Instructor: Dr. R.A.G. Seely "}\\’ Cal II (S) (Maths 201-NYB)

Integration by Parts: The “Table Method”

1 The Method

The table is made up of several “levels”, beginning with the original choice of u and dwv.

Differentiate u to get du Integrate dv to get v
[ u = dU = . dl‘
(1) + du = . dx vo=
J  (just rearrange) J  (just rearrange)
[ u = dU = . dl‘
(2) - | du = . dzx vo=
J  (just rearrange) J  (just rearrange)
u = dv = . dzx
(3) + du = . dx vo=
J  (just rearrange) J  (just rearrange)
u = ... dv = . dzx
(4) - du = ... dz vo=

Read the “diagonals” wv with alternating + signs. So (1) is 4uwv, (2) is —uwv, (3) is +uwv, (4) is —uwv,
etc.

Read the “bottom horizontals” v du as integrals, with the sign of the next level. So (1) becomes

— [vdu, (2)is + [vdu, (3) is — [vdu, ete.

(Although you don’t need these, the “top horizontals”, u dv, are read as integrals with the same sign as their
level, so (1) is + [ udv, (2) is — [wdv, etc. This way, the integration by parts formula [udv=uv — [vdu
is maintained.)

Within any level, calculate du and v by differentiating and integrating, respectively.

To go from one level to the next, either just move the dx over, leaving the rest of the expression
unchanged (this is the usual step), or (if it makes things easier) you can rearrange other parts of
the expression as well. The important thing is that both horizontal lines, v du or u dv must read the
same, as algebraic expressions, after multiplying the parts, v x du and u x dv, to get vdu and u dv.
As long as this condition is met, you won’t go wrong.

At any stage, the table can be read to give an equation for the original integral: read the diagonals
(with their ) until finally reading a bottom [ v du horizontal to finish. N.B. If a du is ever 0, then
this last step also gives a 0, and so the integral is completely evaluated. So, stop the table if you get
du = 0 at any level.

Note: This method can be streamlined, dropping the extra notation with w’s and v’s, and dropping
the repeated horizontal lines from one level to the next. I leave that to you, once you get used to the
principles involved. I think for most beginners, the presentation above, although a bit repetitive, is
less likely to cause confusion, leading to errors.
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2 Examples

Try these “longhand” without the table also, to see just how the table reflects the calculations you need to
make, but simplifies keeping track of brackets, & signs, and so on. You will then be better able to use the
table with confidence (and to avoid silly errors!). The table doesn’t replace “thinking” — it just helps keep
track of repetitive calculations.

1
1. /x?’ e dy = 5303 e —2302 eQx—l—gx e _16_6 24

Our first example is perhaps the simplest and most typical use of the table, to handle repeated
integration by parts. Since the table ends with a 0, we get the answer directly as shown.

(1) + v = z° dv = e dx
| du = 322 dzx v o= % elx
[ u = 32 dv = %e% dx There is a small “trick” here:
(2) - du = 6zdx v = Lle2w we need to use substitution to
- _ 6 do — 11 20 g calculate the v as
(3) + e v ! [e? dx = Le?:
du = 6d = le¥* 2
| = t v= 8 let t =22 and dt = 2dx.
u = 6 dv = Lle¥
4) — 8
(4) | du = Odx v % elx
2. / arcsin x dx
Start the table:
. w = arcsinx dv = dx
(1) + du = —11_902 dx vo=
Note that continuing in the usual way, letting the next level be
1
U= — dv=zdz

V1—a?
we will get more and more complicated entries. But if we look at the bottom horizontal [ vdu, we see
a simple substitution

rdx
V1 — 22

So we continue with that rather than with integration by parts. (This can be done within the table,

(Let t=1—2%, dt = =2z dx)

in fact, but that isn’t necessary, and so I will skip making that explicit.)

rdx

V1— 22
) ( 1/ dt)

= grarcsine — |—= [ —
2 Vit

1
= garcsinz + §/t_1/2 dt

/arcsin rdr = xarcsinz —

12
= xarcsinx—l—§1t1/2—|— C

= zarcsinz +V1—22+ C
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3. /en sin z dz

This example illustrates “recursion”: after two table levels, essentially the same integral reappears, so
we stop the table, read it as an equation, to be solved.

(1) + u = e dv = sinzdx
du = 2e2% (x v = —COSZI
u = 2% dv = —coszdx
(2) - _ 2x _ .
du = 4e*% dx v = —sinzx

Writing down the equation this gives, we have:
/en sinzdr = (— e%” cos x) — (—2 e?” sin x) + (— /4 e sinx dx)
= —e2xcosw—|—2e21’sinx—4/e21’sinxd9€
So 5/e2xsinxd9€ = —e¥cosz+2e*sing

1 2
& so /ezxsinxdx = —gezxcosx—l—gem’sinx—l—C

4. We finish with an example to illustrate that “back-substitution” may also be done using integration
by parts (though you may prefer to continue to use “back-substitution”). (This particular example
might also be tried with trigonometric substitution — decide which method you prefer.)

/963\/362 + 1dx

[}

dv = 2zvz?2+ 1dzx

) U %x

(1) + du = zdz vo= %($2—|—1)3/2

(2) - u = dv = 2x(2®+ 1) da
du 0 v o= %($2 + 1)5/2

Wl N =

So /963\/362 + 1dx

2 12
$2 g ($2 + 1)3/2 _ g g ($2 + 1)5/2

2
($2 + 1)3/2 _ B ($2 + 1)5/2_|_ C
In level 1 we arranged the parts of the integral so that the dv could be easily integrated, using the
substitution ¢t = 22 + 1, dt = 2z dz, making dv = 12 dt.

In going from level 1 to level 2, we arranged the parts of the horizontal line so that again dv could be
easily integrated, using in fact the same substitution.

Ending with du = 0 stopped the process, giving the final answer.

3 Exercises
Some to try yourself: (Also do the exercises in your text.)

1. /wzsin%vdx 2. /wseczxdx 3. /warcsecxdw 4, /e?’xcos5xdx 5. /wlnxdw



