
Maths DDB — Cal III Instructor: Dr.R.A.G. Seely

Calculating ζ(2)—over and over again!

We shall start with the integral
∫

sink x dx. Using integration by parts, we can show that the following
recursion equation is true (for all values of k):∫

sink x dx = −1

k
sink−1 x cosx+

k − 1

k

∫
sink−2 x dx

Denote the definite integral
∫ π/2
0 sink x dx by I(k). Note that by the above I(k) = k−1

k I(k − 2).

Using this recursion formula, we can show that the following equation is true (for all integers n > 0):

I(2n+ 1) =

∫ π/2

0
sin2n+1 x dx =

2n

2n+ 1
· 2n− 2

2n− 1
· · · · · 2

3
· 1 (1)

Next consider the power series representation of arcsinx:

arcsinx = x+
∞∑
n=1

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
· x

2n+1

2n+ 1
(2)

obtained by integrating the binomial expansion (as we did in class!):

1√
1− t2

= 1 +
∑ 1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
t2n

Using the change of variables x = sin θ and equation (1), we can show that

∫ 1

0

x2n+1

√
1− x2

dx =

∫ π/2

0
sin2n+1 θ dθ =

2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n+ 1)
(3)

and by direct (Cal II) integration that

∫ 1

0

arcsinx√
1− x2

dx =
π2

8
(4)

Using the infinite series (equation (2)) for arcsinx, and equation (3), it follows that

∫ 1

0

arcsinx√
1− x2

dx = 1 +
1

32
+

1

52
+

1

72
+ · · · =

∞∑
n=1

1

(2n− 1)2
(5)

This series is the “odd-numbered half” of the p-series (p = 2); since absolutely convergent series may
be rearranged, we can in fact rearrange things to show that this is 3

4 of the full series:

∞∑
n=1

1

n2
=
∞∑
n=1

1

(2n− 1)2
+
∞∑
n=1

1

(2n)2
and

∞∑
n=1

1

(2n)2
=

1

4

∞∑
n=1

1

n2



and hence

∞∑
n=1

1

(2n− 1)2
=

3

4

∞∑
n=1

1

n2
i.e.

∞∑
n=1

1

n2
=

4

3

∞∑
n=1

1

(2n− 1)2
(6)

So we conclude using equations (4, 5, 6) that

∞∑
n=1

1

n2
=

4

3

π2

8
=
π2

6

This is a famous result of Euler’s (“E as in e”). It was the first result obtained in summing p series∑ 1
np , usually1 denoted ζ(p). It is not too difficult (Euler did it!) to extend Euler’s result to obtain

formulas for all the even powers ζ(2n) (apparently he knew such formulas in the 18th century, although
formal proofs for the formulas for ζ(2n) were not generally understood until later in the 19th century),
but to this day, no formula is known for any of the odd powers, not even for the “simplest” ζ(3) =

∑ 1
n3 .

About 25 years ago ζ(3) was shown to be irrational, but beyond that little is known in terms of actual
formulas like the one shown here for ζ(2).

1This “zeta function” ζ(s) is one of the really famous functions of mathematics, and a conjecture concerning its
behaviour (the “Riemann hypothesis”) is one of several million dollar problems that challenge mathematicians. You can
find out more at http://www.claymath.org/prizeproblems/



Next we’ll see two other proofs of the Euler formula using double integrals. They are “simple” in
different ways; you decide which you think is simpler overall!

First:

We start by calculating

∫ 1

0

∫ 1

0

dx dy

1− x2y2
, an improper integral, but we shall ignore that for now

(exercise: check the appropriate limit to show this does converge).

(1− x2y2)−1 = 1 + x2y2 +
(−1)(−2)

2!
(−x2y2)2 +

(−1)(−2)(−3)

3!
(−x2y2)3 + · · ·

= 1 + x2y2 + x4y4 + x6y6 + · · ·

So ∫ 1

0

dx

1− x2y2
= x+

1

3
x3y2 +

1

5
x5y4 +

1

7
x7y6 + · · ·

]1
0

= 1 +
1

3
y2 +

1

5
y4 +

1

7
y6 + · · ·

So ∫ 1

0

∫ 1

0

dx

1− x2y2
dy = y +

1

32
y3 +

1

52
y5 +

1

72
y7 + · · ·

]1
0

= 1 +
1

32
+

1

52
+

1

72
+ · · ·

=
3

4
ζ(2)

(by equation 6). In other words,

ζ(2) =
4

3

∫ 1

0

∫ 1

0

dx dy

1− x2y2

Now we shall calculate this double integral another way, using the transformation

x =
sin(u)

cos(v)
, y =

sin(v)

cos(u)

over the triangle T = {〈u, v〉 | u, v ≥ 0, u+ v ≤ π/2}.
Note that this transformation maps T to the unit square [0, 1]× [0, 1] in the xy plane. Its Jacobian is
1− x2y2, and the area of T is 1

2 × base× height = π2/8.

So ∫ 1

0

∫ 1

0

dx dy

1− x2y2
=

∫ ∫
T
du dv =

π2

8

and hence

ζ(2) =
4

3

π2

8
=
π2

6



Second:

This time we calculate

∫ 1

0

∫ 1

0

dx dy

1− xy
, another improper integral (again, you should check the appro-

priate limit to show this also converges).

Again we use infinite series:

(1− xy)−1 = 1 + xy +
(−1)(−2)

2!
(−xy)2 +

(−1)(−2)(−3)

3!
(−xy)3 + · · ·

= 1 + xy + x2y2 + x3y3 + · · ·

So ∫ 1

0

dx

1− xy
= x+

1

2
x2y +

1

3
x3y3 +

1

4
x4y3 + · · ·

]1
0

= 1 +
1

2
y +

1

3
y2 +

1

4
y3 + · · ·

So ∫ 1

0

∫ 1

0

dx

1− xy
dy = y +

1

22
y2 +

1

32
y3 +

1

42
y4 + · · ·

]1
0

= 1 +
1

22
+

1

32
+

1

42
+ · · ·

In other words,∫ 1

0

∫ 1

0

dx dy

1− xy
=
∞∑
n=1

1

n2
= ζ(2)

We now evaluate the double integral another way, to obtain an actual value for
∞∑
n=1

1

n2
.

Effectively we shall rotate the unit square (and double its area) with the transformation x = u − v,
y = u + v. First, as an exercise, you should show that this transformation takes the square R:
[0, 1] × [0, 1] to the diamond S given by these four lines: v = −u, v = u, v = u − 1, v = 1 − u.

Furthermore, the Jacobian ∂(x,y)
∂(u,v) = 2.

So we have the following calculation (there are hints below, so you can fill in the details for yourself).∫ ∫
R

1

1− xy
dx dy = 2

∫ ∫
S

1

1− (u2 − v2)
du dv

= 2

∫ 1/2

0

∫ u

−u

1

1− u2 + v2
dv du+ 2

∫ 1

1/2

∫ 1−u

u−1

1

1− u2 + v2
dv du

= 2 arcsin2(12)− 2 arcsin2(0) + π(arcsin(1)− arcsin(12))

− (arcsin2(1)− arcsin2(12))

=
π2

18
− 0 +

π2

2
− π2

6
− π2

4
+
π2

36

=
π2

6

Here are the relevant hints:



•
∫

dv

a2 + v2
=

1

a
arctan

(
v

a

)
So

∫
1

1− u2 + v2
dv =

1√
1− u2

arctan

(
v√

1− u2

)
.

• arctan

(
u√

1− u2

)
= arcsin(u)

So

∫
1√

1− u2
arctan

(
u√

1− u2

)
du =

∫
arcsin(u)√

1− u2
du =

1

2
(arcsin(u))2.

• arctan

(
1− u√
1− u2

)
=

1

2
arccos(u) =

π

4
− 1

2
arcsin(u)

So

∫
1√

1− u2
arctan

(
1− u√
1− u2

)
du =

π

4

∫
du√

1− u2
−1

2

∫
arcsin(u)√

1− u2
du =

π

4
arcsin(u)−1

4
(arcsin(u))2.

• And finally arcsin(x) = − arcsin(−x) and arctan(x) = − arctan(−x) (so we can “double up” the
integrals of the form

∫ α
−α to get 2

∫ α
0 ).


