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This summary contains a account of thebasicfacts concerning derivatives of multivariate functions, up to the second derivative test for local extrema, with an emphasis on
honesty, coherence and the extent to which the multivariatecase reflects the univariate case. Recall that entities having several components are usually denoted by bold faced
letters (e.g., f for functions,Rn → R

m, x for points inR
n or vectors inVn = Vn(R), û for unit vectors), thath = |h|ĥ if h is a non-zero vector, and that for setsA andB,

A ⊂ B means thatA is asubsetof B, i.e., every element ofA is an element ofB,

Notation. If U ⊂ R
n andf : U → R

m, the components off will be denoted by
f i : R

n → R, for 1 6 i 6 n; one may writef =
`

f1, . . . , fm
´

. The reason
for using superscripts as indices is that subscripts have been (and will be) used to
denote partial derivatives. Superscripts will also be usedto index the coordinates of
a point, the entries of a vector and the arguments of a multivariate function;e.g., in
the notation used heref i

j = ∂f i/ ∂xj is the partial derivative of theith component

of f , f i, with respect to itsj th argument,xj , for 1 6 i 6 m and1 6 j 6 n. The
notation should not cause any confusion because exponents will be used rarely, and
this use should be clear from the context;e.g., in (14), where the base is a complex
expression enclosed in braces.

The standard basis vectors forVn will be denoted bŷe1, . . . , ên, whereêj has
a 1 in positionj and a0 in every other position. Remember that the angle bracket
notation for vectors is just a way of expressing (column) vectors using horizontal
notation:

˙

α1, . . . , αn
¸

=
`

α1 . . . αn
´t

∈ Vn.
An elementx ∈ R

n belongs to theinterior of U ⊂ R
n, in symbolsx ∈ U◦, if

there is a positive numberε such that{y ∈ R
n : |y − x| < ε } ⊂ U . This means

that a point inR
n belongs toU provided it is sufficiently close tox. This situation

is also expressed by saying thatU is aneighbourhoodof x. Notice that any function
continuous atx is defined on some neighbourhood ofx.

The derivative. Suppose thatU ⊂ R
n, f : U → R

m, and thatx is a point
in the interior ofU . f is differentiableat x if there is a linear transformation
f ′(x) : Vn → Vm, called thederivative off at x, such that

f(x + h) = f(x) + f ′(x)(h) + |h|δ, (1)

and δ → 0 as h → 0. δ is a function ofx and h, and is defined when-
ever x + h ∈ U ; if it is necessary to record the dependence ofδ on x andh,
the notationδx(h) will be used. The derivative off at x is sometimes written
Df(x). It was proved in class that there is at most one linear transformation sat-
isfying the condition definingf ′(x), i.e., the derivative off at x, if it exists, is
unique. The reason for this will be recalled. Suppose that a linear transformation
T (x) : Vn → Vm satisfies the condition definingf ′(x), with ε in place ofδ. It is
clear thatT (x)(0) = f ′(x)(0) = 0, and for anyv 6= 0 in Vn andt 6= 0 in R,

|T (x)(v) − f ′(x)(v)|

|v|
=

|T (x)(tv) − f ′(x)(tv)|

|tv|

= |δx(tv) − εx(tv)| → 0

as t → 0, so T (x)(v) = f ′(x)(v), since the left hand side of the equation is
independent oft.

Notice thatf is differentiable atx if, and only if, f i is differentiable for
1 6 i 6 m. This is because (1) is true if, and only if, it is true for eachof the
(m) coordinates of the points involved, and becauseδ =

˙

δ1, . . . , δm
¸

→ 0 if,
and only if,δi → 0 for 1 6 i 6 m. Whenf is real-valued (i.e., f : U → R) it
is sometimes customary to replace the last term in (1), whichin this case is of the
form |h|δ, by a sum of terms of the formηjδj , whereh =

˙

η1, . . . , ηn
¸

, and
require that eachδj → 0 ash → 0. The notions are clearly equivalent: givenδ let
δj = ηjδ/|h|; givenδj , for 1 6 j 6 n, let δ =

Pn
j=1

ηjδj/|h| (for h 6= 0).
It is left as a (straightforward) exercise to show that differentiation is linear inf ,

just as for functions of a single real variable: Iff andg are differentiable atx and
α, β ∈ R, thenαf + βg is differentiable atx and

(αf + βg)′(x) = αf ′(x) + βg′(x).

The following is really an easy result of basic linear algebra.

2. Lemma. If f is differentiable atx then there is a real numberM such that
|f ′(x)(v)| 6 M |v| for all v ∈ Vn. In particular, f ′(x) is continuous onVn.

Proof. Let M = nK, whereK is the maximum of|f ′(x)(êj )|, for 1 6 j 6 n;
then forv =

˙

β1, . . . , βn
¸

∈ Vn,

|f ′(x)(v)| =
˛

˛

˛

n
X

j=1

βjf ′(x)(êj )
˛

˛

˛
6

n
X

j=1

|βjf ′(x)(êj )| 6

n
X

j=1

K|v| = M |v|.

�

With the real notion of the derivative of a multivariate function in hand,
a fundamental connection between differentiability and continuity for univariate
functions—which turned out to be false for partial derivatives—can be recovered.

3. Theorem. If f is differentiable atx thenf is continuous atx.

Proof. It is required to show thatf(x + h) → f(x) ash → 0 if f is differen-
tiable atx. Referring to (1),f ′(x)(h) → 0 ash → 0 by lemma 2, and|h|δ → 0

ash → 0 by definition (sinceδ → 0). Therefore, the limit of the right hand side
of (1) ash → 0 is f(x), as required. �

Directional derivatives. There are concepts intermediate between the derivative of
f and its partial derivatives, which turn out to be of some independent interest. If
v ∈ Vn andf(x + tv) is defined for allt in an open interval containing0 then

fv (x) = lim
t→0

f(x + tv) − f(x)

t
=

d

dt
f(x + tv)

˛

˛

˛

˛

t=0

(4)

If û is a unit vector inVn thenfû(x) is denoted byDûf(x) and is called thedi-
rectional derivative off in the directionof û. (4) is called the directional derivative
of f alongv or, off with respect tov but, as such usage is uncommon in children’s
books, that will not be done here. It follows directly from (4) and the definition of
partial derivatives that, for1 6 j 6 m,

fêj
= fj =

˙

f1

j , f2

j , . . . , fm
j

¸

=

fi

∂f1

∂xj
,
∂f2

∂xj
, . . . ,

∂fm

∂xj

fl

. (5)

Wheref is differentiable, thefv are precisely the values of the derivative off ; i.e.,

fv (x) = f ′(x)(v). (6)

for v ∈ Vn. This is seen by using the definition (4) and puttingtv for h in (1):

fv (x) = lim
t→0

f ′(x)(tv) + |tv|δ

t
= lim

t→0

tf ′(x)(v) + |tv|δ

t

= lim
t→0



f ′(x)(v) +
|tv|

t
δ

ff

= f ′(x)(v),

since||tv|/t| = |v| (for t 6= 0) andδ → 0 ast → 0.
f ′, when it exists, can be expressed in terms the partial derivatives off .

7. Theorem. If f is differentiable atx andv =
˙

β1, . . . , βn
¸

then

f ′(x)(v) =
n

X

j=1

βjfj(x).

Proof. The proof is a routine calculation using the linearity off ′(x), (5) and (6):

f ′(x)(v) =
n

X

j=1

βjf ′(x)(êj ) =
n

X

j=1

βjfêj
(x) =

n
X

j=1

βjfj(x) �

The last theorem implies that, wheref is differentiable, the derivative off can
be represented, with respect to the standard bases onVn andVm, by the matrix
`

f1 f2 . . . fm

´

, i.e.,

0

B

B

B

B

B

@

f1

1
f1

2
. . . f1

n

f2

1
f2

2
. . . f2

n

...
...

. . .
...

fm
1

fm
2

. . . fm
n

1

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

@

∂f1

∂x1

∂f1

∂x2
. . .

∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
. . .

∂f2

∂xn

...
...

. . .
...

∂fm

∂x1

∂fm

∂x2
. . .

∂fm

∂xn

1

C

C

C

C

C

C

C

C

C

C

A

(where the dependence of this matrix onx has been suppressed). This matrix is
called theJacobian matrixof f (atx); there is no universally standard notation for
it, and it is sometimes denoted by one of the symbols used for the derivative off :
f ′ or Df .
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In particular, iff : R
n → R is differentiable atx andv =

˙

β1, . . . , βn
¸

, then

f ′(x)(v) = ∇f(x) · v =

n
X

j=1

βj ∂f

∂xj
(x), (8)

where∇f(x) = 〈f1(x), . . . , fn(x)〉 = 〈(∂f/∂x1)(x), . . . , (∂f/∂xn)(x)〉 is
called thegradient(vector) off atx. From (8) it is obvious that∇f(x) points in the
direction of greatest increase off (starting atx); i.e., the largest value ofDûf(x)
is |∇f(x)|, which occurs when̂u = ∇f(x)/|∇f(x)| provided∇f(x) 6= 0

(otherwise, all directional derivatives off are zero).
When the Jacobian matrix off is square,i.e., whenm = n, its determinant is

called theJacobian determinantof f , or just theJacobianof f , and is denoted by
J(f) or

∂(f1, f2, . . . , fn)

∂(x1, x2, . . . , xn)
.

The Jacobian determinant off will turn out to be of fundamental importance for the
calculus of several functions of several variables.

The differentiability off is often most easily checked using the following

9. Theorem. If fj is continuous atx, for 1 6 j 6 n, thenf is differentiable atx.

Proof. By the remark in the first paragraph following the definition of the derivative,
is sufficient to consider a functionf : U → R, whereU ⊂ R

n is a neighbourhood
of x. Let h =

˙

η1, . . . , ηn
¸

6= 0 be such thatfj , 1 6 j 6 n, is defined on

{y ∈ R
n : |y − x| < |h| }, and lethj =

Pj
i=1

ηiêi; note thath0 = 0,
hn = h, andhj − hj−1 = ηj êj for 1 6 j 6 n. The mean value theorem,
applied tof(x + hj−1 + tηj êj) for t ∈ [ 0, 1 ], yields real numbersϑj such that
0 < ϑj < 1, andf(x+ hj)− f(x+ hj−1) = ηjfj(x+ hj−1 + ϑjηj êj), for
1 6 j 6 n. Hence,

f(x + h) = f(x) +
n

X

j=1

˘

f(x + hj) − f(x + hj−1)
¯

= f(x) +
n

X

j=1

ηjfj(x + hj−1 + ϑjηj êj)

= f(x) + ∇f(x) · h + |h|
n

X

j=1

δj ,

whereδj =
`

ηj/|h|
´˘

fj(x + hj−1 + ϑjηj êj) − f(x)
¯

for 1 6 j 6 n.
Since|ηj/|h|| 6 1 andfj is continuous atx, δj → 0 ash → 0. Therefore,
δ =

Pn
j=1

δj → 0 ash → 0, sof is differentiable atx (with f ′(x) given by the
dot product with∇f(x), as expected). �

The chain rule for multivariate functions takes on a more conceptual form (the
derivative of a composite is the composite of the derivatives) and plays a more fun-
damental role (e.g., multiplication is a differentiable function of two variables, so the
product rule is a consequence of the chain rule) than its single variable counterpart.

10. Theorem (The chain rule). Suppose thatf : U → R
m is differentiable atx

andg : V → R
p is differentiable aty = f(x), whereU ⊂ R

n andV ⊂ R
m;

theng ◦ f is differentiable atx and

(g ◦ f)′(x) = g′(y) ◦ f ′(x).

Proof. Referring to the right hand side of (1), withδ = δx(h), let

∆f(x)(h) = f ′(x)(h) + |h| δ and Γf(x)(h) = f ′(x)(ĥ) + δ,

so that∆f(x)(h) = |h|Γf(x)(h). The the differentiability assumptions yield
(whereε → 0 as∆f(x)(h) → 0 by the differentiability ofg aty),

g(f(x + h)) = g(y + ∆f(x)(h))

= g(y) + g′(y)(∆f(x)(h)) + |∆f(x)(h)| ε

= g(y) + g′(y)(f ′(x)(h)) + g′(y)(|h| δ) + |∆f(x)(h)| ε

= g(y) + g′(y) ◦ f ′(x)(h) + |h|
˘

g′(y)(δ) + |Γf(x)(h)| ε
¯

Now ash → 0, δ → 0 by the differentiability off atx, bothg′(y)(δ) → 0 and
∆f(x)(h) → 0 by lemma 2, and thusε → 0 by the differentiability ofg at y.
Again by lemma 2, there is a real numberM such that|Γf(x)(h)| 6 M + |δ|,
from which it follows thatg′(y)(δ) + |Γf(x)(h)| ε → 0 ash → 0, and the
theorem is proved. �

Recall the following instance of the Taylor development, with the Lagrange form
of the remainder, of a univariate real-valued functionϕ which is twice differentiable
on an intervalI containingx andx + h:

ϕ(x + h) = ϕ(x) + ϕ′(x)h + 1

2
ϕ′′(x + ϑh)h2, (11)

for some real numberϑ such that0 < ϑ < 1. A version of this development, for
multivariate functions, will now be given.

Theorem. If U ⊂ R
n, and f : U → R and its partial derivativesfi, for

1 6 i 6 n, are differentiable on the segment{x + th: 0 6 t 6 1 }, where
h =

˙

η1, . . . , ηn
¸

∈ Vn, then there is a real numberϑ such that0 < ϑ < 1 and

f(x + h) = f(x) + f ′(x)(h) +
1

2

n
X

i=1

n
X

j=1

ηiηjfij(x + ϑη). (12)

Proof. Let ϕ(t) = f(x + th), 0 6 t 6 1, so that (11) yields

f(x + h) = f(x) + ϕ′(0) + 1

2
ϕ′′(ϑ),

for some real numberϑ such that0 < ϑ < 1. By the chain rule,

ϕ′(t) = f ′(x + th)(h) =
n

X

i=1

ηifi(x + th),

so thatϕ′(0) = f ′(x)(h) is the second term of the right hand side of (12), and

ϕ′′(t) =
n

X

i=1

d

dt

`

ηifi(x + th)
´

=
n

X

i=1

ηif ′

i(x + th)(h)

=
n

X

i=1

n
X

j=1

ηiηjfij(x + th),

so that1
2
ϕ′′(ϑ) is the last term on the right hand side of (12). �

The previous theorem can be generalized to give a full Taylordevelopment for
multivariate functions—if you want to do a module assignment on this let, me
know—although (12) suffices for the present ends. Two applications of (12) will
be given. The first is the linear approximation of a differentiable function, together
with an error bound. The second is a second derivative test for local extrema of
multivariate real-valued functions.

The linearizationof f nearx is given by

Lf (x + h) = f(x) + f ′(x)(h). (13)

It follows from (12) that if|fij(y)| 6 M for 1 6 i, j 6 n, and|yi − xi| 6 |ηi|
for 1 6 i 6 n, then the (absolute value of the) error when approximatingf(y) by
Lf (y) = f(x) + f ′(x)(y − x) is at most

1

2
M

 n
X

i=1

|ηi|

ff

2

. (14)

It is not uncommon to use the so-calledtotal differentialof f ,

df =
n

X

i=1

fi(x)dxi =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · · +

∂f

∂xn
dxn,

as a version off ′(x)(h), i.e.as an approximation to the change inf(x) correspond-
ing to a change inx. When estimating an actual change in the value off , an actual
incrementh =

˙

η1, . . . , ηn
¸

is used in place of
˙

dx1, . . . , dxn
¸

, as in the right-
most term of (13), in which case the error involved in such an estimate is bounded
by (14) under the given hypotheses. The significance of (14) lies with the obvious
fact that an estimate is essentially worthless unless it is accompanied by a bound on
the error involved.

If the real-valued functionf has all second order partial derivatives atx ∈ R
n,

then then × n matrix of second order partial derivatives

Hf (x) =

0

B

B

B

@

f11(x) f12(x) . . . f1n(x)
f21(x) f22(x) . . . f2n(x)

...
...

. . .
...

fn1(x) fn2(x) . . . fnn(x)

1

C

C

C

A

is called theHessianmatrix off (atx), and the quadratic formHf (x) defined by

Hf (x)(h) = htHf (x) h =
n

X

i=1

n
X

j=1

ηiηjfij(x)

is called theHessian(form) of f (atx). Note that (12) can be written as

f(x + h) = f(x) + f ′(x)(h) + 1

2
H (x + ϑh)(h). (15)
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15. (In)definiteness. The next application of (12), or (15), will require some basic
linear algebra. Thequadratic formA associated to ann × n matrix A = (αij ) is
given by

A (v) = vtA v =

n
X

i=1

n
X

j=1

αijβiβj

for v =
˙

β1, . . . , βn
¸

∈ Vn (it is called a quadratic form because each term of
the rightmost expression is a quadratic–i.e., degree2—function of the entries ofv).
Notice that replacing the entriesαij andαji of A by 1

2
(αij +αji) defines the same

quadratic formA , so there is no loss of generality in assuming thatA is symmetric
(i.e., At = A), at least as far as the study ofA is concerned.A is positive definite
if A (v) > 0 wheneverv 6= 0, negative definiteif A (v) < 0 wheneverv 6= 0,
and indefiniteif there areu, v such thatA (u) < 0 < A (v). (It should be clear
that these notions do not exhaust the possible behaviour of aquadratic form. There
are manifest notions of positive, and negative, semidefinite quadratic forms which,
though unnecessary to formulate and prove the second derivative test, would play
an evident role in a systematic treatment of local extrema ofmultivariate real-valued
functions.) The terms positive definite, negative definite and indefinite are applied
to the matrixA, with the same meaning. Notice thatA is negative definite if, and
only if, −A is positive definite.

For ann × n matrix M , and1 6 p 6 n, Mp denotes the matrix obtained
from M by deleting the bottomn − p rows and the rightmostn − p columns, and
µp(M) denotes the determinant ofMp; so,e.g., µ1(M) is the top left entry ofM
andµn(M) = det(M). The numbersµp(M) are called the leading principal mi-
nors ofM . In general, aprincipal minorof M is the determinant of a square matrix
obtained by deleting at least one, and fewer thann, same-indexed rows and columns
of M (i.e., row i is deleted if, and only if, columni is deleted, for1 6 i 6 n), and
theorder of a principal minor is the number of rows (equivalently, columns) of the
matrix of which it is the determinant. Observe that forA to be (positive or negative)
definite, it is necessary thatAp be nonsingular, (i.e., µp(A) 6= 0) for 1 6 p 6 n.

Suppose thatA is symmetric and thatµp(A) 6= 0, for 1 6 p 6 n. It is easy to
verify that there is a lower triangularn×n matrixL, each of whose diagonal entries
is a1, such thatLALt = D is an invertible diagonal matrix, andLpApLp

t = Dp

for 1 6 p 6 n (L is the book-keeping matrix for the Gaussian elimination process
that putsA into upper triangular form). Now,A is positive definite if, and only if,
D is positive definite, becauseL is invertible, andD is positive definite if, and only
if, each of its diagonal entries is positive. Sinceµp(D) is the product of the first
p diagonal entries ofD, andµp(L) = 1, it follows thatA is positive definite if,
and only if, each of its leading principal minors is positive(i.e., µp(A) > 0 for
1 6 p 6 n). Also,A is negative definite if, and only if, its leading principal minors
are alternately negative and positive (i.e., (−1)pµp(A) > 0 for 1 6 p 6 n). This
is a consequence of the fact thatA is negative definite if, and only if,−A is positive
definite, and thatµp(A) is a sum of products ofp entries ofA (of Ap, actually,
but that extra information is not needed). Finally, if the leading principal minors do
not fall into one of these patterns (i.e., either all positive, or alternately negative and
positive), thenA is indefinite.

The results of the previous paragraph do not characterize indefinite quadratic
forms as required by the second derivative test, although handling the additional
cases is but a slight headache. If some of the leading principal minors ofA are
zero, then it may be necessary to rearrange the rows and (corresponding) columns
of A before carrying out the (row and column) elimination recorded byL, andD
may have zeros on its diagonal. The additional complication, then, is the need to
consider all principal minors, and not just the leading ones. Incorporating these ad-
ditional considerations yields the following criterion.A is indefinite if, and only if,
there is a negative principal minor ofA of even order, or there is a negative and a
positive principal minor ofA, both of odd order.

Local extrema. In preparation for the second derivative test, some definitions and
a basic result will be given. Suppose thatf : U → R, whereU ⊂ R

n is a neigh-
bourhood ofx. f has alocal minimum atx if there is a neighbourhoodW ⊂ U
of x such thatf(x) 6 f(y) for y ∈ W . The notion of local maximum is defined
similarly: f has alocal maximum atx if there is a neighbourhoodW ⊂ U of x

such thatf(y) 6 f(x) for y ∈ W . Remember that anextremumis a maximum
or a minimum, and that a local extremum isstrict if the inequality can be made
strict for everyy 6= x in some neighbourhood ofx. Finally, f has asaddle point
at x if, for every neighbourhoodW ⊂ U of x, there arey, z ∈ W such that
f(y) < f(x) < f(z).

The following is an analogue of the Fermat criterion for local extrema from sin-
gle variable calculus:

16. Theorem. Suppose thatf is continuous atx, and has a local extremum atx.
Then∇f(x) = 0 or fi(x) is undefined for somei, 1 6 i 6 n.

Proof. Defineϕ(t) = f(x + têi), so thatϕ has a local extremum att = 0. By
the Fermat criterion for local extrema of univariate functions,fi(x) = ϕ′(0) = 0,
providedfi(x) exists. �

The Fermat criterion motivates the notions of critical and stationary points of a
multivariate function.x is astationary pointof f if ∇f(x) = 0, andx is acritical
point of f if ∇f(x) = 0 or fi(x) is undefined for somei, 1 6 i 6 n. As in
single variable calculus, the Fermat criterion insures that wheref is continuous its
local extrema occur at critical points. Also as in single variable calculus,f can have
a critical point atx without having a local extremum atx. However, multivariate
functions can exhibit behaviour that univariate functionsdo not, as illustrated by the
functionf(x, y) = xy: the intersection of the graph off and the planey = x has
a local minimum at the origin, and the intersection of the graph of f and the plane
y = −x has a local maximum at the origin. Sketching the graph ofz = xy reveals
why the origin is called a saddle point off .

Suppose now that∇f(x) = 0 and that all second order partial derivatives off
are continuous atx. If Hf (x) is positive definite then, since the entries ofHf (x)
are continuous atx, there is a positive real numberε such thatµp(Hf (y)) > 0
for 1 6 p 6 n, and henceHf (y) is positive definite, provided|y − x| < ε.
Therefore, by (12), there is a real numberϑ such that0 < ϑ < 1 and

f(x + h) = f(x) + 1

2
Hf (x + ϑh) > f(x)

if 0 < |h| < ε, sof has a (strict) local minimum atx. Similarly, if Hf (x) is
negative definite,f has a (strict) local maximum atx, and if Hf (x) is indefinite
thenf has a saddle point atx. Together with the characterizations of definite and
indefinite (symmetric) matrices given in 15, this proves thefollowing

17. Theorem (The second derivative test). Suppose that∇f(x) = 0, and that all
second order partial derivatives off are continuous atx; then

(i) f has a local minimum atx if every leading principal minor ofHf (x) is
positive.

(ii) f has a local maximum atx if the leading principal minors ofHf (x) are al-
ternately negative and positive (i.e.,(−1)pµp(Hf (x)) > 0 for 1 6 p 6 n).

(iii) f has a saddle point atx if Hf (x) has a negative principal minor of even
order, or negative and positive principal minors of odd order.

In any other case, further investigation is required. The second derivative test
will now be spelled out for real-valued functions of two and three real variables.
Suppose thatf11, f12, f21 andf22 are continuous atx ∈ R

2, and that∇f(x) = 0.
Let

µ1 = f11(x) and µ2 =

˛

˛

˛

˛

f11(x) f12(x)
f21(x) f22(x)

˛

˛

˛

˛

;

then

• f has a local minimum atx if µ1 > 0 andµ2 > 0,
• f has a local maximum atx if µ1 < 0 andµ2 > 0,
• f has a saddle point atx if µ2 < 0;

and the remaining cases require further investigation. Next, suppose thatfij is con-
tinuous atx ∈ R

3 for 1 6 i, j 6 3, and that∇f(x) = 0. Let fij denotefij(x),
for 1 6 i, j 6 3, and consider

∆1 =

˛

˛

˛

˛

f22 f23

f32 f33

˛

˛

˛

˛

, ∆2 =

˛

˛

˛

˛

f11 f13

f31 f33

˛

˛

˛

˛

, ∆3 =

˛

˛

˛

˛

f11 f12

f21 f22

˛

˛

˛

˛

,

δ1 = f11, δ2 = f22, δ3 = f33, and ∆ =

˛

˛

˛

˛

˛

˛

f11 f12 f13

f21 f22 f23

f31 f32 f33

˛

˛

˛

˛

˛

˛

;

then

• f has a local minimum atx if δ1, ∆3,∆ > 0,
• f has a local maximum atx if δ1, ∆ < 0 and∆3 > 0,
• f has a saddle point atx if at least one of∆1, ∆2,∆3 is negative, or there

are both positive and negative numbers amongδ1, δ2, δ3,∆,

and the remaining cases require further investigation.
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