Want to show: $\sqrt[3]{1+x} < 1 + \frac{1}{3}x$

Proof: Let $f(x) = \sqrt[3]{1+x}$, so $f'(x) = \frac{1}{3}(1+x)^{-2/3}$. Note that f is continuous and differentiable on $[0, \infty)$, $(-1, \infty)$ in fact. Note also that $f'(x) < \frac{1}{3}$ for any x > 0 (since $(1+x)^{-2/3} < 1$ for any x > 0).

For any $x \ge 0$, by the MVT there's a c (between 0 and x) so that

$$f'(c) = \frac{f(x) - f(0)}{x - 0}$$

so that

$$f(x) - 1 = f'(c) \cdot x$$

and so

$$f(x) = 1 + f'(c) \cdot x < 1 + \frac{1}{3}x$$

i.e.

$$\sqrt[3]{1+x} < 1 + \frac{1}{3}x$$

for any x > 0. (QED)

The answer as given in the exam:

13. Use the Mean Value Theorem to show that $\sqrt[3]{1+x} < 1 + \frac{1}{3}x$ for all x > 0. (If it helps, you may use the fact that this is equivalent to proving that $\sqrt[3]{1+x} - (1 + \frac{1}{3}x) < 0$ for all x > 0.)

Answer

OPTION A: If $f(x) = (1+x)^{1/3}$ then f is differentiable (and thus continuous) on $(-1, \infty)$. For x > 0, the mean value theorem applied to f on [0, x] yields a real number x_0 such that $0 < x_0 < x$ and $f(x) = f(0) + f'(x_0)(x-0) = 1 + \frac{1}{3}x(1+x_0)^{-2/3} < 1 + \frac{1}{3}x$, since $(1+x_0)^{-2/3} < 1$.

OR **OPTION B:** Let $f(x) = \sqrt[3]{1+x} - (1+\frac{1}{3}x)$, so $f'(x) = \frac{1}{3\sqrt[3]{(1+x)^2}} - \frac{1}{3}$. Note that f is continuous on $[0,\infty)$ and differentiable on $(0,\infty)$. The MVT states that there must exist a point $x_0 \in (0,a)$ such that $f'(x_0) = \frac{f(a) - f(0)}{a - 0} = \frac{f(a)}{a}$ for any interval (0,a), which implies that $a \cdot f'(x_0) = f(a)$ must hold for any a > 0. However, f'(x) is always negative for x > 0, so $a \cdot f'(x_0)$ (and therefore f(a)) must always be less than zero when a > 0, i.e. $\sqrt[3]{1+x} < 1 + \frac{1}{3}x$ for all x > 0.