Instructor: Dr. R.A.G. Seely (Fall 2018)

Rhoda's Review Exercises

Calculus I (Maths 201–NYA)

With Answers

Trigonometry

1. Find the following values without a calculator or notes:

- (a) $\sin(\pi/3)$
- (b) $\csc(-5\pi/6)$
- (c) $\cot(\pi/2)$
- 2. Solve for x over the specified interval:
 - (a) $6\sin(x) = \sqrt{18}$, on $[0, 2\pi)$ (b) $2\cos(x) + 2 = 1$, on $[-\pi, \pi)$ (c) $1 + \sin(x) = 1 - \cos(x)$, on $[0, 2\pi)$ (d) $\tan(5x) = \sqrt{3}$, on $[0, \pi]$

(d)
$$\cos(13\pi/4)$$

(e) $\tan(7\pi/2)$
(f) $\sin^3(5\pi/4)(\sec^2(\pi/3) - \csc^2(\pi/3))$

(e) $6 \csc(2x - \frac{\pi}{3}) = 12$, on $[-\pi/2, \pi/2]$ (f) $\sin^2(x) = \frac{1}{2}$, on $[0, 2\pi)$ (g) $\sin^2(x) - 2\cos(x) = \cos^2(x) - \cos(x)$, on $[0, 2\pi)$

Common Errors

3. Find the mistake(s):

(a)

$$(\cos(x) + \sin(x))^2 = \cos^2(x) + \sin^2(x) = 1$$

(b)

$$x\sin(x) = 4\sin(x)$$
$$x = 4$$

(c)

$$x^{2} - 6x + 9 = 16$$
$$(x - 3)^{2} = 16$$
$$x - 3 = 4$$
$$x = 7$$

(d)

$$\frac{\sqrt{x^4 - 8x^3 - 7x^2}}{\ln(x^3 - x)} = \frac{\sqrt{x^2(x^2 - 8x - 7)}}{\ln(x(x^2 - 1))}$$
$$= \frac{x\sqrt{x^2 - 8x - 7}}{\ln(x(x^2 - 1))}$$
$$= \frac{\sqrt{x^2 - 8x - 7}}{\ln(x^2 - 1)}$$
$$= \frac{\sqrt{(x - 1)(x - 7)}}{\ln((x - 1)(x + 1))}$$
$$= \frac{\sqrt{x - 7}}{\ln(x + 1)}$$

(e)

$$\frac{64 - (x - 1)^3}{(x - 1)(x - 5)} = \frac{64 - (x - 1)^2}{x - 5}$$
$$= \frac{(8 - x - 1)(8 + x - 1)}{x - 5}$$
$$= \frac{(7 - x)(7 + x)}{x - 5}$$
$$= \frac{x^2 - 49}{x - 5}$$

(f) Let
$$f(x) = \sqrt{2x+1}$$
.
Then

$$\frac{f(x+h) - f(x)}{h} = \frac{\sqrt{2x+1+h} - \sqrt{2x+1}}{h}$$
$$= \frac{\sqrt{2x+1} + \sqrt{h} - \sqrt{2x+1}}{h}$$
$$= \frac{\sqrt{h}}{h}$$
$$= \frac{1}{\sqrt{h}}$$

(g)

$$\frac{\sin(9-x^2)}{\cos(2x^2+8x+6)} = \frac{\sin((x+3)(x-3))}{\cos(2(x+3)(x+1))}$$
$$= \frac{\sin((x+3)(x-3))}{2\cos((x+3)(x+1))}$$
$$= \frac{\sin(x-3)}{2\cos(x+1)}$$

Answers

Note: "RA" means "Reference Angle"; "Q" means "Quadrant"; "QA" means "Quadrant Angle"

- 1. (a) $\sqrt{3}/2$ [RA $\frac{\pi}{3}$,Q I] (b) -2 [RA $\frac{\pi}{6}$, Q III] (c) 0 [QA] (d) $-\sqrt{2}/2$ [RA $\frac{\pi}{4}$, Q III] (e) undefined [QA] (f) $-\frac{2\sqrt{2}}{2}$ [$\frac{5\pi}{4}$: RA $\frac{\pi}{4}$, Q III; $\frac{\pi}{2}$: RA $\frac{\pi}{2}$, Q I]
- 2. (a) $\sin x = \frac{\sqrt{9}\sqrt{2}}{6} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$ so $x = \frac{\pi}{4}$ and in Q II $\frac{3\pi}{4}$.
 - (b) $\cos x = -\frac{1}{2}$ so RA $= \frac{\pi}{6}$, so $x = \frac{2\pi}{3}$ in Q II and $x = -\frac{2\pi}{3}$ in Q III.
 - (c) $\sin x = -\cos x$ so $\tan x = -1$: RA = $\frac{\pi}{4}$, but in Q II or Q IV. In the given range, such $x = \frac{3\pi}{4}, \frac{7\pi}{4}$.
 - (d) $5x = \frac{\pi}{3}(+k\pi)$, so $x = \frac{1}{5}(\frac{\pi}{3} + k\pi)$; in the given range, $x = \frac{\pi}{15}, \frac{4\pi}{15}, \frac{7\pi}{15}, \frac{2\pi}{3}, \frac{13\pi}{15}$.
 - (e) $\csc(2x \frac{\pi}{3}) = 2$ so $\sin(2x \frac{\pi}{3}) = \frac{1}{2}$, so $2x \frac{\pi}{3} = \frac{\pi}{6}, \frac{5\pi}{6}$ ($\pm 2k\pi$), and so (in our range) $x = -\frac{5\pi}{12}, \frac{\pi}{4}$. (These correspond to $2x \frac{\pi}{3} = \frac{\pi}{6}$ and $2x \frac{\pi}{3} = -\frac{7\pi}{6}$.)
 - (f) $\sin x = \pm \frac{1}{\sqrt{2}}$, so (as with the previous question) $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$.
 - (g) $1 \cos^2 x = \cos^2 x + \cos x$ (Pythagoras), so $2\cos^2 x + \cos x 1 = 0$ (Quadratic equation, with "variable" $\cos x$). Solving, $\cos x = -1, \frac{1}{2}$, so $x = \pi, \frac{\pi}{3}$, and (in Q III) $\frac{5\pi}{3}$.
- 3. (a) $(\cos(x) + \sin(x))^2 \neq \cos^2(x) + \sin^2(x)$ because you cannot distribute exponents across addition or subtraction. You would have to multiply this out in full: $(\cos(x) + \sin(x))^2 = \cos^2(x) + 2\cos(x)\sin(x) + \sin^2(x) = 1 + 2\cos(x)\sin(x)$
 - (b) If you 'cancel' $\sin(x)$ from each side, you are dividing by $\sin(x)$ which assumes $\sin(x) \neq 0$. This causes you to lose the solutions to the equation for which $\sin(x) = 0$. $x = 0, \pm \pi, \pm 2\pi, \ldots$ are also solutions to the equation. (The full solution set is $x \in \{4, k\pi\}$, where $k \in \mathbb{Z}$.)
 - (c) The fundamental error here is thinking that $\sqrt{A^2} = A$. Since $\sqrt{A^2}$ is positive irrespective of the sign of A, in reality $\sqrt{A^2} = |A|$. Then $(x 3)^2 = 16 \Rightarrow |x 3| = 4 \Rightarrow x = 7$ OR x = -1.
 - (d)

$$\frac{\sqrt{x^4 - 8x^3 - 7x^2}}{\ln(x^3 - x)} = \frac{\sqrt{x^2(x^2 - 8x - 7)}}{\ln(x(x^2 - 1))}$$

$$= \frac{x\sqrt{x^2 - 8x - 7}}{\ln(x(x^2 - 1))}$$

$$= \frac{\sqrt{x^2 - 8x - 7}}{\ln(x^2 - 1)}$$
you cannot cancel the *x* trapped inside line
$$= \frac{\sqrt{(x - 1)(x - 7)}}{\ln((x - 1)(x + 1))}$$
the factoring under the square root is incorrect
$$= \frac{\sqrt{x - 7}}{\ln(x + 1)}$$
you cannot cancel from inside a function

(e)

$$\frac{64 - (x-1)^3}{(x-1)(x-5)} = \frac{64 - (x-1)^2}{x-5}$$
 you
$$= \frac{(8-x-1)(8+x-1)}{x-5}$$
$$= \frac{(7-x)(7+x)}{x-5}$$
$$= \frac{x^2 - 49}{x-5}$$

you cannot cancel across an addition or subtraction

(x-1) must remain in brackets

$$(7-x)(7+x) = 49 - x^2$$

(f) Let
$$f(x) = \sqrt{2x+1}$$
.
Then

$$\frac{f(x+h) - f(x)}{h} = \frac{\sqrt{2x+1+h} - \sqrt{2x+1}}{h}$$
$$= \frac{\sqrt{2x+1} + \sqrt{h} - \sqrt{2x+1}}{h}$$
$$= \frac{\sqrt{h}}{h}$$
$$= \frac{1}{\sqrt{h}}$$

$$f(x+h) = \sqrt{2(x+h) + 1} = \sqrt{2x + 2h + 1}$$

 $\frac{1}{2}$ you cannot distribute a $\sqrt{-}$ across addition or subtraction

(g)

$$\frac{\sin(9-x^2)}{\cos(2x^2+8x+6)} = \frac{\sin((x+3)(x-3))}{\cos(2(x+3)(x+1))}$$
$$= \frac{\sin((x+3)(x-3))}{2\cos((x+3)(x+1))}$$
$$= \frac{\sin(x-3)}{2\cos(x+1)}$$

$$9 - x^2 = (3 - x)(3 + x)$$

you cannot pull a factor out of a function you cannot cancel from inside a function