
Chapter 5

Vector Geometry

In this chapter we will look more closely at certain ge-
ometric aspects of vectors in Rn. We will first develop an
intuitive understanding of some basic concepts by looking
at vectors in R2 and R3 where visualization is easy, then
we will extend these geometric intuitions to Rn for any n.
The basic geometric concepts that we will look at involve
measurable quantities such as length, angle, area and vol-
ume. We also take a closer look at the two main types of
equations covered in this course: parametric-vector equa-
tions and linear equations.

We begin with a reminder. We defined a vector in Rn

as an n-tuple, i.e., as an n×1 matrix. This is an algebraic
definition of a vector where a vector is just a list of num-
bers. The geometric objects we will look at in this chapter
should be seen as geometric interpretations of this alge-
braic definition. One difficulty that students encounter at
this stage is that there are many different geometric in-
terpretations that can be given to a vector. For example,
a vector in Rn can be interpreted geometrically as

• an arrow starting at the origin.

• an arrow with a certain length and direction but no
fixed location.

• a point (or more exactly, the coordinates of a point
relative to some reference point).

• a directed line segment between two points.

• a displacement (i.e., a translation).

This multiplicity of interpretations is a strength of the
vector concept not a weakness. Vectors have many appli-
cations and depending on the application one geometric
interpretation may be more relevant than another but no
matter what geometric interpretation is chosen the under-
lying vector algebra remains the same. We will interpret a

vector in Rn as a position vector as described in section
1.3 of Lay’s textbook. A position vector is just a pointer
to a certain location in Rn. When using position vectors
it is not necessary to make a firm distinction between a
vector and its endpoint. For example, when we say that a
line is a set of vectors we mean that the endpoints of the
vectors lie on the line. If we want to stress the direction
of the vector we will usually represent it as an arrow. If
we want to stress the particular location that the vector
is pointing to we will usually represent it by a point.

EXAMPLE 5.1. If A = (x1, x2, . . . , xn) and B =
(y1, y2, . . . , yn) are two points then the vector from A

to B (represented by
−→
AB ) is defined as follows

−→
AB =

26664
y1 − x1

y2 − x2

..

.
yn − xn

37775
You can think of this as letting A be the origin of a new

coordinate system and then the entries in
−→
AB give the lo-

cation of B relative to A. Or you can imagine translating
both A and B by subtracting A from both points so that
A is translated to the origin. Finally, you can think of
−→
AB as an arrow from A to B.

So, for example, if we have P (1, 5, 2) and Q(7, 7, 0)

then
−−→
PQ =

247− 1
7− 5
0− 2

35 =

24 6
2
−2

35. The entries in this vector

indicate that when you travel from P to Q you move 6
units in the x1 direction, 2 units in the x2 direction and 2
units in the negative x3 direction. These entries express

the location of Q relative to P . If
−−→
PQ is drawn with the
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intial point at the origin then the terminal point would be
(6, 2, -2).

We will usually represent a vector as an n × 1 matrix
but there is another standard way of representing vectors
that is frequently used. In R2 we define

i =

»
1
0

–
j =

»
0
1

–
It then follows that any vector in R2 can be written as»

a
b

–
=

»
a
0

–
+

»
0
b

–
= ai + bj

Similarly in R3 we define

i =

241
0
0

35 j =

240
1
0

35 k =

240
0
1

35
and then any vector in R3 can be written24a

b
c

35 = ai + bj + ck

You should realize that in R2 the vectors i and j are just
the vectors which we have called e1 and e2, the standard
basis of R2. Similarly in R3 the vectors i, j and k are the
standard basis of R3.

5.1 Distance and Length

The first geometric concept we want to look at is the
the length of a vector. We define this to be the usual
Euclidean distance from the intial point (the origin) to
the end point of the vector. The length any vector v
in Rn will be represented by ‖v‖. This quantity is also
referred to as the magnitude or norm of v.

Let u =

»
u1

u2

–
be a vector in R2. The length of this

vector would be the distance from the origin (0, 0) to the
point (u1, u2) and this is given by the Pythagorean The-
orem as

‖u‖ =
q

u2
1 + u2

2

EXAMPLE 5.2. Let u =

»
5
−3

–
. Figure 5.1 shows u

and by the Pythagorean Theorem we can find the norm
of u as

‖u‖ =
q

52 + (−3)2 =
√

34

(5,–3)

–4

–3

–2

–1

0

1

–1 1 2 3 4 5 6

Figure 5.1.

In R3 a similar argument based on the Pythagorean
Theorem gives

‖u‖ =
q

u2
1 + u2

2 + u2
3

for any vector u =

24u1

u2

u3

35.

We can extend the above formulas to Rn by defining

‖u‖ =
q

u2
1 + u2

2 + · · ·+ u2
n

Notice that if u =

26664
u1

u2

.

.

.
un

37775 is any vector in Rn then

uT u =
ˆ
u1 u2 · · · un

˜
26664

u1

u2

.

.

.
un

37775 = u2
1 + u2

2 + · · ·+ u2
n

We then have the following concise formula which is
valid for vectors in Rn for all n

‖u‖2 = uT u

EXAMPLE 5.3. Let u be any vector in Rn and k be a
scalar then

‖ku‖2 =
“
kuT

”
(ku)

= k2uT u

= k2‖u‖2
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Taking square roots then gives

‖ku‖ = |k| ‖u‖
This shows that multiplying any vector in Rn by a scalar
k scales the length of the vector by |k|. We will sometimes
make a distinction between the sense of a vector and the
direction of a vector. When a vector is multiplied by a
negative scalar the reversal of the arrow is described by
saying the sense has been reversed but the direction has
stayed the same.

Definition 5.1. The distance between two vectors u
and v in Rn is defined as ‖u− v‖.

EXAMPLE 5.4. The distance between u = i + k and
v = j− k is

‖u− v‖ = ‖i− j + 2k‖ =
q

12 + (−1)2 + 22 =
√

6

Unit Vectors
A unit vector is a vector whose length is 1.

If u is any non-zero vector in Rn then
1

‖u‖
u is a unit

vector. This can be seen by applying the formula ‖v‖2 =

vT v to the vector
1

‖u‖
u. This gives:„

1

‖u‖
u

«T „
1

‖u‖
u

«
=

1

‖u‖2
uT u

=
1

‖u‖2
‖u‖2

= 1

The process of multiplying a vector by the reciprocal of
its length to obtain a unit vector is called normalization.
Notice that this procedure doesn’t alter the direction or
sense of the vector.

EXAMPLE 5.5. Normalize the vector v =

2664
2
2
0
−1

3775.

We have ‖v‖ =
√

4 + 4 + 0 + 1 =
√

9 = 3 so

1

3

2664
2
2
0
−1

3775 =

2664
2/3
2/3
0

−1/3

3775
is a unit vector parallel to v. Note: Just to avoid any pos-
sible confusion, when we say that two non-zero vectors,
u and v, are parallel we mean that they have the same
direction. Each one is a scalar multiple of the other.
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Problems

1. If A = (4,−2) and
−→
AB =

»
3
−1

–
what is B?

2. If B = (5,−4, 7) and
−→
AB =

24−6
2
2

35 what is A?

3. Find the length of the following vectors:

a.

»
3
−2

–

b.

24 1
4
−1

35

c.

2664
4
3
2
1

3775

d.

»
cos θ
sin θ

–

e.

24cos(s) sin(t)
cos(s) cos(t)

sin(s)

35
f. i + j + k

g. 4i− j− 3k

h.
√

1− 2t2i+tj+tk

4. Let v =

26664
1
1
.
.
.
1

37775 be the vector in Rn all of whose

entries are 1. What is ‖v‖?
5. Find the lengths of the sides of triangle ABC where

the vertices are given by

a. A(0, 0), B(3, 3), C(5,−1)

b. A(−1, 2), B(1, 5), C(3, 1)

c. A(1, 0, 0),
B(0, 1, 0),

C(0, 0, 1)

d. A(3, 1, 2),
B(4,−1,−2),
C(−2, 0, 1)

6. a. If
−→
AB =

»
2
−1

–
,
−−→
BC =

»
−3
5

–
, and A is the

point (3, 7) what is C? Draw a diagram illus-
tating this problem.

b. If
−−→
PQ =

243
1
0

35,
−→
QR =

24 2
−1
1

35, and R is the

point (−3, 5, 2) what is P?

7. Let u =

241
2
4

35 and v =

24 k
k + 1
k + 2

35. Use calculus to

find the value of k for which the distance from u to
v is a minimum.

8. Find a unit vector parallel to each of the following
vectors:

a.

»
3
4

–

b.

243
4
5

35

c.

2664
1
1
−1
−1

3775

d. 3i− 5j + 2k

e.

»
1
t

–
f.

»
cos t + sin t
cos t− sin t

–

9. If ‖
−→
AB‖ = 5 and ‖

−−→
BC‖ = 3 what are the possible

values for ‖
−→
AC‖?

10. Let u =

»
cos(s)
sin(s)

–
and v =

»
cos(t)
sin(t)

–
. These are two

unit vectors in R2. Show that the distance from u
to v is

p
2− 2 cos(s− t)

11. Prove that in R3 the length of

24v1

v2

v3

35 is given byq
v2
1 + v2

2 + v2
3 .

12. True or False:

a. ‖u‖2 = uuT

b. ‖u‖2 = uT u

c. ‖2u‖2 = 4uT u

d. ‖u + v‖2 = uT u + vT v

e. If ‖u‖ = ‖v‖ then ‖u + v‖ = ‖u‖+ ‖v‖.
f. ‖Au‖2 = uT AT Au

13. Under what conditions will ‖u + v‖ = ‖u‖+ ‖v‖?
14. Suppose A is an n× n matrix such that AT A = I.

Let v be any vector in Rn. Show ‖Av‖ = ‖v‖

15. Let A =

»
cos θ − sin θ
sin θ cos θ

–
. Show that if v is any

vector in R2 then ‖Av‖ = ‖v‖.
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5.2 The Dot Product

The Dot Product in R2

Suppose we have two vectors in R2, u =

»
u1

u2

–
and v =»

v1

v2

–
as illustrated in Figure 5.2

θ

u - v

v

u

–1

0

1

2

3

–1 1 2 3 4

Figure 5.2.

These two vectors determine a triangle whose third side
would be u − v translated. If we let θ be the angle be-
tween u and v then we can apply the law of cosines to
the triangle. This gives

‖u‖2 + ‖v‖2 − 2‖u‖ ‖v‖ cos θ = ‖u− v‖2

= (u1 − v1)2 + (u2 − v2)2

= ‖u‖2 + ‖v‖2 − 2u1u2 − 2v1v2

Cancelling out common factors and terms we get

‖u‖ ‖v‖ cos θ = u1v1 + u2v2

The expression on the right hand side of the last line
is given a special name. It is called the dot product of
u and v and is written u · v. Thus we have the following
two formulas

u · v = u1v1 + u2v2

and
u · v = ‖u‖ ‖v‖ cos θ

where θ is the angle between u and v. Since θ is one angle
of a triangle we have 0◦ ≤ θ ≤ 180◦. This means that θ
is the smallest positive angle between u and v.

There is another way of indicating the dot product. If

u =

»
u1

u2

–
and v =

»
v1

v2

–
then

uT v =
ˆ
u1 u2

˜ »
v1

v2

–
= u1v1 + u2v2

and so we have the nice formula

u · v = uT v

(This formula uses the standard convention of interpreting
the 1× 1 matrix uT v as a scalar.)

EXAMPLE 5.6. If u =

»
1
3

–
and v =

»
3
1

–
then

u · v = (1)(3) + (3)(1) = 6

and
‖u‖ = ‖v‖ =

√
10

It then follows that if θ is the angle between u and v we
have

cos θ =
6

√
10
√

10
=

3

5

and the angle between u and v is arccos(3/5) ≈ 51.13◦.

The dot product is often useful in geometric problems
involving angles. If the problem is stated in terms of
points then it should be “translated” into vector terminol-
ogy before using the dot product. Look at the following
example:

EXAMPLE 5.7. Draw the parabola y = x2 and let P
be the point (1, 1) on this parabola. If O is the origin
find another point Q on the parabola such that the angle
between OP and OQ is 30◦.

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Q

P

x

420−2−4

Figure 5.3.

In terms of vectors we have
−−→
OP =

»
1
1

–
and

−−→
OQ =»

x
x2

–
. We also have

−−→
OP ·

−−→
OQ = x+ x2, ‖

−−→
OP‖ =

√
2, and
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‖
−−→
OQ‖ =

√
x2 + x4. If the angle between these vectors is

30◦ the dot product formula gives

x + x2 =
√

2
p

x2 + x4 cos 30◦

Substituting cos 30◦ =
√

3
2

and squaring both sides gives

x2 + 2x3 + x4 = 2
`
x2 + x4

´ 3

4

We omit the algebra but you should be able to solve this
equation and find two values of x that work x = 2 +

√
3

and x = 2−
√

3.

The Dot Product in Rn

The dot product can be generalized to vectors in Rn.

Definition 5.2. Let u and v be vectors in Rn then their
dot product is defined by

u · v = uT v

The above definition implies that if u =

26664
u1

u2

.

.

.
un

37775 and

v =

26664
v1

v2

.

.

.
vn

37775 then

u · v = u1v1 + u2v2 + · · ·+ unvn

The fundamental properties of the dot product are
summarized by the following theorem.

Theorem 5.3. If x, y, and z are vectors in Rn and c
is a scalar then

a. x · y = y · x

b. x · (y + z) = x · y + x · z

c. (cx) · y = c (x · y)

d. x · x ≥ 0 and x · x = 0 if and only if x = 0.

Proof. The proof of part (a) is left as an exercise.
Since u · v = uT v parts (b) and (c) follow from the

corresponding properties of matrix multiplication.
The proof of part (d) is more complicated because it

makes several claims. First it claims that the inner prod-
uct of a vector with itself can never be negative. To see

this let x =

26664
x1

x2

.

.

.
xn

37775. Then x·x = x2
1+x2

2+· · ·+x2
n and this

value can never be negative since it is the sum of squares.
Next it says that the inner product of the zero vector

with itself is 0. This is easy: if x = 0 then x · x =
0 + 0 + · · ·+ 0 = 0.

Finally part (d) claims that if the dot product of a
vector with itself is 0 then the vector must be the zero
vector. To see this suppose x · x = 0. Then x2

1 + x2
2 +

· · ·+x2
n = 0. Since the left hand side of this equation has

no negative terms the only way the terms can add up to
0 is if each term is 0. So x1 = 0, x2 = 0, . . . , xn = 0 and
we have x = 0.

This last property says that in Rn the only vector with
length 0 is the zero vector.

Orthogonal Vectors
The formula u · v = ‖u‖ ‖v‖ cos θ relates the dot product
to the angle between vectors 1. If u and v are non-zero
vectors then the right hand side of this expression is pos-
itive if 0◦ ≤ θ < 90◦ and negative if 90◦ < θ ≤ 180◦.
More importantly the dot product is 0 if θ = 90◦. This
means that two non-zero vectors are perpendicular if and
only if their dot product is 0. This leads to the following
definition.

Definition 5.4. Two vectors in Rn are said to be or-
thogonal if their dot product is 0.

This definition implies that the zero vector in Rn is
orthogonal to every vector in Rn.

EXAMPLE 5.8. Show that the triangle with vertices
A(−2, 3), B(5, 5), and C(0,−4) is a right triangle.

We want to interpret the sides of this triangle as vec-
tors. If we treat A as the origin then the vector from

A to B would be
−→
AB =

»
5− (−2)

5− 3

–
=

»
7
2

–
. Sim-

ilarly
−→
AC =

»
0− (−2)
−4− 3

–
=

»
2
−7

–
. Now notice that

−→
AB ·

−→
AC = 7(2) + 2(−7) = 0. Since

−→
AB ·

−→
AC = 0 we

have ‖
−→
AB‖ ‖

−→
AC‖ cos θ = 0. We can then conclude that

1

Although this formula was proved only for vectors in
R2 it is applicable in all Rn. Justification for this will be
given shortly.
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cos θ = 0 and so θ = 90◦.

EXAMPLE 5.9. For what value(s) of k are the vectors

u =

»
k
2k

–
and v =

»
k + 1
k − 1

–
orthogonal?

We just have to determine any values of k which make
u · v = 0.

u · v = k(k + 1) + 2k(k − 1)

= k2 + k + 2k2 − 2k

= 3k2 − k

= k(3k − 1)

It should then be clear that the vectors are orthogonal
for k = 0 and k = 1/3.

We end this section with three theorems which state
some important properties of vectors.

Theorem 5.5. (Pythagorean Theorem) Let u and v
be vectors in Rn then ‖u+v‖2 = ‖u‖2 +‖v‖2 if and only
if u and v are orthogonal.

Proof. Note that the statement of this theorem is another
“if and only if” statement. This means that the theorem
is making two claims. These will be proved separately
below.

First we must show that if u and v are orthogonal then
‖u + v‖2 = ‖u‖2 + ‖v‖2. The argument is as follows

‖u + v‖2 = (u + v) · (u + v) (5.1)

= u · u + 2u · v + v · v (5.2)

= u · u + 0 + v · v (5.3)

= ‖u‖2 + ‖v‖2 (5.4)

Equation 5.2 is a consequence of the distributive and com-
mutative properties of the dot product. Equation 5.3 is a
consequence of u and v being orthogonal (their dot prod-
uct is 0).

Next we must show that if ‖u+v‖2 = ‖u‖2+‖v‖2 then
u and v are orthogonal. The argument goes as follows

‖u + v‖2 = ‖u‖2 + ‖v‖2 (5.5)

u · u + 2u · v + v · v = u · u + v · v (5.6)

2u · v = 0 (5.7)

u · v = 0 (5.8)

The last line tells us that u and v are orthogonal.

Theorem 5.6. ( Cauchy-Schwarz Theorem) If u and
v are vectors in Rn then

|u · v| ≤ ‖u‖‖v‖

Proof. If v is the zero vector then both sides of the in-
equality would be zero and the theorem would be true so
we will assume that v is not the zero vector.

Part d of Theorem 5.3 tells us that“
u−

u · v
v · v

v
”
·

“
u−

u · v
v · v

v
”
≥ 0

since the dot product of any vector with itself is always
greater than or equal to 0.

Simplifying the left hand side of the above gives“
u−

u · v
v · v

v
”
·

“
u−

u · v
v · v

v
”

= u · u− 2
u · v
v · v

u · v +
(u · v)2

(v · v)2
v · v

= u · u−
(u · v)2

v · v
Replacing this last expression in the original inequality

gives

‖u‖2 −
(u · v)2

‖v‖2
≥ 0

Rearranging these terms gives

‖u‖2 ‖v‖2 ≥ (u · v)2

Taking the square root of both sides gives

|u · v| ≤ ‖u‖‖v‖

The Cauchy-Schwarz Theorem guarantees that

−1 ≤
u · v

‖u‖ ‖v‖
≤ 1

for any non-zero vectors u and v in Rn. This allows us
to define the angle θ between any non-zero vectors u and
v in Rn by the formula

cos θ =
u · v

‖u‖ ‖v‖

(where 0 ≤ θ ≤ 180◦ ).

EXAMPLE 5.10. Find the angle between u =

2664
1
−1
1
−1

3775
and v =

2664
1
2
3
4

3775.

We have u · v = 1 − 2 + 3 − 4 = −2, ‖u‖ =√
1 + 1 + 1 + 1 =

√
4 = 2, and ‖v‖ =

√
1 + 4 + 9 + 16 =√

30. Thus

cos θ =
u · v

‖u‖ ‖v‖
=

−2

2
√

30
≈ −.1826



8 Chapter 5. Vector Geometry

which gives θ ≈ 100.52◦

Theorem 5.7. ( Triangle Inequality) If u and v are
vectors in Rn then

‖u + v‖ ≤ ‖u‖+ ‖v‖

Proof.

‖u + v‖2 = u · u + 2u · v + v · v (5.9)

≤ u · u + 2|u · v|+ v · v (5.10)

≤ u · u + 2‖u‖‖v‖+ v · v (5.11)

= (‖u‖+ ‖v‖)2 (5.12)

Equation 5.11 follows from the Cauchy-Schwarz theorem
The above shows that ‖u + v‖2 ≤ (‖u‖+ ‖v‖)2. The

theorem then follows by taking the square root of both
sides.

Direction Angles
The dot product gives us a new way of looking at unit
vectors. Any particular entry in a unit vector cannot be
larger than 1 or less than -1. The entries in a unit vector
turn out to have a very simple geometric interpretation.

In R3 the angles between any vector v =

24v1

v2

v3

35 and

the x1, x2 and x3 axes are called the direction angles
of v and are represented by α, β, γ respectively. These
are just the angles between v and the unit vectors i, j,
and k. So we have

cos α =
v · i

‖v‖ ‖i‖
=

v1

‖v‖

cos β =
v · j

‖v‖ ‖j‖
=

v2

‖v‖

cos γ =
v · k

‖v‖ ‖k‖
=

v3

‖v‖

We can now write

v =

24v1

v2

v3

35 =

24‖v‖ cos α
‖v‖ cos β
‖v‖ cos γ

35 = ‖v‖

24cos α
cos β
cos γ

35
The values cos α, cos β, and cos γ are called the direc-

tion cosines of v.
The last example can be generalized in the following

way (we leave the details as an exercise). Let v be any
non-zero vector in Rn. If we normalize v then the entries
in the normalized vector are just the cosines of the angles
between v and the vectors in the standard basis of Rn.

That is, the entries in any unit vector are the direction
cosines of that vector.

EXAMPLE 5.11. Let u =

2664
0
1
−1√

2

3775. If we normalize u

we get

2664
0

1/2
−1/2√

2/2

3775. Now cos−1(0) = π/2, cos−1(1/2) = π/3,

cos−1(−1/2) = 2π/3, and cos−1(
√

2/2) = π/4. So u lies
at an angle of 90◦ from e1, at an angle of 60◦ from e2,
at an angle of 120◦ from e3, at an angle of 45◦ from e4

Note that for any non-zero vector v there are two unit
vectors in the same direction as v. One has the same
sense as v, the other has the opposite sanse of v.
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Problems

1. For the following pairs of vectors u and v calculate
‖u‖, ‖v‖, u · v, and the angle between u and v.

a. u =

»
2
−1

–
, v =»

3
4

–
b. u =

»
1
5

–
, v =»

−3
0

–

c. u =

241
1
1

35, v =24 1
−2
3

35

d. u =

2664
2
1
2
1

3775, v =

2664
4
3
2
1

3775

e. u =

»
a
b

–
, v =

»
b
a

–

f. u = i− j + k, v =
2i + j + 2k

2. Use the dot product to find the angles of the trian-
gles with the following vertices

a. A(1, 4), B(3,−2), C(6, 1)

b. A(1, 0, 1), B(0, 2, 1), C(2, 1, 0)

c. A(1, 1, 2, 2), B(1, 2, 2, 1), C(2, 2, 1, 1)

3. Given the points A(1, 1), B(3,−1), and C(4, k) find
the values of k for which triangle ABC is a right
triangle.

4. Let u1 =

243
1
1

35 and u2 =

241
0
1

35. Show that any vector

in Span {u1,u2} is orthogonal to v =

24 1
−2
−1

35.

5. Let x =

»
a
b

–
and R =

»
cos(θ) − sin(θ)
sin(θ) cos(θ)

–
. Use the

dot product to find the angle between x and Rx.

6. Let u =

»
1
3

–
and v =

»
2
k

–
. For what value(s) of k

a. do u and v have the same length?

b. are u and v orthogonal?

c. are u and v parallel?

d. is the distance from u to v one unit?

7. Let u =

241
2
3

35 and v =

24 2
1 + k
1− k

35. For what value(s)

of k

a. do u and v have the same length?

b. are u and v orthogonal?

c. are u and v parallel?

d. is the distance from u to v 3 units?

8. Let u =

»
cos θ
sin θ

–
and v =

»
sin θ
cos θ

–
. For what value(s)

of θ

a. do u and v have the same length?

b. are u and v orthogonal?

c. are u and v parallel?

9. Normalize the following vectors and find the direc-
tion angles in each case:

a. v =24 1
2
−2

35
b. v =24−3

1
4

35 c. v =

26664
1
2
3
4
5

37775
10. a. Suppose v is a vector in R2 and you know

that this vector forms an angle of π/3 with
i. Is this enough information to determine
vector v? What are the possible values for
the angle between v and j?

b. Suppose v is a vector in R3 which forms an
angle of π/6 with i. What are the possible
values for the angle between v and k?

c. Suppose v is a vector in R3 which forms an
angle of π/6 with i and an angle of π/6 with
j. What are the possible values for the angle
between v and k?

11. Use the dot product to prove that

‖x + y‖2 + ‖x− y‖2 = 2
`
‖x‖2 + ‖y‖2

´
12. Show that if u + v and u− v have the same mag-

nitude then u and v are orthogonal.

13. It was pointed out in this section that uT v = vT u
for any two vectors u and v in Rn. Is it also true
that uvT = vuT ? Prove this or give a counter-
example.

14. Suppose x and y are vectors in Rn that have the
same length. Show that x + y bisects the angle
between x and y.

15. Prove part a of Theorem 4.3.

16. Let u and v be two vectors in Rn.

a. Justify the following steps

uT v = (uT v)T = vT u

b. The following chain of equalities resembles
the above example but is not valid. What
is wrong with the following?

uvT = (uvT )T = vuT
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5.3 Lines

Lines in R2

We have already seen in Chapter 1 of Lay’s textbook that
a line in R2 can be represented by an equation of the form
x = x0+tv. Such an equation represents the line through
x0 parallel to v. This is called a parametric-vector equa-
tion of the line. We now want to look at another way of
representing a line in R2.

How can we specify the direction of a line in R2? One
standard way is to give the slope of the line and another is
to give a vector parallel to the line. There is a third way
of specifying the direction of a line in R2 which is not
so obvious and which at first might seem unnecessarily
complicated. We can specify the direction by giving a
vector perpendicular to the line. Such a vector is said to
be a normal vector to the line.

normal vector

(xo, yo)

Figure 5.4.

Suppose x =

»
x
y

–
lies on the straight line through x0 =»

x0

y0

–
with normal n =

»
a
b

–
then x− x0 is parallel to the

line and is therefore perpendicular to n. We must then
have

n · (x− x0) = 0»
a
b

–
·

»
x− x0

y − y0

–
= 0

a(x− x0) + b(y − y0) = 0

ax + by − ax0 − by0 = 0

The equation of the line can then be written as

ax + by = ax0 + by0

or more concisely

ax+by=c

where c = ax0 + by0. We will call this the normal equa-
tion of a straight line.2 Notice that this equation could

2

be written in vector notation as

nT x = nT x0

Now you already knew that any straight line in R2

could be written in the form ax + by = c but what is new
here is that in an equation of this form the coefficients of
x and y give a normal vector to the line.

EXAMPLE 5.12. Given the parametric-vector equa-

tion of a line x =

»
3
1

–
+ t

»
4
3

–
find the normal equation of

this line.

We will use the following observation: If u =

»
a
b

–
is

any vector in R2 then

»
b
−a

–
is orthogonal to u. This can

be easily confirmed by a simple dot product.»
a
b

–
·

»
b
−a

–
= ab− ab = 0

Now it should be clear that the direction of the given

line is determined by the vector

»
4
3

–
. We want a normal

vector to this line and the above comments show that n =»
3
−4

–
would be such a vector. We now know that the

normal equation of the line is 3x− 4y = c with the value
of c yet to be determined.

Now we use the fact that

»
3
1

–
lies on the line and so

these values must satisfy the equation. We then have
3(3) − 4(1) = c. So c = 9 − 4 = 5 and the equation
we are looking for is

3x− 4y = 5

EXAMPLE 5.13. Find an equation for the line through
A(3, 5) and B(6, 1).

The vector
−→
AB =

»
6− 3
1− 5

–
=

»
3
−4

–
is a direction vector

for this line. The line x = t

»
3
−4

–
would be a line through

the origin parallel to the desired line. We only have to
add a translation. A parametric-vector equation for this
line would be

x = t

»
3
−4

–
+

»
3
5

–
This is illustrated in Figure 5.5.

This is not the usual term for this equation. Most books
would call it the standard equation or the Cartesian
equation of a line. We are calling it the normal equation
just to stress the fact that the coefficients give a normal
vector to the line.
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10.0

x

7.5

5.0

6.4

B

2.5

A

0.0

5.6

−2.5

−5.0

4.84.03.22.41.60.80.0−0.8

Figure 5.5. The line through A and B.

But we can also find a normal vector to this line, n =»
4
3

–
. The line therefore has an equation of the form 4x +

3y = c. Substituting the coordinates of A gives

4x + 3y = 27

Lines in Rn

In general a line in Rn can be written in parametric-vector
form x = u + tv where v determines the direction of the
line and u lies on the line.

EXAMPLE 5.14. Find the equation of the line con-

taining both p =

2664
1
2
3
4

3775 and q =

2664
4
3
2
1

3775.

If we translate this line to pass through the origin by
subtracting p from all points on the line then a direction
vector for the line would be

q− p =

2664
4
3
2
1

3775−
2664

1
2
3
4

3775 =

2664
3
1
−1
−3

3775

The line x = t

2664
3
1
−1
−3

3775 would therefore be a line through

the origin parallel to the line we are looking for. We just

have to translate the line so that it passes through p and
q and we do this by adding either one of these to our
equation. So one possible answer would be

x =

2664
1
2
3
4

3775 + t

2664
3
1
−1
−3

3775
You should understand that points on the line are gen-

erated by different values of the parameter t. In particular
when t = 0 in the above equation we have x = p and when
t = 1 we have x = q.

In Rn with n ≥ 3 a vector that is orthogonal to a line
can be pointing in infinitely many different directions. For
example in R3 any vector in the x, y plane will be orthog-
onal to the z axis. This means that it is no longer possible
to determine the direction of a line just by specifying a
normal vector in these spaces.

So parametric equations are more versatile since they
can be used to represent lines in spaces of any dimension.
Lines can be represented by normal or Cartesian equations
only in R2.

EXAMPLE 5.15. Let L1 be the line defined by

x =

2664
1
2
1
3

3775 + s

2664
2
1
1
3

3775
and L2 be the line defined by

x =

2664
1
2
1
3

3775 + t

2664
3
0
2
−1

3775
It should be obvious that these lines intersect at2664

1
2
1
3

3775. The angle between the direction vectors of these

lines is cos−1 6+0+2−3√
4+1+1+9

√
9+0+4+1

= cos−1 5√
15
√

14
≈

1.22 radians. This is the angle formed by the two inter-
secting lines. Even though these are lines in R4 there
is still a plane (a flat 2-dimensional surface) containing
these lines. It should also be obvious that this plane is
defined by the equation

x =

2664
1
2
1
3

3775 + s

2664
2
1
1
3

3775 + t

2664
3
0
2
−1

3775
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Does

2664
32
4
21
0

3775 lie in this plane? This is equivalent to ask-

ing if the equation2664
1
2
1
3

3775 + s

2664
2
1
1
3

3775 + t

2664
3
0
2
−1

3775 =

2664
32
4
21
0

3775
has a solution. This vector equation gives us the aug-
mented matrix 2664

2 3 31
1 0 2
1 2 20
3 −1 −3

3775
This augmented matrix reduces to2664

1 0 2
0 1 9
0 0 0
0 0 0

3775
So this point does lie in the plane. It corresponds to the
values s = 2 and t = 9 in the equation of the plane.
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Problems

1. Write the following lines in parametric-vector form.

a. 3x1 + x2 = 5

b. 2x1 − 5x2 = 1

c. x1 = 4

d. x2 = −3

2. Write the following lines in normal form

a. x =

»
2
1

–
+ t

»
3
−1

–
b. x =

»
0
3

–
+ t

»
5
2

– c. x = t

»
4
3

–

d. x = ti + (1− t)j

3. Given the line L : x =

»
−3
1

–
+ t

»
1
−2

–
a. Find the value of x that corresponds to t =

1. Find the value of x that corresponds to
t = −2.

b. Find the value of t that corresponds to x =»
1
−7

–
.

c. Find all x on L that lie 2 units from

»
−3
1

–
.

d. Find all x on L that lie 5 units from the ori-
gin.

e. Illustrate all the above with a picture.

4. Given the line x =

242
0
1

35 + t

24 1
−1
1

35
a. Find the value of x that correspond to t = 1.

Find the values of x that correspond to t =
−2.

b. Find the value of t that corresponds to x =244/3
2/3
1/3

35.

c. Is

240
2
2

35 on this line? For what value(s) of k is240
2
k

35 on this line?

d. Find all x on the line that lie 2 units from242
0
1

35.

e. Find all x on the line that lie 2 units from
the origin.

5. Find all values of a and b such that the following
two equations represent the same line

x =

»
1
3

–
+ t

»
2
1

–
x =

»
a
2

–
+ t

»
b
4

–
6. Find all values of a and b such that the following

two equations represent the same line

x =

»
4
−2

–
+ t

»
1
3

–
x =

»
a
2

–
+ t

»
b
4

–
7. Find all values of a and b such that the following

two equations represent the same line

4x1 + x2 = 3

2x1 + ax2 = b

8. Let n and x0 be vectors in R2. Show that the
line through x0 normal to n can be written nT x =
nT x0.

9. Find a parametric vector equation of the line con-
taining p and q where

a. p =

241
2
3

35 q =

244
1
1

35

b. p =

2664
0
2
1
−3

3775 q =

2664
2
2
5
5

3775
10. In R3 find three different lines through the origin

orthogonal to the vector k.

11. For what values of a and b do the following equa-
tions give the same line?

x =

24 a
3

a + 3

35 + t

241
1
2

35 and x = s

24 b
2

b + 2

35
12. a. Show that the line in Rn which contains p

and q can be represented by the equation x =
(1− t)p + tq.

b. Find the normal equation of the line x = (1−

t)

»
2
−5

–
+ t

»
1
3

–
.
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5.4 Planes and Hyperplanes

Planes in R3.

We have already seen in Chapter 1 of Lay’s textbook that
a plane in R3 can be expressed in parametric-vector form
as

x = x0 + su + tv

The expression su + tv corresponds to a plane through
the origin generated by vectors u and v (also called the
span of u and v). The addition of x0 to this expression
translates this plane in R3.

Now a plane in R3 doesn’t have a slope and a plane
doesn’t point in any particular direction but a plane does
have an orientation and parallel planes have the same
orientation. The orientation of a plane in R3 can be
specified by giving two independent vectors parallel to
the plane or by specifying one vector that is normal to
the plane. Suppose we want to determine a condition on

x =

24x
y
z

35 that tells us when it is in the plane containing

x0 =

24x0

y0

z0

35 with normal vector n =

24a
b
c

35. If both x and

x0 lie in the plane then the vector x−x0 must be parallel
to the plane and so we have

n · (x− x0) = 024a
b
c

35 ·
24x− x0

y − y0

z − z0

35 = 0

a(x− x0) + b(y − y0) + c(z − z0) = 0

ax + by + cz − ax0 − by0 − cz0 = 0

This equation can be written ax+by+cz = ax0+by0+
cz0 or just

ax + by + cz = d

where d = ax0 + by0 + cz0. We will call this the normal
equation 3 of a plane in R3. Note that this equation can
be expressed in terms of the relevant vectors as

nT x = nT x0

EXAMPLE 5.16. The equation x + 2y + 4z = 0 can be

3

It is more common to call this the standard equation
or the Cartesian equation of a plane.

expressed in the form nT x = nT x0 as

ˆ
1 2 4

˜ 24x
y
z

35 =
ˆ
1 2 4

˜ 240
0
0

35
It is the equation of a plane with normal vector

241
2
4

35 which

contains the point

240
0
0

35. A plot of the plane and normal

vector is shown in Figure 5.6.

−3

−2x
−1

−3

−3

−2

y

−2

−1

−1 0

00

1

1

2

z 2

3

3

4

1

2

3

Figure 5.6. The plane x + 2y + 4z = 0
and a normal vector.

EXAMPLE 5.17. Find a parametric-vector equation of
the plane with normal equation

x− 2y + 2z = 4

We can look at this equation as a very simple system of
equations. It is just a system of one equation with three
unknowns. The general solution will therefore require two
free variables. The general solution will be24x

y
z

35 =

244 + 2s− 2t
s
t

35 =

244
0
0

35 + s

242
1
0

35 + t

24−2
0
1

35
and this is a parametric-vector equation of the plane.

Notice that the equation x−2y+2z = 4 tell us that n =24 1
−2
2

35 is a normal vector to the plane. The parametric-
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vector equation tells us that the plane is a translation of

the plane generated by the vectors

242
1
0

35 and

24−2
0
1

35. A

couple of simple dot product calculations shows us that
n is perpendicular to both of these vectors as we should
expect.

EXAMPLE 5.18. Find the normal equation of the

plane containing p =

241
1
0

35, q =

241
0
1

35 and r =

240
1
1

35.

The equation that we are looking for has the form ax+
by + cz = d. Since the plane contains p we know that
x = 1, y = 1 and z = 0 must satisfy this equation. So we
have a(1) + b(1) + c(0) = d. Repeating this procedure for
q and r results in the system

a + b− d = 0

a + c− d = 0

b + c− d = 0

This gives the the coefficient matrix241 1 0 −1
1 0 1 −1
0 1 1 −1

35
which reduces to 241 0 0 −1/2

0 1 0 −1/2
0 0 1 −1/2

35

The general solution of this system is

2664
a
b
c
d

3775 = t

2664
1/2
1/2
1/2
1

3775.

Choosing t = 2 gives the particular solution a = b = c =
1, d = 2 and so one possible equation for the plane would
be

x + y + z = 2

(There are infinitely many solutions to this system
which means there are infinitely many equations for this
plane, but they are all just scalar multiples of the above
equation.)

EXAMPLE 5.19. Find the line of intersection of the
planes x + y + 2z = 3 and x + 2y − z = 5.

It should be clear that these planes are not parallel
since their normals are not parallel. Since they are not
parallel they should intersect along a straight line. The
planes and the line of intersection are illustrated in Fig-
ure 5.7. The points of intersection are the points that

–4

–2

0

2

4

6

x

–2

0

2

4

y

–2

0

2

Figure 5.7. Intersecting planes.

satisfy both equations. So we want the solution of the
system

x + y + 2z = 3

x + 2y − z = 5

But this system can be written in the form Ax = b
where the solutions are now represented as vectors. The
augmented matrix and its reduce form would be»

1 1 2 3
1 2 −1 5

–
∼

»
1 0 5 1
0 1 −3 2

–
It should now be easy to write down the solution

x =

241− 5t
2 + 3t

t

35 =

241
2
0

35 + t

24−5
3
1

35
This is a parametric vector representation of the line of
intersection.

The direction vector of this line is

24−5
3
1

35. This vector

must be parallel to both planes. Why? It then follows that
this vector should be orthogonal to the normals for both
planes. Verify that this is the case.

EXAMPLE 5.20. Find the point of intersection be-
tween the plane x + 2y − z = 3 and the line x =24 1
−5
−3

35 + t

241
2
2

35.

The equation of the line can be written as24x
y
z

35 =

24 1
−5
−3

35 + t

241
2
2

35 =

24 1 + t
−5 + 2t
−3 + 2t

35
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This means that any point on the line must satisfy the
equations x = 1 + t, y = −5 + 2t, and z = −3 + 2t for
some value of the parameter t. If the point also lies on
the plane it must satisfy the equation x + 2y − z = 3.
Substitution then gives

x + 2y − z = 3

(1 + t) + 2(−5 + 2t)− (−3 + 2t) = 3

3t− 6 = 3

t = 3

The point of intersection occurs when t = 3 so the
point of intersection is x = 1 + 3 = 4, y = −5 + 6 = 1,

z = −3 + 6 = 3, or in vector form x =

244
1
3

35.

Hyperplanes

We have seen that in R2 the equation nT x = nT x0 de-
fines a line through x0 with normal n and in R3 this
equation defines a plane through x0 with normal n.

In general, in Rn the equation nT x = nT x0 defines
what is called a hyperplane through x0 with normal n.
This type of equation is a linear equation with n variables.
There are then n−1 free variables and this means that in
Rn a hyperplane will be an n−1 dimensonal subspace that
might or might not have been translated away from the
origin. So in R2 a hyperplane is a (possibly translated) 1
dimensional subspace, a line. In R3 a hyperplane is a 2
dimensional subspace that has possibly been translated.

EXAMPLE 5.21. Let n =

2664
1
2
3
4

3775 and x0 =

2664
2
0
5
1

3775 then

the normal equation of the hyperplane through x0 with
normal n would be

nT x = nT x0

ˆ
1 2 3 4

˜ 2664
x1

x2

x3

x4

3775 =
ˆ
1 2 3 4

˜ 2664
2
0
5
1

3775
x1 + 2x2 + 3x3 + 4x4 = 21

This equation contains four variables so the general
solution would involve three free variables. If we represent
the free variables by parameters x2 = r, x3 = s, and

x4 = t then the general solution would be2664
x1

x2

x3

x4

3775 =

2664
21− 2r − 3s− 4t

r
s
t

3775

=

2664
21
0
0
0

3775 + r

2664
−2
1
0
0

3775 + s

2664
−3
0
1
0

3775 + t

2664
−4
0
0
1

3775
This would be a parametric-vector representation of the

same hyperplane. This representation makes it clear that
the hyperplane is a three dimensional subspace of R4 with
basis 8>><>>:

2664
−2
1
0
0

3775 ,

2664
−3
0
1
0

3775 ,

2664
−4
0
0
1

3775
9>>=>>;

that has been translated by the vector

2664
21
0
0
0

3775.

Another notation for lines and planes
A line through the origin in Rn is a one-dimensional sub-
space of Rn. A plane through the origin in Rn is a two-
dimensional subspace of Rn. If we represent such a sub-
space by V then we can translate the line or plane to a
new position by adding a vector to each vector in V . The
translated line or plane can be represented by V + u. In
other words V + u = {x : x = v + u,v ∈ V }.

But there is no need to restrict ourselves to lines and
planes. If V is any subspace of Rn then V +u represents
V translated by u to a new position. If V is 1-dimensional
then V + u is a line. If V is 2-dimensional then V + u
is a plane. If V is n − 1 dimensional then V + u is a
hyperplane. In general if V is k dimensional then V + u
is called a k-flat.
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Problems

1. Find a normal equation of the plane or hyperplane
containing x0 with normal n.

a. n =

24 1
2
−1

35, x0 =243
0
2

35
b. n =

243
3
0

35, x0 =241
2
5

35

c. n = i + j + 3k,
x0 = 2i + 5j− 3k

d. n =

2664
3
1
2
2

3775, x0 =

2664
0
2
3
1

3775
2. Find a parametric-vector equation of each of the

following planes or hyperplanes.

a. x1 + x2 − 2x3 = 3

b. 3x1+2x2+x3 = 5

c. x1+x2+x3+x4 =
1

3. The plane x+3y−z = 0 is in fact a subspace of R3.
Find a basis for this subspace and find an equation
for the line through the origin normal to this plane.

4. The hyperplane x1 + 3x2 − x3 + 2x4 = 0 is in fact
a subspace of R4. Find a basis for this subspace
and find an equation for the line through the origin
normal to this hyperplane.

5. Find an equation for the plane containing

243
3
2

35 par-

allel to the plane x− 2y + 4z = 0.

6. Find an equation for the line which containins24 5
0
−1

35 and is also perpendicular to the plane x +

y − 4z = 3.

7. The angle between two hyperplanes is defined to be
the smallest possible angle between normals of the
hyperplanes. This angle must be between 0 and
π/2 radians (why?). This means that you should
choose normals such that their dot product is pos-
itive. Find the angle between the following hyper-
planes:

a. x + y + 3z = 2, 2x− y − z = 4

b. x1+2x2+3x3+4x4 = 0, 4x1−3x2−2x3+x4 =
1

8. In Rn let n =

26664
1
1
.
.
.
1

37775 and x0 =

26664
1
1
.
.
.
1

37775. Find the normal

equation and the parametric-vector equation of the
hyperplane containing x0 with normal n for

a. R2 b. R3 c. R4 d. R5

9. Find the point of intersection of the following
planes and lines

a. The plane 2x + 3y + 3z = 8 and the line x =241
4
2

35 + t

24 3
0
−1

35.

b. The plane 3x − y − z = 5 and the line x =241
2
5

35 + t

242
1
5

35.

c. The plane x + y + 2z = 14 and the line x =242
3
0

35 + t

243
1
1

35.

d. The plane x + y + 2z = 14 and the line x =243
3
4

35 + t

24 1
1
−1

35
e. The hyperplane x1 + x2 − 2x3 + x4 = 3 and

the line x =

2664
8
2
−3
3

3775 + t

2664
3
1
−1
2

3775.

10. Let P be the plane x + 3y + 2z = 9 and let L be

the line x =

242
1
0

35 + t

24 k
k + 2

2

35. For what value(s) of

k

a. are P and L orthogonal?

b. are P and L parallel?

c. do P and L intersect at

24 8
3
−4

35.

11. In R4 let P1 be the hyperplane with equation
x1 + x2 + x3 + x4 = 1, P2 be the hyperplane with
equation x2−x3+x4 = 2, and P3 be the hyperplane
with equation x2 − x4 = 3. Find the parametric-
vector equation for

a. The intersection of P1 and P2.
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b. The intersection of P2 and P3.

c. The intersection of P1, P2 and P3.

12. Let u =

241
2
3

35, v =

242
3
4

35, and w =

240
1
1

35. Let V =

Span {u,v}.
a. Find a normal equation for the plane V +w.

b. Find a parametric vector equation for V +w.

13. Let p, q, and r be vectors in Rn. Show that the
plane which contains p, q and r can be represented
by the equation x = (1− s− t)p + sq + tr.

14. Suppose you are told that the equations 2x + 3y −

4z = 8 and x =

244
0
0

35 + s

242
0
1

35 + t

24 3
−2
1

35 represent

the same plane. Which equation would be easiest
to use to answer each of the following problems?

a. Does

2423
−6
5

35 lie in this plane?

b. Give 5 points which lie in this plane.

15. Suppose V +v and W +w represent the same plane
then which of the following are true

a. V = W . That is, V and W must be the same
plane.

b. v = w.

c. If v 6= 0 then V + v does not contain the
origin.

d. V + v + w must also be the same plane as
V + v and W + w.
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5.5 Projections

Suppose u and v are vectors in Rn with v 6= 0. If we
drop a perpendicular line from u onto the line determined
by v as shown in Figure 5.8 we obtain a vector called
the projection of u onto v which we will represent by
Projv u.

v

perp

proj

u

0

1

2

3

4

1 2 3 4 5

Figure 5.8. The projection of u onto v.

The projection of u onto v must be in the same direc-
tion as v so we have Projvu = kv for some scalar k. We
also know that u − Projvu is perpendicular to v so we
can write

(u− Projvu) · v = 0

(u− kv) · v = 0

u · v − kv · v = 0

We then have kv · v = u · v and so k =
u · v
v · v

and

Projvu =
u · v
v · v

v

As mentioned above the vector u − Projvu is perpen-
dicular to v and is called the orthogonal component of
the projection. We will denote this orthogonal component
by Perpvu

EXAMPLE 5.22. Let u =

»
1
4

–
and v =

»
3
1

–
then

Projvu =
u · v
v · v

v =
7

10

»
3
1

–
=

»
21/10
7/10

–
and

Perpvu = u− Projvu =

»
1
4

–
−

»
21/10
7/10

–
=

»
−11/10
33/10

–

Distance from a Point to a Line in Rn

The method we will use for finding the distance from a
point to a line is illustrated by Figure 5.8. The distance
will just be ‖Perpvu‖.

EXAMPLE 5.23. Find the distance from

243
1
2

35 to the

line defined by x =

241
1
3

35 + t

243
0
1

35.

Step 1. Translate the line and the point so that the
line goes through the origin. The simplest way to do this

is to subtract

241
1
3

35 from the line and the point. The trans-

lated line is just x = t

243
0
1

35 and the translated point would

be u =

243
1
2

35−
241

1
3

35 =

24 2
0
−1

35.

Step 2. Let v =

243
0
1

35 be the direction vector of the

line and find Projvu. This gives

Projvu =
5

10

243
0
1

35 =

243/2
0

1/2

35
Step 3. The distance is just the length of Perpvu. We

have

Perpvu =

24 2
0
−1

35−
243/2

0
1/2

35 =

24 1/2
0

−3/2

35
Thus the distance isq

(1/2)2 + (−3/2)2 =
p

5/2 =

√
10

2

Distance from a Point to a Plane
The distance from a point to a plane (or hyperplane) can
be found as illustrated in Figure 5.9. The idea is that
we project a vector onto a normal to the plane and the
distance we want is just the length of this projection.

EXAMPLE 5.24. Find the distance from v =

243
5
2

35 to

the plane x1 + 2x2 + 2x3 = 6.
We will need any point that lies on the given plane to

use as a reference point. We can use the x3 intercept of

the plane, x0 =

240
0
3

35. We will also need a normal to the

plane, n =

241
2
2

35.
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n (normal)

x

distance

Figure 5.9. Distance to a Plane.

Step 1. Translate the point and the plane so that
the plane passes through the origin. We can do this by
subtracting x0 from each. The normal to the plane would
not change. The point v would be be translated to v−x0 =24 3

5
−1

35.

Step 2. Project v − x0 onto n.
Step 3. The distance we want is just the length of this

projection. In this example a few simple computations
will give a distance of 11/3.

There is a simple formula for finding the distance from
a point to a hyperplane. Suppose we have the hyperplane
nT x = nT u and the point x0. The point u lies on the
hyperplane and so we can translate the hyperplane and
point by subtracting u. The hyperplane then becomes
nT x = 0 and the point becomes x0 −u. Next we project
the point onto the normal to the hyperplane. This pro-
jection would be

nT (x0 − u)

nT n
n

The distance is just the length of this projection and this
length is ˛̨̨̨

nT (x0 − u)

nT n

˛̨̨̨
‖n‖ =

˛̨
nT (x0 − u)

˛̨
‖n‖2

‖n‖

=

˛̨
nT x0 − nT u

˛̨
‖n‖

Now if we apply the above to a hyperplane in R2 (that

is a line) with equation ax + by = c then n =

»
a
b

–
and

nT u = c. If we let x0 =

»
x0

y0

–
then the above formula

gives us the distance

|ax0 + by0 − c|
√

a2 + b2

If we apply the formula to a hyperplane in R3 with

equation ax + by + cz = d then n =

24a
b
c

35 and nT u = d.

If we let x0 =

24x0

y0

z0

35 then the above formula gives us the

distance
|ax0 + by0 + cz0 − d|

√
a2 + b2 + c2

EXAMPLE 5.25. Find the point on the plane x+2y +

3z = 4 closest to x0 =

241
1
3

35.

It is easy to find the distance from x0 to the plane.
The formula derived above tells us that this distance will
be

|1 + 2(1) + 3(3)− 4|
√

1 + 4 + 9
=

8
√

14

but to find the point on the plane that lies this distance
from x0 requires that we go back to basics. A normal to

the plane is given by n =

241
2
3

35. The x intercept of the

plane is

244
0
0

35. If we treat this intercept as the origin the

vector v =

241
1
3

35−
244

0
0

35 =

24−3
1
3

35 is a vector from the plane

to x0. Then

Projnv =
1(−3) + 2(1) + 3(3)

1 + 4 + 9

241
2
3

35 =
8

14

241
2
3

35 =

24 4/7
8/7
12/7

35
It then follows that the point closest to x0 is

x0 − Projnv =

241
1
3

35−
24 4/7

8/7
12/7

35 =

24 3/7
−1/7
9/7

35

We will check this answer. Does

24 3/7
−1/7
9/7

35 lie on the

plane? Substitution into the left hand side of the equation
of the plane gives

3/7 + 2(−1/7) + 3(9/7) = 3/7− 2/7 + 27/7 = 28/7 = 4
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Further computation will confirm that the distance from24 3/7
−1/7
9/7

35 to x0 is 8/
√

14.

A General Method for Finding
Distances
Every problem that involves finding a distance can be
reduced to a situation as depicted in Figure 5.10.

?
?

(a) (b)

Figure 5.10. Distance (a) to a line (b)
to a plane.

In Figure 5.10 (a) the distance you are looking for is the
distance from one vector to the line generated by another
vector. In Figure 5.10 (b) the distance is the distance from
one vector to the plane generated by two other vectors.
You should be able to see how this pattern could extend
to higher dimensional situations with hyperplanes.

Such problems can always be seen as finding the dis-
tance to a subspace from some vector not in the subspace.
So now suppose we want to find the distance from u to the
subspace spanned by v1,v2, . . . ,vk (where these vectors
are assumed to be linearly independent). We will illus-
trate a method for obtaining this information (and more)
that seems almost magical. If you want an explanation
of why this method works you will have to take a more
advanced course in linear algebra. Here’s the method:

• Let A =
ˆ
v1 v2 · · · vk u

˜
.

• Compute AT A (this is sometimes called the Gram
matrix).

• Put the Gram matrix AT A in row echelon form us-
ing only addrow operations (no row swaps or multi-
plying rows by constants). This amounts to finding
matrix U of the LU decomposition that we saw ear-
lier.

• The square root of the entry in the lower right corner
is the distance you are looking for!!!

EXAMPLE 5.26. Find the distance from v =

26664
1
1
2
2
3

37775 to

the plane generated by u1 =

26664
1
−1
0
−1
1

37775 and u2 =

26664
0
1
1
1
1

37775.

Let A =

26664
1 0 1
−1 1 1
0 1 2
−1 1 2
1 1 3

37775. Then AT A =

24 4 −1 1
−1 4 8
1 8 19

35. Now row reduction gives

24 4 −1 1
−1 4 8
1 8 19

35 −→

244 −1 1
0 15/4 33/4
0 33/4 75/4

35 −→

244 −1 1
0 15/4 33/4
0 0 3/5

35

So the distance from v to the span of u1 and u2 is
p

3/5.
But there is more information given by this reduced

matrix. The square root of the first diagonal entry is the
distance of u1 from the origin. The square root of the
second diagonal entry is the distance from u2 to the line
generated by u1. The square root of the third diagonal
entry is the distance of v from the plane generated by u1

and u2. Distance, distance, distance.
Also the product of the three diagonal entries is the

square of the volume of the parallelepiped formed by the
columns of A. The product of the first two diagonal en-
tries is the square of the area of the parallelogram formed
by u1 and u2. The first diagonal entry is is the square of
the length of u1. Length, area, volume!!!

EXAMPLE 5.27. Given the points A(1, 0, 0, 1),
B(3, 1, 1,−1), C(0, 2, 0, 2) in four dimensions find the dis-
tance from C to the line through A and B.

The first step is to restate the problem in terms of vec-
tors in R4. It should be clear that the problem is equiv-

alent to finding the distance from
−→
AC to the line gen-

erated by
−→
AB. Now

−→
AB =

2664
2
1
1
−2

3775 and
−→
AC =

2664
−1
2
0
1

3775.
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So let A =

2664
2 −1
1 2
1 0
−2 1

3775 and then AT A =

»
10 −2
−2 6

–
.

One elementary row operation is all that’s needed to put

AT A in row echelon form giving

»
10 −2
0 28/5

–
so the dis-

tance we are looking for is
p

28/5. We can also see that
10(28/5) = 56 so the area of the parallelogram formed by
−→
AB and

−→
AC is

√
56.

EXAMPLE 5.28. This example is trickier and it is left
up to you to figure out why it works. Find the distance

from the line x =

2664
1
0
0
0

3775 + t

2664
1
1
0
1

3775 to the plane x = r

2664
1
0
1
1

3775 +

s

2664
0
1
1
0

3775.

Let A =

2664
1 0 1 1
0 1 1 0
1 1 0 0
1 0 1 0

3775. So AT A =

2664
3 1 2 1
1 2 1 0
2 1 3 1
1 0 1 1

3775
which reduces to

2664
3 1 2 1
0 5/3 1/3 −1/3
0 0 8/5 2/5
0 0 0 1/2

3775. So the dis-

tance we want is
p

1/2.

There is actually a simple explanantion why this trick
works but it a bit beyond the level of an introductory
course. On the other hand if we look at the specific prob-
lem of finding the distance from a point to a line we can
see why it works. Suppose we want to find the distance
from v to the line generated by u. Then we would have
A =

ˆ
u v

˜
. The Gram matrix would be

AT A =

»
uT

vT

– ˆ
u v

˜
=

»
u · u u · v
u · v v · v

–
One row operation reduces this to»

u · u u · v
0 v · v − u·v

u·uu · v

–
The entry in the bottom right can be written as

‖v‖2 −
(u · v)2

‖u‖2
= ‖v‖2 − ‖v‖2 cos2 θ

If you’ve followed the reasoning so far you should be able
to finish it yourself.

Notice also the fact that the determinant of the Gram
matrix gives the square of the volume implies the Cauchy-
Scwarz theorem that was mentioned earlier in this chap-
ter.
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Problems

1. Find Projvu and Perpvu for

a. u =

»
1
−12

–
, v =»

2
5

–

b. u =

241
1
4

35 v =24 1
2
−3

35

c. u =

2664
1
1
1
1

3775, v =

2664
1
2
3
4

3775
d. u = 3i + 2j − k,

v = j− 5k

2. Find the distance from x0 to the given line

a. x0 =

»
3
−2

–
, x = t

»
1
1

–
b. x0 =

»
2
5

–
, x =

»
1
3

–
+ t

»
3
−2

–

c. x0 =

241
0
2

35, x =

242
1
1

35 + t

24 1
3
−1

35

d. x0 =

2664
0
2
1
1

3775, x =

2664
2
1
1
2

3775 + t

2664
1
1
−1
−1

3775
3. Find the distance from x0 to the given hyperplane

a. x0 =

»
3
2

–
, x− 4y = 1

b. x0 =

242
1
0

35, 3x− y − z = 4

c. x0 =

24 1
3
−4

35, x + y + 2z = 9

d. x0 =

2664
0
0
0
1

3775, x1 + x2 + x3 + x4 = 4

4. Find the point on the given line that is closest to
x0

a. x0 =

»
1
3

–
, x =

»
1
0

–
+ t

»
1
−1

–

b. x0 =

240
0
0

35, x =

241
2
1

35 + t

240
3
1

35

c. x0 =

24 3
1
−1

35, x =

240
1
3

35 + t

243
1
1

35
5. Find the point on the given hyperplane that is clos-

est to x0

a. 3x + y − z = 2m

x0 =

24 2
1
−1

35

b. x+y−z = 4, x0 =

241
1
1

35
c. x1 + 2x2 + x3 −

x4 = 5, x0 =

2664
1
1
0
0

3775

6. Let v1 =

2664
1
1
1
1

3775, v2 =

2664
1
1
1
0

3775, v3 =

2664
1
1
0
0

3775, v4 =

2664
1
0
0
0

3775.

Find the distance

a. from v2 to the span of v1.

b. from v3 to the span of v1 and v2.

c. from v4 to the span of v1, v2 and v3.
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5.6 The Cross Product

The cross product is defined only for vectors in R3.

Given vectors u =

24u1

u2

u3

35 and v =

24v1

v2

v3

35 then the cross

product of these vectors, written u× v, is defined by

u× v =

˛̨̨̨
˛̨ i j k
u1 u2 u3

v1 v2 v3

˛̨̨̨
˛̨

Expanding this determinant by cofactors along the first
row we get

u×v = (u2v3−u3v2)i− (u1v3−u3v1)j+(u1v2−u2v1)k

First of all notice that the cross product of two vectors
in R3 is another vector in R3. There are a few properties
of the cross product that follow directly from this defini-
tion. Try to identify the property of determinants that
result in the following.

• u× u = 0 for any u ∈ R3.

• u× v = −v × u.

• u · (u× v) = v · (u× v) = 0.

• u× (kv) = ku× v

• u× (v + w) = u× v + u×w

The first property implies that if two vectors in R3 are
parallel then their cross product is 0. The second property
says that changing the order of the factors reverses the
sense of the cross product. The third property says that
the cross product of two vectors is always orthogonal to
both of the original factors. The right hand rule says
that u×v points in the direction of your right hand thumb
if you point the fingers of your right hand along u so that
the fingers curl in the direction of v.

EXAMPLE 5.29. Let

u =

243
3
1

35 v =

24 2
5
−1

35
then

u× v =

˛̨̨̨
˛̨i j k
3 3 1
2 5 −1

˛̨̨̨
˛̨ = −8i + 5j + 9k

Notice that this cross product is orthogonal to each of the
original factors as the following dot products show243

3
1

35 ·
24−8

5
9

35 = −24 + 15 + 9 = 0

24 2
5
−1

35 ·
24−8

5
9

35 = −16 + 25− 9 = 0

Another important property of the cross product is

‖u× v‖ = ‖u‖ ‖v‖ sin θ

where θ is the angle between u and v. The proof of this
is left as an exercise. This formula means that the mag-
nitude of the cross product of two vectors gives the area
of the parallelogram determined by the two vectors. This
is illustrated in Figure 5.11

||u||

||v|| sin (theta)||v||

θ

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Figure 5.11.

EXAMPLE 5.30. Given points A(1, 2, 4), B(5, 5, 4)
and C(3, 5, 7) find the area of triangle ABC.

As usual, look at the sides of the triangle as vectors.

The vectors
−→
AB =

244
3
0

35 and
−→
AC =

242
3
3

35 determine a par-

allelogram. The area of this parallelogram is

‖
−→
AB ×

−→
AC‖ =

‚‚‚‚‚‚
24 9
−12
6

35‚‚‚‚‚‚ = 3
√

29

Triangle ABC is half of this parallelogram so the area

of triangle ABC is
3
√

29

2
.

EXAMPLE 5.31. We know that a plane in R3 can be
represented by an equation of the form x = x0 + su + tv
where u and v are linearly independent. Suppose we take
the dot product of both sides of this equation with u× v.
We get

x · (u× v) = (x0 + su + tv) · (u× v)

= x0 · (u× v) + su · (u× v) + tv · (u× v)

= x0 · (u× v) + 0 + 0
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Let n = u×v, this will be a normal vector to the plane.
The above computations can then be written x ·n = x0 ·n
or nT x = nT x0, another familiar equation of the plane.

There is another way of looking at the cross product.
Let

u =

24a
b
c

35 A =

24 0 −c b
c 0 −a
−b a 0

35 x =

24x1

x2

x3

35
then

Ax =

24 0 −c b
c 0 −a
−b a 0

35 24x1

x2

x3

35 =

24−cx2 + bx3

cx1 − ax3

−bx1 + ax2

35 = u× x

So a cross product can be seen as a linear transformation.

The scalar triple product
Three linearly independent vectors u, v and w in R3

determine a parallelepiped as shown in Figure 5.12.

u

v

w

v x w

height

Figure 5.12. The parallelepiped deter-
mined by u, v and w.

We want to find a formula for the volume of this par-
allelepiped. Basic geometry tells us that the volume is
the area of the base times the height. Suppose the base
is determined by vectors v and w. Then the area of the
base is ‖v ×w‖. To find the height of the parallelepiped
we can project the third vector u onto a normal to the
base. But v×w is normal to the base so the height is the
length of

Projv×wu =
u · (v ×w)

‖v ×w‖2
v ×w

This means that the height is

|u · (v ×w)|
‖v ×w‖

The volume of the parallelpiped is therefore given by

Volume = (area of base) times (height)

= ‖v ×w‖
|u · (v ×w)|
‖v ×w‖

= |u · (v ×w)|

The value u · (v×w) is called the scalar triple product
of u, v, and w. It’s a bit surprising but the scalar triple
product can be computed as a 3× 3 determinant.

u · (v ×w) =

24u1

u2

u3

35 ·
˛̨̨̨
˛̨ i j k
v1 v2 v3

w1 w2 w3

˛̨̨̨
˛̨ =

˛̨̨̨
˛̨u1 u2 u3

v1 v2 v3

w1 w2 w3

˛̨̨̨
˛̨

This means that the absolute value of a 3 × 3 determi-
nant gives the volume of the parallepiped determined by
the rows of the determinant (or the columns of the de-
terminant since a matrix and its transpose have the same
determinant).

EXAMPLE 5.32. Find the volume of the parallelepiped

determined by u =

241
2
1

35, v =

243
0
1

35, w =

242
2
5

35. From

the previous comments the volume can be easily computed
using a 3× 3 determinant with the given vectors as rows
(or columns).˛̨̨̨

˛̨1 2 1
3 0 1
2 2 5

˛̨̨̨
˛̨ = 0 + 4 + 6− 0− 2− 30 = −22

The volume is the absolute value of the determinant so
the volume is 22.

EXAMPLE 5.33. Find the distance from u to the plane
generated by v and w where

u =

24 3
0
−2

35 v =

244
1
1

35 w =

24−2
1
7

35
There are several ways of solving this problem. The

method we will use is based on the geometric insight that
the distance we want is just the height of the parallelepiped
with a base determined by v and w with the third side
being u.

The volume of this parallelepiped is

|u · (v×w)| =

˛̨̨̨
˛̨ 3 0 −2

4 1 1
−2 1 7

˛̨̨̨
˛̨ = 21 + 0− 8− 4− 3− 0 = 6

The area of the base is

‖v ×w‖ =

‚‚‚‚‚‚
24 6
−30
6

35‚‚‚‚‚‚ = 18
√

3
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The height is just the volume divided by the area of the
base so the distance we are looking for is

6

18
√

3
=

1

3
√

3

Another method would be to project u onto v × w as
illustrated in Fig 5.12. This gives

u · (v ×w)

(v ×w) · (v ×w)
v ×w =

6

972

24 6
−30
6

35
The distance we want is the length of this projection

which is
6

972

√
972 =

1

162
18
√

3 =

√
3

9
This is equivalent to the answer found above.



Problems 27

Problems

1. The cross product is an example of a type of multi-
plication that does not satisfy the associative rule.
That is, in general u× (v ×w) 6= (u× v)×w. Il-
lustrate this by evaluating (i× j)× j and i× (j× j).

2. Let u =

24 2
4
−1

35 and v =

243
1
1

35. Evaluate u × v ,

(u + v)× (u− v) , and u · (u× v)

3. Let u = i + 2j− 2k and v = 2i− 2j + k. Evaluate
u× v, i× u, and (u + v)× (u− v).

4. Find the area of the parallelogram with sides

a. u = 2i+j−3k and
v = i− 4j + 2k

b. u =

241
2
3

35 ,v =

24 2
−1
5

35
c. u =

»
3
5

–
and v =»

−1
4

–
5. Use the cross product to find a normal vector to

the following planes:

a. Span

8<:
24 1

3
−1

35 ,

242
2
1

359=;
b. x =

241
2
3

35 + s

242
3
1

35 + t

243
1
2

35
c. The plane through the origin containing u =

i + 2j and v = i− 2k.

d. The plane containing the line through u and
v, and the line through u and w where u =241

1
0

35, v =

24 2
−1
2

35, w =

243
1
0

35.

6. The points A(1, 3), B(3, 0), and C(4, 6) are the ver-
tices of a parallelogram.

a. Find the possible values for the fourth vertex.

b. Find the area of each possible parallelogram
with these points as vertices.

7. The points A(1,−2, 3), B(3, 1, 0), and C(8, 6, 4) are
the vertices of a parallelogram.

a. Find the possible values for the fourth vertex.

b. Find the area of each possible parallelogram
with these points as vertices.

8. Show that (u + v)× (u− v) = −2u× v.

9. Show that in R2 the area of the parallelogram de-
termined by vectors u and v is equal to the absolute
value of the 2 × 2 determinant having u and v as
rows.

10. Find the volume of the parallelepiped with sides u,
v and w

a. u = 3i + 2j, v = i− j + 3k, w = 4k.

b. u = −i+2j+2k, v = 3i+j+2k, w = i+4j−k.

c. u =

243
5
7

35, v =

244
3
3

35, w =

24 2
−2
−3

35
11. Show that the parallelepiped with sides u, v and

w has the same volume as the parallelepiped with
sides u, v − u, w − u. What can you say about
the volume of the parallelepiped with sides u − v,
v −w, w − u.

12. Let u =

243
2
1

35. What geometrical objects are defined

by the following sets

a. {x | x · u = 0}
b. {x | x · u = 1}
c. {x | x× u = 0} (note: 0 is the zero vector)

d. {x | ‖x× u‖ = 1}

13. Let A =

24 0 −c b
c 0 −a
−b a 0

35. What is the null space

of A. What property of the cross product does this
illustrate.

14. Suppose you are given

u× v = v ×w = w × u

If u× v 6= 0 show that u + v + w = 0.

15. Show that˛̨
u× v v ×w w × u

˛̨
=

˛̨
u v w

˛̨2
16. Let u =

24 2
1
−1

35 and v =

241
3
3

35. Describe the solu-

tions to x× u = v.

17. Let u be a unit vector in R3. Define

T (x) = (u · x)u + u× x

a. What is T (u)?

b. If v is in the subspace with normal u show
that T (v) is orthogonal to v.

c. Show that ‖T (x)‖ = ‖x‖.
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5.7 Sample problems with
lines and planes.

What type of intersections should you be able to find?
Rather than thinking in terms of lines, or planes it is sim-
pler to think about types of equations. There are basically
three situations that can arise:

• One parametric-vector equation and one normal (or
Cartesian) equation.

• Any number of normal equations. (This situation
just involves solving a system of linear equations.)

• Two parametric-vector equations.

EXAMPLE 5.34. Find the point of intersection of the
following lines

x =

242
1
0

35 + s

241
1
3

35 x =

2411
2
5

35 + t

24 3
−1
−2

35
The point of intersection would occurs when these two

equations are equal so we begin by equating the right hand
sides. 242

1
0

35 + s

241
1
3

35 =

2411
2
5

35 + t

24 3
−1
−2

35
Rearranging these terms we get

s

241
1
3

35 + t

24−3
1
2

35 =

2411
2
5

35−
242

1
0

35 =

249
1
5

35
We set up and reduce the corresponding augmented ma-
trix. 241 −3 9

1 1 1
3 2 5

35 ∼

241 0 3
0 1 −2
0 0 0

35
This reduced form gives us the values of s = 3 and t =
−2 corresponding to the point of intersection. The value
s = 3 gives

x =

242
1
0

35 + 3

241
1
3

35 =

245
4
9

35
This would be the point of intersection.

EXAMPLE 5.35. Find the intersection of the two
planes

x = s1

2664
1
1
1
1

3775+s2

2664
1
2
3
4

3775 and x = t1

2664
1
3
3
1

3775+ t2

2664
3
1
1
3

3775+

2664
2
0
−3
5

3775

We set these expressions equal to each othe

s1

2664
1
1
1
1

3775 + s2

2664
1
2
3
4

3775 = t1

2664
1
3
3
1

3775 + t2

2664
3
1
1
3

3775 +

2664
2
0
−3
5

3775
and rearrange

s1

2664
1
1
1
1

3775 + s2

2664
1
2
3
4

3775− t1

2664
1
3
3
1

3775− t2

2664
3
1
1
3

3775 =

2664
2
0
−3
5

3775
Set up the corresponding augmented matrix and reduce2664

1 1 1 3 2
1 2 3 1 0
1 3 3 1 −3
1 4 1 3 5

3775 ∼

2664
1 1 1 3 2
0 1 2 −2 −2
0 0 −2 2 −5
0 0 0 0 12

3775
The system is inconsistent. These planes don’t intersect.

In R2 two non-parallel lines must intersect. In R3 this
is not true, because in R3 there is more “room” for the
lines to move around in and avoid touching. In R3 two
non-parallel planes must intersect, but as this example
shows this is not true in R4. This is again due to the
fact that there is more “room” in R4 where the planes
may be located.

You have to be careful when trying to extend your in-
tuition to higher dimensional spaces. Look at the reduced
matrix we got in this example. Notice that if the four gen-
erating vectors had been linearly independent these planes
would have intersected in a single point! On the other
hand, if we had altered the translation vector in the sec-
ond plane in such a way that the reduced matrix had a row
of zeroes, then the planes would intersect along a straight
line.

You should understand the two basic types of equa-
tions. A parametric-vector equation can be used to repre-
sent a flat of any dimension. A Cartesian equation (i.e., a
linear equation or normal equation) can only represent a
hyperplane - that is, a object of dimension one less than
the surrounding space.

EXAMPLE 5.36. For what values of a and b do x =»
5
1

–
+ t

»
2
1

–
and x =

»
a
3

–
+ t

»
b
2

–
represent the same line?

The lines must have the same directions and so»
b
2

–
= k

»
2
1

–
Looking at the second component of these vectors we see
that k = 2 and so b = 4.
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We also know that

»
5
1

–
lies on the line so»

5
1

–
=

»
a
3

–
+ t

»
4
2

–
=

»
a + 4t
3 + 2t

–
The second component tells us that 1 = 3 + 2t and so
t = −1. Substituting this into the first component gives
5 = a− 1(4) and so a = 9.

The equation we are looking for is then

x =

»
9
3

–
+ t

»
4
2

–

EXAMPLE 5.37. Find the normal equation of the

plane which contains the line x =

241
1
2

35 + t

24 2
−1
−1

35 and

the point

244
3
5

35.

We will find two vectors parallel to the plane and then
take their cross product. This cross product will be a nor-
mal vector to the plane.

The direction vector of the given line is u =

24 2
−1
−1

35 and

this vector must be parallel to the plane since the plane
contains the given line.

The points

241
1
2

35 and

244
3
5

35 both lie in the plane. We

will use

241
1
2

35 as a reference point and then the vector

v =

244
3
5

35−
241

1
2

35 =

243
2
3

35 must also be parallel to the plane.

The cross product v×u is a normal vector to the plane.
The cross product would be˛̨̨̨

˛̨i j k
3 2 3
2 −1 −1

˛̨̨̨
˛̨ = i + 9j− 7k

The normal equation of the plane is then x1 + 9x2 −
7x3 = d. It remains to find d and this can be done by
substituting one of the points that lies on the plane. If we

use the point

241
1
2

35 we have

1 + 9(1)− 7(2) = −4 = d

The normal equation of the plane is therefore x1 +
9x2 − 7x3 = −4.

You should be able to find the distance between var-
ious types of flats 0-flats (points), 1-flats (lines), 2-flates
(planes), etc. There are many ways of doing this but the
use of projections is the most general.

EXAMPLE 5.38. Let L be the line x = t

241
2
2

35 and

let u =

243
1
3

35. Find the distance from u to L and find

the point on L that is closest to u. Finally, find the
parametric-vector equation of the line through u perpen-
dicular to L.

Let v =

241
2
2

35.

The projection of u onto L would be

ProjLu =
u · v
v · v

v =
11

9

241
2
2

35 =

2411/9
22/9
22/9

35
The orthogonal component of the projection is then

PerpLu = u− ProjLu =

243
1
3

35−
2411/9

22/9
22/9

35 =

24 16/9
−13/9
5/9

35
The distance from u to L is the length of the orthog-

onal component, 1/9
p

162 + (−13)2 + 52 = 1/9
√

450 =

5
√

2/3
The point on L closest to u is just the projection found

above,

2411/9
22/9
22/9

35
The equation of the line perpendicular to L passing

through u is now easy.

x =

243
1
3

35 + t

24 16/9
−13/9
5/9

35

EXAMPLE 5.39. Find the distance from u =

243
0
2

35 to

the plane x1 + x2 + 2x3 = 10.
Find a point on the plane. For example, the x1 inter-

cept v =

2410
0
0

35. This point will be used as our reference

point or origin.

Let w = u− v =

24−7
0
2

35.
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The situation is now the same as that illustrated in
Figure 5.9. The distance we are looking for is just the
length of the projection of w onto the normal vector of

the plane, n =

241
1
2

35.

Projnw =
w · n
n · n

n =
−3

6

241
1
2

35
The length of this projection is 3

6

√
6 =

√
6/2.

EXAMPLE 5.40. Find the distance between the two
skew lines

L1 : x =

241
1
0

35+s

242
3
1

35 and L2 : x =

243
1
3

35+t

24 0
2
−1

35
This type of problem is more difficult to visualize. We

are trying to find the shortest distance between two non-
intersecting lines in R3. Imagine translating L2 so that it
intersects with L1. Then L1 and the translated L2 will lie
in a plane and L2 is parallel to this plane. The distance
we are looking for is the distance from L2 to that plane.
So the problem reduces down to finding the distance from
a point (any point on L2) to a plane.

The vectors

242
3
1

35 and

24 0
2
−1

35 are parallel to the plane

so their cross product would be normal to the plane.242
3
1

35×
24 0

2
−1

35 =

24−5
2
4

35
Now

241
1
0

35 lies in the plane and

243
1
3

35 lies on L2 and so

243
1
3

35−
241

1
0

35 =

242
0
3

35
must be projected onto the normal. This gives242

0
3

35 ·
24−5

2
4

35
24−5

2
4

35 ·
24−5

2
4

35
24−5

2
4

35 =
2

45

24−5
2
4

35

The length of this projection is
2

45

√
45 and this is the

distance we are looking for.
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Problems

1. Given the points A(1, 3, 3), B(0, 2,−1), and
C(3, 2, 2) find

a. The area of triangle ABC.

b. A normal equation of the plane containing A,
B and C.

c. A parametric vector equation of the plane
containing A, B an C.

d. An equation of the line through A and B.

2. Given the points A(0, 2, 1), B(1, 1,−1), and
C(5, 3, 5) find

a. The area of triangle ABC.

b. A normal equation of the plane containing A,
B and C.

c. a parametric vector equation of the plane
containing A, B and C.

d. An equation of the line through A and B.

3. Let L1 be the line x = s

241
2
1

35 and L2 be the line

x = t

24 1
0
−1

35. Let P be the plane containing L1 and

L2. Let v =

24 2
−1
3

35.

a. Find the distance from v to L1.

b. Find the distance from v to L2.

c. Find the distance from v to P.

4. Let L1 be the line x =

242
1
1

35 + s

241
1
2

35 and L2 be the

line x =

24 0
−1
−3

35 + t

24 1
−1
1

35. Let v =

243
2
5

35.

a. Show that L1 and L2 intersect.

b. Find the distance from v to L1.

c. Find the distance from v to L2.

d. Find the distance from v to P, the plane con-
taining L1 and L2.

5. Find the distance between the parallel lines x+2y =
3 and x + 2y = 0.

6. Find the distance between the skew lines x =

241
1
0

35+

s

241
3
2

35 and x =

242
1
1

35 + t

241
0
3

35
7. Find the distance between the parallel hyperplanes

4x1+2x2+2x3+x4 = 2 and 4x1+2x2+2x3+x4 = 5.

8. The line x =

24 4
0
−1

35 + t

242
3
1

35 lies in which of the

following planes?

a. 2x + 3y + z = 7

b. x + y − 5z = 9

c. 2x− y − z = 9
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5.8 Maple examples

EXAMPLE 5.41. Given the lines

x =

241
3
2

35 + s

24 4
1
−1

35 x =

24 8
−4
9

35 + t

24 1
2
−2

35
we will find the point of intersection and plot the lines
along with the plane containing the lines.

We will start be defining the relevant vectors in Maple
.

>with(LinearAlgebra): ### you always need this

>with(plots): ### we need this for some plots

>v1:=<1,3,2>:v2:=<4,1,-1>:

>u1:=<8,-4,9>:u2:=<1,2,-2>:

>A:=<v2 | -u2 | u1-v1>:

>ReducedRowEchelonForm(A);2664
1 0 3

0 1 5

0 0 0

3775
So we have s = 3 and t = 5.

>v1+3*v2;

[ 13, 6, -1]

>u1+5*u2;

[13, 6, -1]

The point of intersection is

2413
6
−1

35.

You can now plot the lines and the plane containing
the lines.

>L1:=v1+s*v2:

>L2:=u1+t*u2:

>P1:=s*v2+t*u2+v1: ### Span(v2,u2) translated

>line1:=spacecurve(L1,s=0..5,color=black,thickness=2):

>line2:=spacecurve(L2,t=0..8,color=blue,thickness=2):

>plane1:=plot3d(P1,s=-3..2,t=-3..2,style=patchnogrid):

>display([line1,line2,plane1],axes=boxed);

You can rotate the plot using the mouse to view the
image from different points of view.

EXAMPLE 5.42. We will use Maple to find the dis-
tance between two skew lines in R3. We will then find
the points on the two lines that are closest. The lines will
be

L1 : x =

241
4
1

35 + s

242
4
1

35

and

L2 : x =

243
0
3

35 + t

24 1
3
−1

35
We start by plotting the lines.

>L1:=<1,4,1>+s*<2,4,1>:

>L2:=<3,0,3>+t*<1,3,-1>:

>p1:=spacecurve(L1,s=-3..3,thickness=2,color=blue):

>p2:=spacecurve(L2,t=-3..3,thickness=2,color=black):

>display(p1,p2);

We proceed as we did in the text. The key insight is

that the direction vectors for these lines,

242
4
1

35 and

24 1
3
−1

35,

define a plane parallel to both lines. A normal vector, n,
to this plane will be

>n:=CrossProduct(<2,4,1>, <1,3,-1>);

n = [-7, 3, 2]

We will translate both lines by subtracting

241
4
1

35. After

translation L1 will pass through the origin. The trans-
lated L2 will not pass through the origin but

v =

243
0
3

35−
241

4
1

35 =

24 2
−4
2

35
will lie on this line.

>v:=<3,0,3>-<1,4,1>;

v = [2, -4, 2]

The distance we are looking for will then be the dis-
tance from v to the plane through the origin with normal
n. We find this distance as usual.

>u:=DotProduct(v,n)/DotProduct(n,n)*n;

>Norm(u,2);

The last command gives the distance as

displaystyle 11
√

62
31

.
Now the vector u represents the vector from L1 to L2

at the closest points. In general, the a vector from L1 to
L2 would be

>w:=evalm(L2-L1):

w = [2+t-2*s, 3*t-4-4*s, 2-t-s]

For what values of s and t will w be equal to u? We
can answer this in Maple as follows
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>solve( {w[1]=u[1], w[2]=u[2], w[3]=u[3]}, {s,t});

s= 23/31 , t = 61/31

The two closest points are therefore

>x1:=<1,4,1>+23/31*<2,4,1>:

x1 = [77/31, 216/31, 54/31]

>x2:=<3,0,3>+61/31*<1,3,-1>:

x2 = [154/31, 183/31, 32/31]

Here is another plot which shows the lines and the clos-
est points

>p3:=pointplot3d( {x1, x2}, connect=true, color=red):

>display( {p1,p2,p3});

An alternate way of finding the distance between the
lines (as described in Section 5.5 is as follows

>A:=<<2,4,1>|<-1,-3,1>|<2,-4,2>>:

>GaussianElimination(Transpose(A).A);2664
21 −13 −10

0 62
21

122
21

0 0 242
31

3775
The distance between the lines is therefore

r
242

31
=

11
√

2
√

31
.

EXAMPLE 5.43. We will use Maple to prove the for-
mula ‖u×v‖ = ‖u‖ ‖v‖ sin θ where θ is the angle between
u and v.

We will actually show that ‖u×v‖2 = ‖u‖2 ‖v‖2 sin2 θ
and the given formula follows directly.

First we define two arbitrary vectors in R3.

>u:=<u1,u2,u3>:

>v:=<v1,v2,v3>:

>uv:=CrossProduct(u,v): ### uv is the cross product of u and v

We will find an expression for sin2 θ using the formula
cos θ = u·v

‖u‖ ‖v‖ and sin2 θ = 1 − cos2 θ. We multiply by

the transpose to compute the dot product. We start with
cos2 θ

>c2:=(u^%T.v)^2/u^%T.u/v^%T.v:

>s2:=1-c2:

Next we want ‖u× v‖2 which we will divide by sin2 θ.

>normuv2:=uv^%T.uv:

>simplify(normuv2/s2);

`
u12 + u22 + u32

´ `
v12 + v22 + v32

´
This last result is clearly ‖u‖2 ‖v‖2. This shows that

‖u× v‖2

sin2 θ
= ‖u‖2 ‖v‖2

and the desired formula follows easily.

EXAMPLE 5.44. Find the distance from

2664
0
t
0
1

3775 to the

plane generated by

2664
1
1
1
1

3775 and

2664
1
−1
1
0

3775.

Here’s one way:

>A:=<<1,1,1,1>,<1,-1,1,0>,<0,t,0,1>>:

>B:=Transpose(A).A:

>U:=LUDecomposition(B,output=’U’);

>dist:=sqrt(U[3,3]);

Matrix U is the result of applying Gaussian elimination
(using only addrows) to AT A. This gives

U =

2664
4 1 1 + t

0 11/4 −5/4 t− 1/4

0 0 8
11

+ 2/11 t2 − 8
11

t

3775
Using the information given by the diagonal entries

the distance we want is the square root of the entry
in the third row and third column. So the distance

is

√
22

p
(−2 + t)2

11
. Notice that this implies that when

t = 2 the distance is 0. In other words when t = 2 the
third column of A lies in the plane generated by the first
two columns.
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Summary

Any n− 1 dimensional subspace, V , in Rn can be rep-
resented by an equation of the form

nT x = 0

where n is a normal vector to the subspace. The subspace
consists of all vectors orthogonal to n.

This idea can be generalized in the following way: the
equation

nT x = nT x0

represents a hyperplane in Rn with normal n and which
contains vector x0. This hyperplane is V + x0, V trans-
lated by x0.

A system of linear equations with n unknowns
corresponds to a collection of hyperplanes in Rn.
Solving the system corresponds to finding the in-
tersection of the hyperplanes. The solution is al-
ways some subspace of Rn with a possible trans-
lation.

Lines, planes, etc. in Rn which contain the origin are
called linear subspaces of Rn. If they are translated away
from the origin they are called affine subspaces or k-flats.

• A 1-flat is a line and has a parametric-vector equa-
tion of the form x = x0 + su.

• A 2-flat is called a plane and has a parametric-vector
equation of the form x = x0 + su + tv.

• A 3-flat has a parametric-vector equation of the form
x = x0 + ru + sv + tw. There is no standard term
(such as plane or line) to refer to this type of space.

• In general an n-flat has an equation of the form x =
x0 + t1u1 + t2u2 + · · ·+ tnun.

We began this course with the problem of solving a sys-
tem of equations and we now have a geometric interpreta-
tion of this procedure. A system of equations can now be
seen as a collection of hyperplanes. The solution to such a
system is the intersection of all these hyperplanes and this
intersection is a k-flat (i.e., a translated linear subspace)
where k is the number of parameters needed in the gen-
eral solution. When we solve a system we are just giving
the equation for this k-flat in parametric-vector form.
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ANSWERS

Section 5.1 1. (7,−3) 2. (11,−6, 5) 3. (a)
√

13 (b)
3
√

2 (c)
√

30 (d) 1 (e) 1 (f)
√

3 (g)
√

26 (h) 1 4.
√

n
5. (a) 3

√
2,
√

26,
√

20 (b)
√

13,
√

17,
√

20 (c) all
√

2 (d)√
21,

√
27,

√
46 6. (a) (2,11) (b) (-8,5,1) 7. k = 4/3

8. (a)

»
3/5
4/5

–
(b)

243/
√

50

4/
√

50

5/
√

50

35 (c)

2664
1/2
1/2
−1/2
−1/2

3775 (d) 3/
√

38i −

5/
√

38i+2/
√

38k (e)

»
1/
√

1 + t2

t/
√

1 + t2

–
(f) 1/

√
2

»
cos t + sin t
cos t− sin t

–
9. 2 ≤ ‖AC‖ ≤ 8 10. Hint: you need the trig identity
cos(A−B) = cos A cos B + sin A sin B

12. (a) F (b) T (c) T (d) F (e) F. (f) T 13. When
u and v have the same direction and sense. 14. Use
‖Av‖2 = vT AT Av

Section 5.2 1. (a)
√

5 , 5 , 2 , 79.70◦ (b)√
26 , 3 , −3 , 101.31◦ (c)

√
3 ,
√

14 , 2 , 72.02◦ (d)
22.52◦ (e) arccos(2ab/(a2 +b2)) (f) 54.74◦ 2. (a) 40.60◦,
63.43◦, 75.96◦ (b) 75.04◦, 43.09◦, 61.87◦ (c) 90.00◦,
45.00◦, 45.00◦ 3. k = 4, 0 4. 6. (a) k = ±

√
6 (b)

k = −2/3 (c) k = 6 7. (a)k = ±2 (b) k = 7 (c) none (d)
−1±

√
7

2
8. 9. (a) arccos(1/3), arccos(2/3), arccos(−2/3)

10 (a) π/6 or 5π/6. (b)any angle betweenπ/6 and
2π/3.

Section 5.3 1. (a)x =

»
0
5

–
+ t

»
1
−3

–
(b)x =

»
3
1

–
+ t

»
5
2

–
(c) x =

»
4
0

–
+t

»
0
1

–
(d) x =

»
0
−3

–
+t

»
1
0

–
2. (a) x1+3x2 =

5 (b) 2x1−5x2 = −15 (c)3x1−4x2 = 0 (d) x2 = x1−1 3.

(a)(-2,-1), (-5,5) (b) t = 4 (c)

»
3± 2/

√
5

−1∓ 4/
√

5

–
(d) (0,-5), (-

4,3) 4.(a) (3,-1,2), (0,2,-1) (b) t = −2/3 (c)

242± 2/
√

3

∓2/
√

3

1± 2/
√

3

35
(d) 5.: a = −1, b = 8 6. a = 16/3, b = 4/3 7.

a = 1/2, b = 3/2 8. 9. (a) x =

241
2
3

35 + t

24 3
−1
−2

35 (b)

x =

2664
2
2
5
5

3775 + t

2664
2
0
4
8

3775 10. 11. a=3,b=2 12. 13.

Section 5.4 1. (a)x1 + 2x2 − x3 = 1 (b)3x1 + 3x2 = 9
(c)x1 + x2 + 3x3 = −2 (d)3x1 + x2 + 2x3 + 2x4 = 10 2.

(a) x =

243
0
0

35 + s

24 1
−1
0

35 + t

242
0
1

35 (b)x =

240
0
5

35 + s

24 1
0
−3

35 +

t

24 0
1
−2

35 (c)x =

2664
1
0
0
0

3775 + r

2664
1
−1
0
0

3775 + s

2664
1
0
−1
0

3775 + t

2664
1
0
0
−1

3775 3.

basis:

24−3
1
0

35 ,

241
0
1

35 line: x = t

24 1
3
−1

35 4. like number

3 5. x − 2y + 4z = 5 6.x =

24 5
0
−1

35 + t

24 1
1
−4

35 7.

(a) cos−1 2/
√

66 (b) cos−1 2/15 8. (b) x + y + z = 3,

x =

241
1
1

35 + s

24 1
−1
0

35 + t

24 1
0
−1

35 9. (a) (-11, 4, 6) (d) The

entire line lies in the plane.
10. (a) k = 1 (b) k = −5/2 (c) k = −3 11. 12. (a)

x− 2y + z = −1 (b) 13 14. 15. (a) T (b) F (c) F (d)
F

Section 5.5 1.(a)[-4,-10], [5, -2] (b) [-9/14, -9/7,
27/14],[23/14, 16/7, 29/14] (c) [1/3, 2/3, 1, 4/3],[2/3,
1/3, 0, -1/3] (d) [0, 7/26, -35/26], [3, 45/26, 9/26] 2.
(a) 5

√
2/2 (b) 8

√
13/13 (c) 2/

√
22/11 (d)

√
6 3. (a)

6/
√

17 (b) 1/
√

11 (c) 13/
√

6 (d) 3/2 4. (a) [-1/2, 3/2]
(b) [1,-1/10,3/10] (c) [15/11, 16/11, 38/11] 5. (a) [4/11,
5/11, -5/11] (b) [2,2,0] (c) [9/7,11/7,2/7,-2/7]

Section 5.6 1. −i and 0 2. (a) [5,-5,-10] (b) [-10,10,20]
(c) 0 3. (a) -2i-5j-6k (b) 2j+2k (c) 4i+10j+12k 4. (a)√

230 (b)
√

195 (c) 17 5. (a) [5,-3,-4] (b) [5,-1,-7] (c)
[-4,2,-2] (d) [0,-4,4]

6. (a) (6,3) or (2,9) or (0,-3) (b) all the same area: 15
7.(a) (b)

√
1283 8. 9. 10.(a) 20 (b) 41 (c) 17 11.

12. (a) a plane through rthe origin with normal u. (b)
the same plane as (a) but translated (c) a line, the span
of u. (c) a cylinder !!, with axis given by u.

Section 5.7 1. (a) 3
√

11/2 (b) x + 3y − z = 7 (c)

x =

241
3
3

35 + s

241
1
4

35 + t

24 2
−1
−1

35 (d)x =

241
3
3

35 + t

241
1
4

35 2. (a)

√
59 (b) x + 7y − 3z = 11 (c) x =

240
2
1

35 + s

24 1
−1
−2

35 + t

245
1
4

35
(d) x =

240
2
1

35 + t

24 1
−1
−2

35 3. (a) 5
√

2/2 (b)3
√

6/2 (c) 2
√

3

4. (a) at [0,-1,-3] (b) 2
√

3/3 (c)
p

182/3 (d)
p

8/7 5.

3/
√

5 6. 6/
√

91 7. 3/5 8. (b) and (c)


