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This summary contains a account of thesicfacts concerning derivatives of multivariate functiong,ta the second derivative test for local extrema, with anteasjs on
honesty, coherence and the extent to which the multivacase reflects the univariate case. Recall that entitiesgaaveral components are usually denoted by bold faced

letters €.g, f for functions,R™ — R™, & for points inR™ or vectors inV,, =
A C B means thatd is asubsedf B, i.e, every element ofi is an element o,

Notation. If U ¢ R™ andf: U — R™, the components of will be denoted by
Fi:R® — R, for 1 < i < n; one may writef = (f1,..., f™). The reason
for using superscripts as indices is that subscripts haga (@nd will be) used to
denote partial derivatives. Superscripts will also be ueéddex the coordinates of
a point, the entries of a vector and the arguments of a mriliteafunction;e.g, in
the notation used herg = 9f*/ dz7 is the partial derivative of thé" component
of £, f¢, with respect to itg" argumentz?, for 1 < < mandl < j < n. The
notation should not cause any confusion because expondhbewsed rarely, and
this use should be clear from the contexiy, in (14), where the base is a complex
expression enclosed in braces.

The standard basis vectors fig;, will be denoted byé, . .., é,, whereé; has
alin positionj and a0 in every other position. Remember that the angle bracket
notation for vectors is just a way of expressing (column)t@ecusing horizontal
notation:{a?,...,a") = (o} ... a")t € V.

An elementx € R™ belongs to thénterior of U C R", in symbolsz € U°, if
there is a positive numbersuch thaf{ y € R™: |y — x| < ¢ } C U. This means
that a point inR™ belongs ta provided it is sufficiently close ta. This situation
is also expressed by saying tliais aneighbourhoodf x. Notice that any function
continuous ate is defined on some neighbourhoodaaf

The derivative. Suppose tha/ ¢ R", f: U — R™, and thate is a point
in the interior of U. f is differentiable at « if there is a linear transformation
f'(x): Vi, — Vi, called thederivative off atx, such that

f(x+h) = f(z)+ f'(=)(h) + ||, @
andé — 0 ash — 0. ¢ is a function ofx and h, and is defined when-
everxz + h € U, if it is necessary to record the dependencejain = and h,
the notationd, (k) will be used. The derivative of at « is sometimes written
D f (). It was proved in class that there is at most one linear toamsdtion sat-
isfying the condition definingf’(x), i.e., the derivative off at x, if it exists, is
unique. The reason for this will be recalled. Suppose thateat transformation
T(x): Vo — Vi, satisfies the condition defining’ (x), with € in place ofd. Itis
clear thatl'(«)(0) = f/(x)(0) = 0, and for anyv # 0in V,, andt # 0 in R,

1T (2)(v) = f'(@)(v)] _ |T(2)(tv) — f'(2)(tv)|
vl [tv]
= |0z (tv) — ez (tv)] — 0

ast — 0, soT(xz)(v) = f'(x)(v), since the left hand side of the equation is
independent of.

Notice that f is differentiable at: if, and only if, f is differentiable for
1 < ¢ < m. This is because (1) is true if, and only if, it is true for eaiftthe
(m) coordinates of the points involved, and becadse: <51, e ,5’”) — 0 if,
and only if,6* — 0for 1 < i < m. Whenf is real-valuedi(e., f: U — R) it
is sometimes customary to replace the last term in (1), winichis case is of the
form |k|§, by a sum of terms of the form? 47, whereh = (n',...,n™), and
require that each/ — 0 ash — 0. The notions are clearly equivalent: givéet
87 =n7s/|h|; givend’, forl < j < n,lets = 3" ni67/|h| (for h #£ 0).

Itis left as a (straightforward) exercise to show that défeiation is linear inf,
just as for functions of a single real variable: fifandg are differentiable a& and
a, B8 € R, thenaf + (Bg is differentiable atc and

(af + Bg) () = af (=) + Bg' (x).
The following is really an easy result of basic linear algebr

2. Lemma. If f is differentiable atz then there is a real numbek/ such that
| £/ (x)(v)| < M|v|forall v € Vj,. In particular, f/(z) is continuous oV, .

Proof. Let M = nK, whereK is the maximum of f'(x)(&;)|, for1 < j < n;

then forv = (B1,...,8") € Va,

\—(Zﬁff imm:mv\.

Jj=1

(&) < ZWf )(é5)

|

Vi (R), @ for unit vectors), thah =

|h|hif his a non-zero vector, and that for setsand B,

With the real notion of the derivative of a multivariate f@ioa in hand,
a fundamental connection between differentiability andticwity for univariate
functions—which turned out to be false for partial derives—can be recovered.

3. Theorem. If f is differentiable ate then f is continuous ate.

Proof. It is required to show thaf (xz + h) — f(x) ash — 0if fis differen-
tiable ate. Referring to (1) ,f'(x)(h) — 0 ash — 0 by lemma 2, andh|d — O
ash — 0 by definition (since — 0). Therefore, the limit of the right hand side
of (1) ash — Qs f(x), as required. (|

Directional derivatives. There are concepts intermediate between the derivative of
f and its partial derivatives, which turn out to be of some pafalent interest. If
v € V,, and f(x + tv) is defined for allt in an open interval containin@then
fa+iw) = f@ _dyo
t dt ‘=0
If @ is a unit vector inV;, then f; (a) is denoted byD; f () and is called theli-
rectional derivative off in the directionof 4. (4) is called the directional derivative
of f alongw or, of f with respect ta but, as such usage is uncommon in children’s
books, that will not be done here. It follows directly from) @hd the definition of
partial derivatives that, for < 7 < m,

Fo(@) = lim @

8f1 8f2 afm

— 1 my\ _

fe, =Fi =113 1] >_<8:(:J o ee ) ©

Wheref is differentiable, thef,, are precisely the values of the derivativefafi.e.,
Jo(z) = f'(z)(v). (6)

for v € V,,. This is seen by using the definition (4) and puttiagfor h in (1):
! !
fo(@) = lim T @) 018 tF (@)(0) + 1018
t—0 t t—0 t

{f(w)(v) [t] }—f’(w)(v),

since||tv|/t| = |v| (for t # 0) andé — 0 ast — 0.
F’, when it exists, can be expressed in terms the partial digdégaof f.

lim
t—0

7. Theorem. If f is differentiable atc andv = (3, . ..

=D F fi(x)
j=1

,3™) then

Proof. The proof is a routine calculatlon using the Ilnearltyjti(a:) (5) and (6):

Zﬁjf ZB fe, (@) = Zﬁffj O
j=1

The last theorem implies that, whefeis differentiable, the derivative of can
be represented, with respect to the standard basés,cend V,,,, by the matrix

(fl f2 fm) ,i.e
oft  oft ort
S 1L ozl Ox2 oxn
12 f22 2 8f2 8f2 6f2
... 2 A gl
= o2t Ox2 ox™
fim fén f»,T afm afm afm
Oxl Ox2 oxn

(where the dependence of this matrix srhas been suppressed). This matrix is
called theJacobian matrivof f (ata); there is no universally standard notation for
it, and it is sometimes denoted by one of the symbols usedédérivative off:

florDf.



In particular, if f: R™ — R is differentiable ate andv = (3',...,3™), then
/ “ ;i Of
f@)(v) = Vf(@) v=3 5 (), ®)
j=1

whereV f(a) = (f1(@),..., fa(@) = (0f/021)(@), ..., (0f /Ozn)(@)) is
called thegradient(vector) of f ata. From (8) it is obvious tha¥/ f () points in the
direction of greatest increase ff(starting atz); i.e., the largest value ab, f(x)

is |V f()|, which occurs whemr = Vf(x)/|V f(x)| providedV f(x) # 0

(otherwise, all directional derivatives gfare zero).

When the Jacobian matrix ¢f is squarej.e., whenm = n, its determinant is
called theJacobian determinantf £, or just theJacobianof f, and is denoted by
J(f)or

8(f17f27"'7fn)

A(xt,x2,...,2n)"
The Jacobian determinant gfwill turn out to be of fundamental importance for the
calculus of several functions of several variables.

The differentiability of f is often most easily checked using the following

9. Theorem. If f; is continuous ate, for 1 < j < n, then f is differentiable ate.

Proof. By the remark in the first paragraph following the definitidnh® derivative,
is sufficient to consider a functiofi: U — R, whereU C R" is a neighbourhood
of . Leth = (n!,...,n") # 0 be such thatf;, 1 < j < n, is defined on
{y € R": |y — x| < |h|}, and leth; = Z{zl n'é;; note thathg = O,
hn, = h,andh; — h;_; = ni¢; for 1 < j < n. The mean value theorem,
applied tof (x + h,j_1 + tnié;) fort € [0, 1], yields real numbers; such that
0<¥; <l,andf(x+h;)— flx+hj_1) = njfj(a:-l- hj_1 +19j17jéj), for

1 < j < n. Hence,

f@+h)=f(@)+> {f(@+h;)— f@+h;-1)}
j=1
=f@ + > 7 fi@+hi1+9m€))
j=1
= f(®) + Vf(@) h+|h|> 5,
j=1

whered; = (n’/|R){f;j(x + hj—1 + 977 &;) — f(x)} for 1 < j < n.
Since|n?/|h|| < 1 and f; is continuous ate, 5; — 0 ash — 0. Therefore,
6= };1 d; — 0ash — 0, sof is differentiable atc (with f’() given by the
dot product withV f (), as expected). O

The chain rule for multivariate functions takes on a moreceptual form (the
derivative of a composite is the composite of the deriva)iand plays a more fun-
damental role€.g, multiplication is a differentiable function of two varitgs, so the
product rule is a consequence of the chain rule) than itdesiragiable counterpart.

10. Theorem (The chain rule) Suppose thaf: U — R™ is differentiable atx
andg: V — RP is differentiable aty = f(x), whereU C R® andV C R™;
theng o f is differentiable ate and

(go f) (=) =g (y)o f'(=).
Proof. Referring to the right hand side of (1), with= 6 (h), let
Af(@)(h) = f'(z)(h) + k|6 and Tf(x)(h) = f'(x)(h) + 3,
so thatA f(x)(h) = |h| T f(x)(h). The the differentiability assumptions yield
(wheree — 0 asA f(x)(h) — 0 by the differentiability ofg aty),
g(f(z+ h)) = gy + Af(x)(h))
=9(y) + g (Y)(Af(z)(h)) + [Af(z)(h)| e
=g(y) + 4 (¥)(f (x)(h)) + g (y)(|h| 8) + |Af(x)(h)| e
=9(y) +g'(y) o f'(x)(h) + |h| {g' (y)(8) + T f(z)(h)| e}
Now ash — 0, & — 0 by the differentiability off atx, bothg’(y)(8) — 0 and
Af(x)(h) — 0 bylemma 2, and thus — 0 by the differentiability ofg aty.
Again by lemma 2, there is a real numbef such thatT f(z)(h)| < M + |6,

from which it follows thatg’(y)(8) + | f(x)(h)|e — 0 ash — 0, and the
theorem is proved. O

Recall the following instance of the Taylor developmenthwine Lagrange form
of the remainder, of a univariate real-valued functiowhich is twice differentiable
on an intervall containingz andz + h:

oz +h) = () + @' (@)h + §¢" (z + V)R>, (1)

for some real numbef such thald < ¥ < 1. A version of this development, for
multivariate functions, will now be given.

Theorem. If U C R™, and f: U — R and its partial derivativesf;, for
1 < i < n, are differentiable on the segmefitc + th: 0 < t < 1}, where

h=(n',...,n") € V4, then there is a real numbe# such that) < ¥ < 1 and
1 n n o
Tt h)=J(@)+ f@)R) + 53> n'nfis(@+dn). (12)
i=1j=1

Proof. Letp(t) = f(x +th), 0 <t < 1, sothat (11) yields
f@+h) = f(z) +¢'(0) + 30" (¥),
for some real numbe# such thal < 9 < 1. By the chain rule,
n
¢'(t) = f'(@+th)(h) = > _n' fi(@ +th),
i=1
so thaty’ (0) = f/(x)(h) is the second term of the right hand side of (12), and

n n

d, ; .
CUOEDD o ' fi(@ + th)) = > n'fi(@+th)(h)
i=1 i=1
n n . .
=> > "' fij(x + th),
i=1j=1
so that% '’ (9) is the last term on the right hand side of (12). a

The previous theorem can be generalized to give a full Tayderelopment for
multivariate functions—if you want to do a module assigninen this let, me
know—although (12) suffices for the present ends. Two apfptins of (12) will
be given. The first is the linear approximation of a diffeigofe function, together
with an error bound. The second is a second derivative tedbfal extrema of
multivariate real-valued functions.

Thelinearizationof f nearx is given by
Li(z+h) = f(z) + f'()(h). (13)

It follows from (12) that if| f; (y)| < M for 1 < 4,5 < n, and|y® — 2?| < |nf
for 1 < ¢ < n, then the (absolute value of the) error when approximafitig) by
L¢(y) = f(=) + f'(x)(y — x) is at most

%M{ilnil}2~ (14)

i=1
It is not uncommon to use the so-calledal differentialof f,
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df = fi(x)da' = Sordet + 55 da? 4+ T da”,

i=1
as a version of’ (x)(h), i.eas an approximation to the changefific) correspond-
ing to a change imz. When estimating an actual change in the valug¢,ain actual
incrementh = (n',...,n") is used in place ofdz?, ..., dz™), as in the right-
most term of (13), in which case the error involved in such stm&te is bounded
by (14) under the given hypotheses. The significance of (&4)With the obvious
fact that an estimate is essentially worthless unless itdgsmpanied by a bound on
the error involved.

If the real-valued functiory has all second order partial derivativesrate R,
then then x n matrix of second order partial derivatives

fii(z)  fiz(x) fin(x)

for(x)  faa(x) fan(x)
Hy () = : : :

fr1(®)  fn2(x) Frn ()

is called theHessianmatrix of f (atx), and the quadratic form (x) defined by

Hj(x)(h) = W' Hp(@)h = > n'n fij(x)

i=1j=1
is called theHessian(form) of f (atx). Note that (12) can be written as
f(@+h) = f(@)+ f'(@)(h) + 3 (x + Ih)(h). (15)



15. (In)definiteness. The next application of (12), or (15), will require some lgasi
linear algebra. Theuadratic form.e7 associated to an x n matrix A = («a;;) is
given by

n n
d(v)=v'Av=> "> ;B3
i=1j=1
forv = <ﬁ1, . ,ﬁ") € Vy, (it is called a quadratic form because each term of
the rightmost expression is a quadraiies;- degree2—function of the entries ob).
Notice that replacing the entries ; anda;; of A by % (ovij +oj;) defines the same
guadratic forme, so there is no loss of generality in assuming thdas symmetric
(i.e, At = A), at least as far as the study.ef is concerned.« is positive definite
if o/ (v) > 0 wheneverv # 0, negative definitéf </ (v) < 0 wheneverv # 0,
andindefiniteif there areu, v such thate (u) < 0 < &/(v). (It should be clear
that these notions do not exhaust the possible behaviougoédratic form. There
are manifest notions of positive, and negative, semidefigitadratic forms which,
though unnecessary to formulate and prove the second tiegitast, would play
an evident role in a systematic treatment of local extrentaufivariate real-valued
functions.) The terms positive definite, negative definitd adefinite are applied
to the matrixA, with the same meaning. Notice thdtis negative definite if, and
only if, — A is positive definite.

For ann x n matrix M, and1 < p < n, M, denotes the matrix obtained
from M by deleting the bottomw — p rows and the rightmost — p columns, and
wp (M) denotes the determinant 8f,,; so,e.g, n1 (M) is the top left entry of\/
andpuy, (M) = det(M). The numberg., (M) are called the leading principal mi-
nors of M. In general, grincipal minorof M is the determinant of a square matrix
obtained by deleting at least one, and fewer thasame-indexed rows and columns
of M (i.e., row is deleted if, and only if, columnis deleted, forl < : < n), and
the order of a principal minor is the number of rows (equivalently, .wahs) of the
matrix of which it is the determinant. Observe that fbto be (positive or negative)
definite, it is necessary that, be nonsingular,ife., 1p(A) # 0)forl <p < n.

Suppose thatl is symmetric and that, (A) # 0, for1 < p < n. ltis easy to
verify that there is a lower triangular x n matrix L, each of whose diagonal entries
isal, such thatLAL* = D is an invertible diagonal matrix, ant, A, L, = Dj,
for 1 < p < n (L is the book-keeping matrix for the Gaussian eliminationcpes
that putsA into upper triangular form). NowA is positive definite if, and only if,
D is positive definite, becaudeis invertible, andD is positive definite if, and only
if, each of its diagonal entries is positive. Sinegg(D) is the product of the first
p diagonal entries oD, andu, (L) = 1, it follows that A is positive definite if,
and only if, each of its leading principal minors is posite., p,(A) > 0 for
1 < p < n). Also, A is negative definite if, and only if, its leading principalmois
are alternately negative and positivee{ (—1)?u,(A) > 0for 1 < p < n). This
is a consequence of the fact thais negative definite if, and only if- A is positive
definite, and thaj, (A) is a sum of products gb entries of A (of Ap, actually,
but that extra information is not needed). Finally, if thading principal minors do
not fall into one of these patternsg, either all positive, or alternately negative and
positive), thenA is indefinite.

The results of the previous paragraph do not characteriefimte quadratic
forms as required by the second derivative test, althougtdlimy the additional
cases is but a slight headache. If some of the leading pahaiinors of A are
zero, then it may be necessary to rearrange the rows anégpomding) columns
of A before carrying out the (row and column) elimination reeatdy L, and D
may have zeros on its diagonal. The additional complicatiban, is the need to
consider all principal minors, and not just the leading oriesorporating these ad-
ditional considerations yields the following criterioA. is indefinite if, and only if,
there is a negative principal minor af of even order, or there is a negative and a
positive principal minor ofd, both of odd order.

Local extrema. In preparation for the second derivative test, some dedirstiand
a basic result will be given. Suppose thfatU — R, whereU C R™ is a neigh-
bourhood ofz. f has alocal minimum ate if there is a neighbourhootV C U
of & such thatf (x) < f(y) for y € W. The notion of local maximum is defined
similarly: f has alocal maximum ate if there is a neighbourhootV’ C U of
such thatf(y) < f(x) for y € W. Remember that aextremunis a maximum
or a minimum, and that a local extremumssict if the inequality can be made
strict for everyy # @ in some neighbourhood aé. Finally, f has asaddle point
at « if, for every neighbourhood?V C U of «, there arey,z € W such that

fy) < f(=) < f(2):

The following is an analogue of the Fermat criterion for lawegrema from sin-
gle variable calculus:

16. Theorem. Suppose thaf is continuous ate, and has a local extremum at
ThenV f(x) = 0 or f;() is undefined for someg 1 < i < n.

Proof. Definep(t) = f(x + té;), so thaty has a local extremum at= 0. By
the Fermat criterion for local extrema of univariate fuans, f; (z) = ¢’ (0) = 0,
provided f; (x) exists. ]

The Fermat criterion motivates the notions of critical atatisnary points of a
multivariate functionz is astationary pointof f if V f(a) = 0, andz is acritical
pointof f if Vf(x) = 0 or f;(x) is undefined for somé¢ 1 < ¢ < n. Asin
single variable calculus, the Fermat criterion insures Wigere f is continuous its
local extrema occur at critical points. Also as in singleaale calculusf can have
a critical point atz without having a local extremum at. However, multivariate
functions can exhibit behaviour that univariate functidosot, as illustrated by the
function f(z,y) = xy: the intersection of the graph ¢gfand the plang/ = « has
a local minimum at the origin, and the intersection of thepbraf f and the plane
y = —x has a local maximum at the origin. Sketching the graph ef zy reveals
why the origin is called a saddle point ¢f

Suppose now tha? f(x) = 0 and that all second order partial derivativesfof
are continuous at. If 7% (x) is positive definite then, since the entrieskf (x)
are continuous ak, there is a positive real numbersuch thatu, (H¢(y)) > 0
for 1 < p < n, and hences?; (y) is positive definite, providedy — x| < e.
Therefore, by (12), there is a real numifesuch thad < ¥ < 1 and

f(®+h) = f(x) + 345 (x + 9h) > f(z)

if 0 < |h| < &, sof has a (strict) local minimum at. Similarly, if /77 (x) is
negative definitef has a (strict) local maximum at, and if 5 (x) is indefinite
then f has a saddle point at. Together with the characterizations of definite and
indefinite (symmetric) matrices given in 15, this provesftilowing

17. Theorem (The second derivative testSuppose thaV f () = 0, and that all
second order partial derivatives gfare continuous ai; then

() f has a local minimum atc if every leading principal minor ofd s (x) is
positive.
(i) f has alocal maximum at if the leading principal minors off ¢ (x) are al-
ternately negative and positive (i.€=1)"u,(Hy () > 0for 1 < p < n).
(i) f has a saddle point ak if Hy () has a negative principal minor of even
order, or negative and positive principal minors of odd arde

In any other case, further investigation is required. Thesd derivative test
will now be spelled out for real-valued functions of two arudee real variables.
Suppose thaf11, fi2, fo1 andfaz are continuous at € R?, and thatV f(x) = 0.
Let
_ (=)
T fa(=)

frz(z)|

and puo Fas(m)|’

p1 = fi1(x)
then

e f has alocal minimum at if ;1 > 0 andus > 0,

e f has alocal maximum at if 3 < 0andug > 0,

e f has asaddle point atif u2 < 0;
and the remaining cases require further investigation.t,exypose thaf;; is con-
tinuous atr € R3 for 1 < 4,5 < 3, and thatV f(z) = 0. Let f;; denotef;; (),
for1 <+,7 < 3, and consider

_ |fe2 fo3 _|fin Sz _ | Sz
fa2  fa3]’ fa1 fa3|’ for fa2]’
fir fiz fis
01 = fi1, 02=fo2, 03=f33, and A= |for fa2 fa3|;
fa1 fa2  fs3

then
e f has alocal minimum at if §;, Az, A > 0,
e f has alocal maximum at if §;, A < 0andAs > 0,
e f has asaddle point atif at least one oA, Az, A3 is negative, or there
are both positive and negative numbers améng., ds, A,

and the remaining cases require further investigation.



