Want to show: $\sqrt[3]{1+x}<1+\frac{1}{3} x$
Proof: Let $f(x)=\sqrt[3]{1+x}$, so $f^{\prime}(x)=\frac{1}{3}(1+x)^{-2 / 3}$.
Note that f is continuous and differentiable on $[0, \infty),(-1, \infty)$ in fact.
Note also that $f^{\prime}(x)<\frac{1}{3}$ for any $x>0\left(\right.$ since $(1+x)^{-2 / 3}<1$ for any $\left.x>0\right)$.

For any $x \geq 0$, by the MVT there's a c (between 0 and x) so that

$$
f^{\prime}(c)=\frac{f(x)-f(0)}{x-0}
$$

so that

$$
f(x)-1=f^{\prime}(c) \cdot x
$$

and so

$$
f(x)=1+f^{\prime}(c) \cdot x<1+\frac{1}{3} x
$$

i.e.

$$
\sqrt[3]{1+x}<1+\frac{1}{3} x
$$

for any $x>0$. (QED)

The answer as given in the exam:

13. Use the Mean Value Theorem to show that $\sqrt[3]{1+x}<1+\frac{1}{3} x$ for all $x>0$.
(If it helps, you may use the fact that this is equivalent to proving that $\sqrt[3]{1+x}-\left(1+\frac{1}{3} x\right)<0$ for all $\left.x>0.\right)$

Answer

OPTION A: If $f(x)=(1+x)^{1 / 3}$ then f is differentiable (and thus continuous) on $(-1, \infty)$. For $x>0$, the mean value theorem applied to f on $[0, x]$ yields a real number x_{0} such that $0<x_{0}<x$ and $f(x)=f(0)+f^{\prime}\left(x_{0}\right)(x-0)=1+\frac{1}{3} x\left(1+x_{0}\right)^{-2 / 3}$ $<1+\frac{1}{3} x$, since $\left(1+x_{0}\right)^{-2 / 3}<1$.

OR OPTION B: Let $f(x)=\sqrt[3]{1+x}-\left(1+\frac{1}{3} x\right)$, so $f^{\prime}(x)=\frac{1}{3 \sqrt[3]{(1+x)^{2}}}-\frac{1}{3}$. Note that f is continuous on $[0, \infty)$ and differentiable on $(0, \infty)$. The MVT states that there must exist a point $x_{0} \in(0, a)$ such that $f^{\prime}\left(x_{0}\right)=\frac{f(a)-f(0)}{a-0}=\frac{f(a)}{a}$ for any interval $(0, a)$, which implies that $a \cdot f^{\prime}\left(x_{0}\right)=f(a)$ must hold for any $a>0$. However, $f^{\prime}(x)$ is always negative for $x>0$, so $a \cdot f^{\prime}\left(x_{0}\right)$ (and therefore $\left.f(a)\right)$ must always be less than zero when $a>0$, i.e. $\sqrt[3]{1+x}<1+\frac{1}{3} x$ for all $x>0$.

