Calculus I (Maths 201-NYA)

With Answers

Trigonometry

1. Find the following values without a calculator or notes:
(a) $\sin (\pi / 3)$
(d) $\cos (13 \pi / 4)$
(b) $\csc (-5 \pi / 6)$
(e) $\tan (7 \pi / 2)$
(c) $\cot (\pi / 2)$
(f) $\sin ^{3}(5 \pi / 4)\left(\sec ^{2}(\pi / 3)-\csc ^{2}(\pi / 3)\right)$
2. Solve for x over the specified interval:
(a) $6 \sin (x)=\sqrt{18}$, on $[0,2 \pi)$
(e) $6 \csc \left(2 x-\frac{\pi}{3}\right)=12$, on $[-\pi / 2, \pi / 2]$
(b) $2 \cos (x)+2=1$, on $[-\pi, \pi)$
(f) $\sin ^{2}(x)=\frac{1}{2}$, on $[0,2 \pi)$
(c) $1+\sin (x)=1-\cos (x)$, on $[0,2 \pi)$
(d) $\tan (5 x)=\sqrt{3}$, on $[0, \pi]$
(g) $\sin ^{2}(x)-2 \cos (x)=\cos ^{2}(x)-\cos (x)$, on

Common Errors

3. Find the mistake(s):
(a)

$$
(\cos (x)+\sin (x))^{2}=\cos ^{2}(x)+\sin ^{2}(x)=1
$$

(b)

$$
\begin{aligned}
x \sin (x) & =4 \sin (x) \\
x & =4
\end{aligned}
$$

(c)

$$
\begin{aligned}
x^{2}-6 x+9 & =16 \\
(x-3)^{2} & =16 \\
x-3 & =4 \\
x & =7
\end{aligned}
$$

(d)

$$
\begin{aligned}
\frac{\sqrt{x^{4}-8 x^{3}-7 x^{2}}}{\ln \left(x^{3}-x\right)} & =\frac{\sqrt{x^{2}\left(x^{2}-8 x-7\right)}}{\ln \left(x\left(x^{2}-1\right)\right)} \\
& =\frac{x \sqrt{x^{2}-8 x-7}}{\ln \left(x\left(x^{2}-1\right)\right)} \\
& =\frac{\sqrt{x^{2}-8 x-7}}{\ln \left(x^{2}-1\right)} \\
& =\frac{\sqrt{(x-1)(x-7)}}{\ln ((x-1)(x+1))} \\
& =\frac{\sqrt{x-7}}{\ln (x+1)}
\end{aligned}
$$

(e)

$$
\begin{aligned}
\frac{64-(x-1)^{3}}{(x-1)(x-5)} & =\frac{64-(x-1)^{2}}{x-5} \\
& =\frac{(8-x-1)(8+x-1)}{x-5} \\
& =\frac{(7-x)(7+x)}{x-5} \\
& =\frac{x^{2}-49}{x-5}
\end{aligned}
$$

(f) Let $f(x)=\sqrt{2 x+1}$.

Then

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\sqrt{2 x+1+h}-\sqrt{2 x+1}}{h} \\
& =\frac{\sqrt{2 x+1}+\sqrt{h}-\sqrt{2 x+1}}{h} \\
& =\frac{\sqrt{h}}{h} \\
& =\frac{1}{\sqrt{h}}
\end{aligned}
$$

(g)

$$
\begin{aligned}
\frac{\sin \left(9-x^{2}\right)}{\cos \left(2 x^{2}+8 x+6\right)} & =\frac{\sin ((x+3)(x-3))}{\cos (2(x+3)(x+1))} \\
& =\frac{\sin ((x+3)(x-3))}{2 \cos ((x+3)(x+1))} \\
& =\frac{\sin (x-3)}{2 \cos (x+1)}
\end{aligned}
$$

Answers

Note: "RA" means "Reference Angle"; "Q" means "Quadrant"; "QA" means "Quadrant Angle"

1. (a) $\sqrt{3} / 2\left[\mathrm{RA} \frac{\pi}{3}, \mathrm{Q} \mathrm{I}\right]$
(b) $-2\left[\mathrm{RA} \frac{\pi}{6}, \mathrm{Q}\right.$ III $]$
(c) $0[\mathrm{QA}]$
(d) $-\sqrt{2} / 2\left[\mathrm{RA} \frac{\pi}{4}, \mathrm{Q} \mathrm{III}\right]$
(e) undefined [QA]
(f) $-\frac{2 \sqrt{2}}{3} \quad\left[\frac{5 \pi}{4}:\right.$ RA $\frac{\pi}{4}$, Q III; $\frac{\pi}{3}:$ RA $\left.\frac{\pi}{3}, \mathrm{Q} \mathrm{I}\right]$
2. (a) $\sin x=\frac{\sqrt{9} \sqrt{2}}{6}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$ so $x=\frac{\pi}{4}$ and in Q II $\frac{3 \pi}{4}$.
(b) $\cos x=-\frac{1}{2}$ so RA $=\frac{\pi}{6}$, so $x=\frac{2 \pi}{3}$ in Q II and $x=-\frac{2 \pi}{3}$ in Q III.
(c) $\sin x=-\cos x$ so $\tan x=-1:$ RA $=\frac{\pi}{4}$, but in Q II or Q IV. In the given range, such $x=\frac{3 \pi}{4}, \frac{7 \pi}{4}$.
(d) $5 x=\frac{\pi}{3}(+k \pi)$, so $x=\frac{1}{5}\left(\frac{\pi}{3}+k \pi\right)$; in the given range, $x=\frac{\pi}{15}, \frac{4 \pi}{15}, \frac{7 \pi}{15}, \frac{2 \pi}{3}, \frac{13 \pi}{15}$.
(e) $\csc \left(2 x-\frac{\pi}{3}\right)=2$ so $\sin \left(2 x-\frac{\pi}{3}\right)=\frac{1}{2}$, so $2 x-\frac{\pi}{3}=\frac{\pi}{6}, \frac{5 \pi}{6}(\pm 2 k \pi)$, and so (in our range) $x=-\frac{5 \pi}{12}, \frac{\pi}{4}$. (These correspond to $2 x-\frac{\pi}{3}=\frac{\pi}{6}$ and $2 x-\frac{\pi}{3}=-\frac{7 \pi}{6}$.)
(f) $\sin x= \pm \frac{1}{\sqrt{2}}$, so (as with the previous question) $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$.
(g) $1-\cos ^{2} x=\cos ^{2} x+\cos x$ (Pythagoras), so $2 \cos ^{2} x+\cos x-1=0$ (Quadratic equation, with "variable" $\cos x$). Solving, $\cos x=-1, \frac{1}{2}$, so $x=\pi, \frac{\pi}{3}$, and (in Q III) $\frac{5 \pi}{3}$.
3. (a) $(\cos (x)+\sin (x))^{2} \neq \cos ^{2}(x)+\sin ^{2}(x)$ because you cannot distribute exponents across addition or subtraction. You would have to multiply this out in full: $(\cos (x)+\sin (x))^{2}=$ $\cos ^{2}(x)+2 \cos (x) \sin (x)+\sin ^{2}(x)=1+2 \cos (x) \sin (x)$
(b) If you 'cancel' $\sin (x)$ from each side, you are dividing by $\sin (x)$ which assumes $\sin (x) \neq$ 0 . This causes you to lose the solutions to the equation for which $\sin (x)=0 . \quad x=$ $0, \pm \pi, \pm 2 \pi, \ldots$ are also solutions to the equation. (The full solution set is $x \in\{4, k \pi\}$, where $k \in \mathbf{Z}$.)
(c) The fundamental error here is thinking that $\sqrt{A^{2}}=A$. Since $\sqrt{A^{2}}$ is positive irrespective of the sign of A, in reality $\sqrt{A^{2}}=|A|$. Then $(x-3)^{2}=16 \Rightarrow|x-3|=4 \Rightarrow x=7$ OR $x=-1$.
(d)

$$
\begin{aligned}
\frac{\sqrt{x^{4}-8 x^{3}-7 x^{2}}}{\ln \left(x^{3}-x\right)} & =\frac{\sqrt{x^{2}\left(x^{2}-8 x-7\right)}}{\ln \left(x\left(x^{2}-1\right)\right)} \\
& =\frac{x \sqrt{x^{2}-8 x-7}}{\ln \left(x\left(x^{2}-1\right)\right)} \\
& =\frac{\sqrt{x^{2}-8 x-7}}{\ln \left(x^{2}-1\right)} \\
& =\frac{\sqrt{(x-1)(x-7)}}{\ln ((x-1)(x+1))} \quad \text { the factoring under the square root is incorrect } \\
& =\frac{\sqrt{x-7}}{\ln (x+1)} \quad \text { you cannot cancel the } x \text { trapped inside } \ln \\
& \quad \text { you cannot cancel from inside a function }
\end{aligned}
$$

(e)

$$
\begin{array}{rlr}
\frac{64-(x-1)^{3}}{(x-1)(x-5)} & =\frac{64-(x-1)^{2}}{x-5} & \text { you cannot cancel across an addition or subtraction } \\
& =\frac{(8-x-1)(8+x-1)}{x-5} & (x-1) \text { must remain in brackets } \\
& =\frac{(7-x)(7+x)}{x-5} & \\
& =\frac{x^{2}-49}{x-5} & (7-x)(7+x)=49-x^{2}
\end{array}
$$

(f) Let $f(x)=\sqrt{2 x+1}$.

Then

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\sqrt{2 x+1+h}-\sqrt{2 x+1}}{h} \quad f(x+h)=\sqrt{2(x+h)+1}=\sqrt{2 x+2 h+1} \\
& =\frac{\sqrt{2 x+1}+\sqrt{h}-\sqrt{2 x+1}}{h} \quad \text { you cannot distribute a } \sqrt{ } \text { across addition or subtraction } \\
& =\frac{\sqrt{h}}{h} \\
& =\frac{1}{\sqrt{h}}
\end{aligned}
$$

(g)

$$
\begin{array}{rlr}
\frac{\sin \left(9-x^{2}\right)}{\cos \left(2 x^{2}+8 x+6\right)} & =\frac{\sin ((x+3)(x-3))}{\cos (2(x+3)(x+1))} & \\
& =\frac{\sin ((x+3)(x-3))}{2 \cos ((x+3)(x+1))} & \text { you cannot pull a factor out of a function } \\
& =\frac{\sin (x-3)}{2 \cos (x+1)} & \text { you cannot cancel from inside a function }
\end{array}
$$

