrm{s}$ when $h=5$.

2 We are given $d z / d t=30 \mathrm{ft} / \mathrm{s}$. By similar triangles, $\frac{y}{z}=\frac{4}{\sqrt{241}} \Rightarrow$

$$
y=\frac{4}{\sqrt{241}} z, \text { so } \frac{d y}{d t}=\frac{4}{\sqrt{241}} \frac{d z}{d t}=\frac{120}{\sqrt{241}} \approx 7.7 \mathrm{ft} / \mathrm{s} .
$$

3 Let (b, c) be on the curve, that is, $b^{2 / 3}+c^{2 / 3}=a^{2 / 3}$. Now $x^{2 / 3}+y^{2 / 3}=a^{2 / 3} \Rightarrow \frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} \frac{d y}{d x}=0$, so $\frac{d y}{d x}=-\frac{y^{1 / 3}}{x^{1 / 3}}=-\left(\frac{y}{x}\right)^{1 / 3}$, so at (b, c) the slope of the tangent line is $-(c / b)^{1 / 3}$ and an equation of the tangent line is $y-c=-(c / b)^{1 / 3}(x-b)$ or $y=-(c / b)^{1 / 3} x+\left(c+b^{2 / 3} c^{1 / 3}\right)$. Setting $y=0$, we find that the x-intercept is $b^{1 / 3} c^{2 / 3}+b=b^{1 / 3}\left(c^{2 / 3}+b^{2 / 3}\right)=b^{1 / 3} a^{2 / 3}$ and setting $x=0$ we find that the y-intercept is $c+b^{2 / 3} c^{1 / 3}=c^{1 / 3}\left(c^{2 / 3}+b^{2 / 3}\right)=c^{1 / 3} a^{2 / 3}$. So the length of the tangent line between these two points is

$$
\begin{aligned}
\sqrt{\left(b^{1 / 3} a^{2 / 3}\right)^{2}+\left(c^{1 / 3} a^{2 / 3}\right)^{2}} & =\sqrt{b^{2 / 3} a^{4 / 3}+c^{2 / 3} a^{4 / 3}}=\sqrt{\left(b^{2 / 3}+c^{2 / 3}\right) a^{4 / 3}} \\
& =\sqrt{a^{2 / 3} a^{4 / 3}}=\sqrt{a^{2}}=a=\text { constant }
\end{aligned}
$$

4 We are given $d x / d t=8 \mathrm{ft} / \mathrm{s} \cdot \cot \theta=\frac{x}{100} \Rightarrow x=100 \cot \theta \Rightarrow$ $\frac{d x}{d t}=-100 \csc ^{2} \theta \frac{d \theta}{d t} \Rightarrow \frac{d \theta}{d t}=-\frac{\sin ^{2} \theta}{100} \cdot 8$. When $y=200, \sin \theta=\frac{100}{200}=\frac{1}{2} \Rightarrow$
 $\frac{d \theta}{d t}=-\frac{(1 / 2)^{2}}{100} \cdot 8=-\frac{1}{50} \mathrm{rad} / \mathrm{s}$. The angle is decreasing at a rate of $\frac{1}{50} \mathrm{rad} / \mathrm{s}$.

Workshop 1 Solutions

5

(2.G Pytheromes
the length

$$
\text { Band }=5 \text {) }
$$

$$
\begin{aligned}
& \operatorname{Sos} \tan \frac{\alpha}{2}=\frac{3}{x} \\
& \operatorname{or} \cot \frac{\alpha}{3}=\frac{x}{3} \\
&\text { So (take } \left.\frac{d}{d t}\right)-\frac{1}{2} \csc ^{2} \frac{\alpha}{2} \frac{d \alpha}{d t}=\frac{1}{3} d x=\frac{1}{3} \\
& \text { So } \frac{d x}{d t}=-\frac{2}{3} \sin ^{2} \frac{\alpha}{2} \\
&=-\frac{2}{3}\left(\frac{3}{5}\right)^{2}=\frac{-6}{25}
\end{aligned}
$$

6 We are given that $\frac{d x}{d t}=300 \mathrm{~km} / \mathrm{h}$. By the Law of Cosines, $y^{2}=x^{2}+1^{2}-2(1)(x) \cos 120^{\circ}=x^{2}+1-2 x\left(-\frac{1}{2}\right)=x^{2}+x+1$, so $2 y \frac{d y}{d t}=2 x \frac{d x}{d t}+\frac{d x}{d t} \Rightarrow \frac{d y}{d t}=\frac{2 x+1}{2 y} \frac{d x}{d t}$. After 1 minute, $x=\frac{300}{60}=5 \mathrm{~km} \Rightarrow$ $y=\sqrt{5^{2}+5+1}=\sqrt{31} \mathrm{~km} \Rightarrow \frac{d y}{d t}=\frac{2(5)+1}{2 \sqrt{31}}(300)=\frac{1650}{\sqrt{31}} \approx 296 \mathrm{~km} / \mathrm{h}$.

7 We are given that $\frac{d \theta}{d t}=4(2 \pi)=8 \pi \mathrm{rad} / \mathrm{min} x=3 \tan \theta \Rightarrow$ $\frac{d x}{d t}=3 \sec ^{2} \theta \frac{d \theta}{d t}$. When $x=1, \tan \theta=\frac{1}{3}, \operatorname{so~}^{2} \sec ^{2} \theta=1+\left(\frac{1}{3}\right)^{2}=\frac{10}{9}$ and $\frac{d x}{d t}=3\left(\frac{10}{9}\right)(8 \pi)=\frac{80}{3} \pi \approx 83.8 \mathrm{~km} / \mathrm{min}$.

8 We are given that $\frac{d \theta}{d t}=\frac{2 \pi \mathrm{rad}}{2 \mathrm{~min}}=\pi \mathrm{rad} / \mathrm{min}$. By the Pythagorean Theorem, when $h=6, x=8$, so $\sin \theta=\frac{6}{10}$ and $\cos \theta=\frac{8}{10}$. From the figure, $\sin \theta=\frac{h}{10} \Rightarrow$ $h=10 \sin \theta$, so $\frac{d h}{d t}=10 \cos \theta \frac{d \theta}{d t}=10\left(\frac{8}{10}\right) \pi=8 \pi \mathrm{~m} / \mathrm{min}$.

Instructor: Dr. R.A.G. Seely (Oct 2016)

Workshop 1

Cal I (S) (Maths 201-NYA)

The quickies about derivatives:

1. True/False: (justify!) If $f(x)$ is differentiable:
(a) $\frac{d}{d x}(\sqrt{f(x)})=\frac{f^{\prime}(x)}{2 \sqrt{f(x)}} \quad$ True
(b) $\frac{d}{d x}(f(\sqrt{x}))=\frac{f^{\prime}(x)}{2 \sqrt{x}}$
False
2. (a) $y^{\prime}=-\frac{1}{3}(x+\sqrt{x})^{-4 / 3}\left(1+\frac{1}{2 \sqrt{x}}\right)$
(b) $y^{\prime}=\frac{\left(x^{2}+1\right)^{4}}{(2 x+1)^{3}(3 x-1)^{5}}\left(\frac{8 x}{x^{2}+1}-\frac{6}{2 x+1}-\frac{15}{3 x-1}\right)$
(c) $y^{\prime}=-\sin (x) e^{\cos x}-\sin \left(e^{x}\right) e^{x}$

Postscript:

Alternate Solution to Q2 about the waterskier:

(I'll use the notation of Stewart's solution to Q100 on p. 269 - as given on Lea!)
Although the method of similar triangles gives the answer "immediately", since $\frac{y}{z}=\frac{4}{\sqrt{241}}$ so that $\frac{d y}{d t}=\frac{4}{\sqrt{241}} \frac{d z}{d t}=\frac{120}{\sqrt{241}}$, one could also use Pythagoras as well.
$\frac{x}{y}=\frac{15}{4}$ so $x=\frac{15}{4} y$, so $z^{2}=x^{2}+y^{2}=\left(\frac{4^{2}+15^{2}}{4^{2}}\right) y^{2}$ so $2 z \frac{d z}{d t}=2 y \frac{4^{2}+15^{2}}{4^{2}} \frac{d y}{d t}$, and hence $\frac{d y}{d t}=\frac{z}{y} \frac{4^{2}}{4^{2}+15^{2}} \frac{d z}{d t}=$ $\frac{4 \cdot 30}{\sqrt{4^{2}+15^{2}}}=\frac{120}{\sqrt{241}}$

